metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,4′-Di­methyl-2,2′-bi­pyridine-κ2N,N′)(di­methyl sulfoxide-κO)di­iodidocadmium(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 8 March 2010; accepted 3 April 2010; online 10 April 2010)

In the title compound, [CdI2(C12H12N2)(C2H6OS)], the CdII cation is coordinated by two N atoms from a dimethyl­bipyridine ligand, one O atom from a dimethyl sulfoxide mol­ecule and two I anions in a distorted trigonal–bipyramidal geometry. Intra­molecular C—H⋯O hydrogen bonding and inter­molecular ππ stacking between parallel pyridine rings [centroid–centroid distance = 3.658 (3) Å] are present in the crystal structure.

Related literature

For metal complexes of 4,4′-dimethyl-2,2′-bipyridine, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.]); Bellusci et al. (2008[Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114-3122.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Sakamoto et al. (2004[Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352-m353.]); Sofetis et al. (2006[Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389-3395.]); Willett et al. (2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]); Yoshikawa et al. (2003[Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155-m156.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C12H12N2)(C2H6OS)]

  • Mr = 628.58

  • Monoclinic, P 21 /c

  • a = 8.729 (1) Å

  • b = 15.5247 (18) Å

  • c = 15.1354 (17) Å

  • β = 102.620 (9)°

  • V = 2001.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.28 mm−1

  • T = 298 K

  • 0.49 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.002, Tmax = 0.055

  • 15568 measured reflections

  • 5360 independent reflections

  • 4625 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.172

  • S = 1.16

  • 5360 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 2.10 e Å−3

  • Δρmin = −2.23 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.366 (5)
Cd1—N2 2.326 (4)
Cd1—O1 2.313 (5)
Cd1—I1 2.7535 (6)
Cd1—I2 2.7674 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.93 2.47 3.063 (8) 122

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001) and iridium (Yoshikawa et al., 2003). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CdII atom is five-coordinated in a distorted square-pyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethyl sulfoxide and two I atoms. The Cd—I and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg3—Cg2i and Cg3—Cg3ii [symmetry cods: (i) 2-X,2-Y,2-Z and (ii) 1-X,2-Y,2-Z , where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.657 (3) and 3.775 (3) Å.

Related literature top

For metal complexes of 4,4'-dimethyl-2,2'-bipyridine, see: Ahmadi et al. (2008); Amani et al. (2009); Kalateh et al. (2008); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound a solution of 4,4'-dimethyl-2,2'-bipyridine (0.15 g, 0.80 mmol) in methanol (10 ml) was added to a solution of CdI2 (0.29 g, 0.80 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.36 g, 71.6%).

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 (aromatic) and 0.96 Å (methyl) and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(c).

Structure description top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001) and iridium (Yoshikawa et al., 2003). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CdII atom is five-coordinated in a distorted square-pyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethyl sulfoxide and two I atoms. The Cd—I and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg3—Cg2i and Cg3—Cg3ii [symmetry cods: (i) 2-X,2-Y,2-Z and (ii) 1-X,2-Y,2-Z , where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.657 (3) and 3.775 (3) Å.

For metal complexes of 4,4'-dimethyl-2,2'-bipyridine, see: Ahmadi et al. (2008); Amani et al. (2009); Kalateh et al. (2008); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
(4,4'-Dimethyl-2,2'-bipyridine-κ2N,N')(dimethyl sulfoxide-κO)diiodidocadmium(II) top
Crystal data top
[CdI2(C12H12N2)(C2H6OS)]F(000) = 1176
Mr = 628.58Dx = 2.086 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 887 reflections
a = 8.729 (1) Åθ = 1.9–29.3°
b = 15.5247 (18) ŵ = 4.28 mm1
c = 15.1354 (17) ÅT = 298 K
β = 102.620 (9)°Block, colorless
V = 2001.5 (4) Å30.49 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5360 independent reflections
Radiation source: fine-focus sealed tube4625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.002, Tmax = 0.055k = 2120
15568 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0903P)2 + 1.8883P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.015
5360 reflectionsΔρmax = 2.10 e Å3
195 parametersΔρmin = 2.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0171 (10)
Crystal data top
[CdI2(C12H12N2)(C2H6OS)]V = 2001.5 (4) Å3
Mr = 628.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.729 (1) ŵ = 4.28 mm1
b = 15.5247 (18) ÅT = 298 K
c = 15.1354 (17) Å0.49 × 0.30 × 0.28 mm
β = 102.620 (9)°
Data collection top
Bruker SMART CCD
diffractometer
5360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4625 reflections with I > 2σ(I)
Tmin = 0.002, Tmax = 0.055Rint = 0.082
15568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.16Δρmax = 2.10 e Å3
5360 reflectionsΔρmin = 2.23 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9509 (8)0.7934 (4)0.8795 (4)0.0575 (14)
H10.95290.77430.82160.069*
C21.0322 (8)0.7476 (4)0.9527 (5)0.0596 (14)
H21.08970.69910.94390.071*
C31.0280 (8)0.7741 (4)1.0397 (4)0.0584 (14)
C41.1139 (11)0.7258 (6)1.1206 (6)0.082 (2)
H4C1.13220.76301.17250.098*
H4B1.21260.70601.11010.098*
H4A1.05220.67731.13130.098*
C50.9435 (7)0.8469 (4)1.0476 (4)0.0499 (12)
H50.93830.86661.10490.060*
C60.8651 (5)0.8918 (3)0.9714 (3)0.0385 (9)
C70.7726 (5)0.9709 (3)0.9790 (3)0.0385 (9)
C80.7692 (6)1.0072 (4)1.0620 (3)0.0453 (10)
H80.82620.98251.11510.054*
C90.6794 (7)1.0810 (4)1.0656 (4)0.0488 (11)
C100.6735 (10)1.1201 (5)1.1561 (4)0.0679 (17)
H10A0.71881.17671.16030.081*
H10B0.73151.08461.20370.081*
H10C0.56631.12391.16170.081*
C110.5989 (8)1.1146 (4)0.9857 (4)0.0568 (13)
H110.53721.16350.98570.068*
C120.6086 (8)1.0764 (4)0.9054 (4)0.0545 (13)
H120.55461.10130.85170.065*
C130.411 (3)1.1614 (9)0.6212 (9)0.189 (11)
H13A0.36521.16750.67300.227*
H13B0.33651.17890.56770.227*
H13C0.50291.19710.62870.227*
C140.2811 (10)1.0103 (11)0.5584 (6)0.110 (4)
H14C0.29420.95100.54370.132*
H14B0.23831.04180.50400.132*
H14A0.21081.01410.59890.132*
N10.8687 (5)0.8647 (3)0.8888 (3)0.0471 (9)
N20.6925 (5)1.0048 (3)0.9006 (3)0.0439 (9)
O10.4994 (6)1.0216 (4)0.7072 (3)0.0664 (12)
Cd10.72703 (5)0.94561 (3)0.76515 (2)0.04529 (16)
I10.93442 (5)1.04931 (3)0.70096 (3)0.06676 (19)
I20.63195 (7)0.80423 (3)0.65550 (3)0.0758 (2)
S10.46338 (19)1.05399 (12)0.61041 (10)0.0574 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (3)0.057 (3)0.046 (3)0.009 (3)0.008 (2)0.013 (2)
C20.066 (3)0.056 (3)0.055 (3)0.014 (3)0.010 (3)0.008 (3)
C30.062 (3)0.055 (3)0.056 (3)0.010 (3)0.007 (3)0.003 (3)
C40.094 (5)0.082 (5)0.063 (4)0.032 (4)0.006 (4)0.008 (4)
C50.055 (3)0.054 (3)0.038 (2)0.008 (2)0.005 (2)0.000 (2)
C60.038 (2)0.042 (2)0.036 (2)0.0003 (16)0.0086 (16)0.0007 (18)
C70.037 (2)0.045 (2)0.033 (2)0.0025 (17)0.0059 (16)0.0002 (18)
C80.054 (3)0.050 (3)0.031 (2)0.003 (2)0.0069 (18)0.0019 (19)
C90.055 (3)0.048 (3)0.045 (3)0.002 (2)0.013 (2)0.003 (2)
C100.090 (5)0.070 (4)0.046 (3)0.011 (4)0.019 (3)0.009 (3)
C110.068 (3)0.051 (3)0.050 (3)0.013 (3)0.010 (3)0.004 (2)
C120.069 (3)0.055 (3)0.036 (2)0.014 (3)0.002 (2)0.002 (2)
C130.38 (3)0.084 (8)0.079 (7)0.051 (13)0.012 (12)0.009 (6)
C140.061 (4)0.200 (13)0.063 (5)0.027 (6)0.001 (4)0.007 (7)
N10.050 (2)0.053 (2)0.038 (2)0.0004 (18)0.0086 (17)0.0057 (18)
N20.048 (2)0.048 (2)0.0333 (18)0.0019 (17)0.0039 (16)0.0008 (17)
O10.059 (2)0.095 (4)0.042 (2)0.014 (2)0.0060 (18)0.010 (2)
Cd10.0492 (2)0.0532 (3)0.0323 (2)0.00441 (14)0.00650 (14)0.00210 (14)
I10.0659 (3)0.0866 (4)0.0452 (2)0.0248 (2)0.00653 (18)0.01257 (19)
I20.0940 (4)0.0675 (3)0.0581 (3)0.0181 (2)0.0001 (2)0.0193 (2)
S10.0532 (7)0.0810 (11)0.0364 (6)0.0013 (6)0.0061 (5)0.0011 (6)
Geometric parameters (Å, º) top
C1—N11.342 (8)C10—H10B0.9600
C1—C21.376 (9)C10—H10C0.9600
C1—H10.9300C11—C121.373 (8)
C2—C31.387 (9)C11—H110.9300
C2—H20.9300C12—N21.342 (8)
C3—C51.368 (8)C12—H120.9300
C3—C41.491 (9)C13—S11.746 (13)
C4—H4C0.9600C13—H13A0.9600
C4—H4B0.9600C13—H13B0.9600
C4—H4A0.9600C13—H13C0.9600
C5—C61.393 (7)C14—S11.751 (9)
C5—H50.9300C14—H14C0.9600
C6—N11.327 (6)C14—H14B0.9600
C6—C71.487 (7)C14—H14A0.9600
C7—N21.346 (6)Cd1—N12.366 (5)
C7—C81.384 (7)Cd1—N22.326 (4)
C8—C91.396 (8)O1—S11.515 (5)
C8—H80.9300Cd1—O12.313 (5)
C9—C111.363 (9)Cd1—I12.7535 (6)
C9—C101.508 (8)Cd1—I22.7674 (6)
C10—H10A0.9600
N1—C1—C2122.4 (6)C9—C11—H11120.0
N1—C1—H1118.8C12—C11—H11120.0
C2—C1—H1118.8N2—C12—C11123.1 (5)
C1—C2—C3119.6 (6)N2—C12—H12118.5
C1—C2—H2120.2C11—C12—H12118.5
C3—C2—H2120.2S1—C13—H13A109.5
C5—C3—C2117.0 (6)S1—C13—H13B109.5
C5—C3—C4121.8 (6)H13A—C13—H13B109.5
C2—C3—C4121.1 (6)S1—C13—H13C109.5
C3—C4—H4C109.5H13A—C13—H13C109.5
C3—C4—H4B109.5H13B—C13—H13C109.5
H4C—C4—H4B109.5S1—C14—H14C109.5
C3—C4—H4A109.5S1—C14—H14B109.5
H4C—C4—H4A109.5H14C—C14—H14B109.5
H4B—C4—H4A109.5S1—C14—H14A109.5
C3—C5—C6121.2 (5)H14C—C14—H14A109.5
C3—C5—H5119.4H14B—C14—H14A109.5
C6—C5—H5119.4C6—N1—C1118.9 (5)
N1—C6—C5120.9 (5)C6—N1—Cd1117.5 (4)
N1—C6—C7117.4 (4)C1—N1—Cd1123.6 (4)
C5—C6—C7121.8 (4)C12—N2—C7117.5 (5)
N2—C7—C8122.1 (5)C12—N2—Cd1123.5 (3)
N2—C7—C6116.2 (4)C7—N2—Cd1118.7 (3)
C8—C7—C6121.7 (4)S1—O1—Cd1121.0 (3)
C7—C8—C9119.6 (5)O1—Cd1—N282.36 (16)
C7—C8—H8120.2O1—Cd1—N1145.92 (16)
C9—C8—H8120.2N2—Cd1—N170.02 (16)
C11—C9—C8117.7 (5)O1—Cd1—I198.31 (14)
C11—C9—C10122.5 (6)N2—Cd1—I1107.57 (12)
C8—C9—C10119.8 (5)N1—Cd1—I1108.61 (12)
C9—C10—H10A109.5O1—Cd1—I293.25 (14)
C9—C10—H10B109.5N2—Cd1—I2139.68 (12)
H10A—C10—H10B109.5N1—Cd1—I295.15 (12)
C9—C10—H10C109.5I1—Cd1—I2112.72 (2)
H10A—C10—H10C109.5O1—S1—C13103.3 (5)
H10B—C10—H10C109.5O1—S1—C14106.4 (5)
C9—C11—C12120.0 (6)C13—S1—C14100.5 (9)
N1—C1—C2—C31.3 (11)C8—C7—N2—C120.5 (8)
C1—C2—C3—C51.2 (11)C6—C7—N2—C12179.7 (5)
C1—C2—C3—C4179.6 (8)C8—C7—N2—Cd1174.2 (4)
C2—C3—C5—C60.2 (10)C6—C7—N2—Cd16.0 (6)
C4—C3—C5—C6179.4 (7)S1—O1—Cd1—N2152.1 (4)
C3—C5—C6—N10.8 (9)S1—O1—Cd1—N1172.4 (3)
C3—C5—C6—C7179.9 (6)S1—O1—Cd1—I145.3 (4)
N1—C6—C7—N24.0 (7)S1—O1—Cd1—I268.2 (4)
C5—C6—C7—N2175.1 (5)C12—N2—Cd1—O122.7 (5)
N1—C6—C7—C8176.1 (5)C7—N2—Cd1—O1164.0 (4)
C5—C6—C7—C84.8 (8)C12—N2—Cd1—N1177.6 (5)
N2—C7—C8—C90.4 (8)C7—N2—Cd1—N14.3 (4)
C6—C7—C8—C9179.4 (5)C12—N2—Cd1—I173.7 (5)
C7—C8—C9—C110.4 (9)C7—N2—Cd1—I199.6 (4)
C7—C8—C9—C10179.2 (6)C12—N2—Cd1—I2108.7 (5)
C8—C9—C11—C120.5 (10)C7—N2—Cd1—I278.0 (4)
C10—C9—C11—C12180.0 (7)C6—N1—Cd1—O139.9 (6)
C9—C11—C12—N21.5 (11)C1—N1—Cd1—O1139.8 (5)
C5—C6—N1—C10.8 (8)C6—N1—Cd1—N22.0 (4)
C7—C6—N1—C1179.9 (5)C1—N1—Cd1—N2177.7 (5)
C5—C6—N1—Cd1179.0 (4)C6—N1—Cd1—I1100.5 (4)
C7—C6—N1—Cd10.2 (6)C1—N1—Cd1—I179.8 (5)
C2—C1—N1—C60.3 (10)C6—N1—Cd1—I2143.5 (4)
C2—C1—N1—Cd1180.0 (5)C1—N1—Cd1—I236.2 (5)
C11—C12—N2—C71.4 (10)Cd1—O1—S1—C13131.6 (9)
C11—C12—N2—Cd1174.8 (5)Cd1—O1—S1—C14123.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.473.063 (8)122

Experimental details

Crystal data
Chemical formula[CdI2(C12H12N2)(C2H6OS)]
Mr628.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.729 (1), 15.5247 (18), 15.1354 (17)
β (°) 102.620 (9)
V3)2001.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.28
Crystal size (mm)0.49 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.002, 0.055
No. of measured, independent and
observed [I > 2σ(I)] reflections
15568, 5360, 4625
Rint0.082
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.172, 1.16
No. of reflections5360
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.10, 2.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd1—N12.366 (5)Cd1—I12.7535 (6)
Cd1—N22.326 (4)Cd1—I22.7674 (6)
Cd1—O12.313 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.473.063 (8)122
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.  Web of Science CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds