metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­methano­lbis[μ-5-(3-pyrid­yl)tetra­zolato-κ2N2:N5]copper(II)]

aCollege of Mechanical & Material Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: wxhong1@126.com

(Received 13 March 2010; accepted 13 April 2010; online 21 April 2010)

In the crystal structure of the title complex, [Cu(C6H4N5)2(CH3OH)2]n, the CuII cation lies on an inversion center and is coordinated by four 5-(3-pyrid­yl)tetra­zolate anions and two methanol mol­ecules in an elongated distorted CuN4O2 octa­hedral geometry. Each 5-(3-pyrid­yl)tetra­zolate anion bridges two CuII cations, forming a two-dimensional polymeric complex with (4,4) network topology. In the crystal structure, the two-dimensional layers are connected by inter­molecular O—H⋯N hydrogen bonding, forming a three-dimensional supra­molecular architecture.

Related literature

For background to 5-(3-pyrid­yl)tetra­zolate complexes, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]). For the structure of a related polymeric metal complex with a 5-(3-pyrid­yl)tetra­zolate bridging ligand, see: Zhang et al. (2006[Zhang, C., Ai, H.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m2908-m2909.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H4N5)2(CH4O)2]

  • Mr = 419.91

  • Orthorhombic, P b c a

  • a = 13.553 (3) Å

  • b = 9.1756 (18) Å

  • c = 14.264 (3) Å

  • V = 1773.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.35 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.712, Tmax = 0.776

  • 10117 measured reflections

  • 2142 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.102

  • S = 1.00

  • 2142 reflections

  • 126 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1i 2.0549 (16)
Cu1—N3 2.0167 (15)
Cu1—O1 2.4999 (15)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N5ii 0.82 1.97 2.776 (2) 166
Symmetry code: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been great interest in the study of metal-organic coordination polymers with network structures due to their possible chemical and physicalproperties. Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, dueing to its various coordination modes (Wang et al., 2005; Fu et al., 2008; Zhang et al., 2006)). We report here the crystal structure of the title compound.

The crystallographically asymmetric unit contains a half CuII ion, one 5-(3-pyridyl)tetrazolate (3-ptz) ligand and one methanol molecule. Each ligand adopts a bidentate bridging spacer to link two Cu centers. Upon the same bridging fashion, all CuII atoms are linked by ligands into a infinite 2D grid network with Cu···Cu separation of 8.480 (2) Å. In additon, the pyridyl and tetrazolate rings are almost coplanar, with a dihedral angle of 2.535 (7)°. The bond distances between Cu and N atoms are in the range of 2.017 (2)-2.055 (2) Å. There is intermolecular O—H···N hydrogen bond inginteractions involving the hydroxyl of methanol and nitrogen of 3-ptz ligand, which links the 2D layers into a 3D supramolecular architecture.

Related literature top

For background to 5-(3-pyridyl)tetrazolate complexes, see: Fu et al. (2008); Wang et al. (2005). For the structure of a related polymeric metal complex with a 5-(3-pyridyl)-tetrazolate bridging ligand, see: Zhang et al. (2006).

Experimental top

A mixture of 3-(2H-tetrazol-5-yl)pyridine(0.2 mmol, 0.0294 g),Cu(CH3COO)2.H2O (0.4 mmol, 0.0799 g), methanol (5 ml) and distilled water (10 ml) were sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 423 K for three days, and then cooled slowly to 298 K at which time blue crystals were obtained.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å, O—H = 0.82 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C,O) for the others.

Structure description top

In recent years, there has been great interest in the study of metal-organic coordination polymers with network structures due to their possible chemical and physicalproperties. Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, dueing to its various coordination modes (Wang et al., 2005; Fu et al., 2008; Zhang et al., 2006)). We report here the crystal structure of the title compound.

The crystallographically asymmetric unit contains a half CuII ion, one 5-(3-pyridyl)tetrazolate (3-ptz) ligand and one methanol molecule. Each ligand adopts a bidentate bridging spacer to link two Cu centers. Upon the same bridging fashion, all CuII atoms are linked by ligands into a infinite 2D grid network with Cu···Cu separation of 8.480 (2) Å. In additon, the pyridyl and tetrazolate rings are almost coplanar, with a dihedral angle of 2.535 (7)°. The bond distances between Cu and N atoms are in the range of 2.017 (2)-2.055 (2) Å. There is intermolecular O—H···N hydrogen bond inginteractions involving the hydroxyl of methanol and nitrogen of 3-ptz ligand, which links the 2D layers into a 3D supramolecular architecture.

For background to 5-(3-pyridyl)tetrazolate complexes, see: Fu et al. (2008); Wang et al. (2005). For the structure of a related polymeric metal complex with a 5-(3-pyridyl)-tetrazolate bridging ligand, see: Zhang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x+1,y-1/2,-z+3/2; (B) x,-y+1/2,z-1/2; (C) -x+1,-y,-z+1.]
[Figure 2] Fig. 2. The 2D sheet of the title compound, viewed along the a axis.
Poly[dimethanolbis[µ-5-(3-pyridyl)tetrazolato- κ2N2:N5]copper(II)] top
Crystal data top
[Cu(C6H4N5)2(CH4O)2]F(000) = 860
Mr = 419.91Dx = 1.572 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3436 reflections
a = 13.553 (3) Åθ = 3.0–28.4°
b = 9.1756 (18) ŵ = 1.27 mm1
c = 14.264 (3) ÅT = 298 K
V = 1773.8 (6) Å3Prism, blue
Z = 40.35 × 0.23 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2142 independent reflections
Radiation source: fine-focus sealed tube1609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1715
Tmin = 0.712, Tmax = 0.776k = 1110
10117 measured reflectionsl = 1019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.063P)2 + 0.5194P]
where P = (Fo2 + 2Fc2)/3
2142 reflections(Δ/σ)max = 0.006
126 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C6H4N5)2(CH4O)2]V = 1773.8 (6) Å3
Mr = 419.91Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.553 (3) ŵ = 1.27 mm1
b = 9.1756 (18) ÅT = 298 K
c = 14.264 (3) Å0.35 × 0.23 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1609 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.776Rint = 0.034
10117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
2142 reflectionsΔρmin = 0.44 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02552 (13)
N10.40143 (12)0.49681 (14)0.89055 (11)0.0268 (3)
N20.43581 (11)0.21166 (17)0.65120 (11)0.0322 (4)
C40.34156 (12)0.39225 (18)0.74718 (13)0.0271 (4)
C60.35651 (13)0.29258 (19)0.66749 (12)0.0273 (4)
N30.41335 (10)0.13933 (17)0.57196 (11)0.0289 (3)
N50.28715 (12)0.2724 (2)0.60197 (12)0.0400 (4)
C50.41360 (13)0.41125 (19)0.81498 (12)0.0278 (4)
H50.47330.36240.80780.033*
C10.31558 (14)0.5690 (2)0.89861 (14)0.0356 (4)
H10.30650.62990.95000.043*
C20.24063 (16)0.5566 (3)0.83412 (14)0.0417 (5)
H20.18220.60810.84210.050*
N40.32433 (12)0.17505 (19)0.54228 (12)0.0397 (4)
C30.25302 (14)0.4669 (3)0.75747 (13)0.0381 (5)
H30.20300.45660.71340.046*
O10.58452 (9)0.21181 (15)0.42449 (11)0.0392 (3)
H1A0.64260.20840.40850.047*
C70.5580 (2)0.3571 (3)0.4431 (3)0.0756 (10)
H7A0.48740.36580.44300.113*
H7B0.58530.41940.39560.113*
H7C0.58320.38530.50330.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0267 (2)0.0285 (2)0.02140 (19)0.00631 (11)0.00140 (11)0.00145 (11)
N10.0310 (8)0.0256 (8)0.0238 (7)0.0035 (6)0.0006 (6)0.0000 (6)
N20.0308 (7)0.0373 (9)0.0286 (8)0.0049 (7)0.0035 (6)0.0083 (7)
C40.0300 (8)0.0257 (8)0.0257 (8)0.0025 (7)0.0001 (7)0.0014 (7)
C60.0268 (8)0.0289 (9)0.0261 (8)0.0016 (7)0.0026 (7)0.0013 (7)
N30.0270 (7)0.0322 (8)0.0274 (7)0.0030 (6)0.0025 (6)0.0029 (6)
N50.0332 (8)0.0492 (10)0.0376 (9)0.0138 (7)0.0090 (7)0.0173 (8)
C50.0268 (8)0.0290 (9)0.0275 (9)0.0017 (7)0.0011 (7)0.0004 (7)
C10.0423 (10)0.0348 (10)0.0296 (10)0.0069 (9)0.0016 (8)0.0063 (8)
C20.0411 (11)0.0452 (12)0.0387 (11)0.0195 (10)0.0063 (9)0.0102 (9)
N40.0328 (8)0.0480 (10)0.0382 (9)0.0121 (7)0.0076 (7)0.0149 (8)
C30.0361 (11)0.0442 (11)0.0339 (11)0.0122 (8)0.0109 (9)0.0082 (8)
O10.0296 (7)0.0388 (8)0.0492 (9)0.0034 (6)0.0003 (6)0.0014 (6)
C70.0670 (17)0.0381 (14)0.122 (3)0.0021 (13)0.0290 (18)0.0100 (15)
Geometric parameters (Å, º) top
Cu1—N1i2.0549 (16)C6—N51.338 (2)
Cu1—N1ii2.0549 (16)N3—N41.320 (2)
Cu1—N32.0167 (15)N5—N41.333 (2)
Cu1—N3iii2.0167 (15)C5—H50.9300
Cu1—O12.4999 (15)C1—C21.375 (3)
Cu1—O1iii2.4999 (15)C1—H10.9300
N1—C51.344 (2)C2—C31.378 (3)
N1—C11.344 (2)C2—H20.9300
N1—Cu1iv2.0549 (16)C3—H30.9300
N2—C61.327 (2)O1—C71.406 (3)
N2—N31.346 (2)O1—H1A0.8200
C4—C51.385 (2)C7—H7A0.9600
C4—C31.390 (2)C7—H7B0.9600
C4—C61.473 (2)C7—H7C0.9600
N3—Cu1—N3iii180.00 (7)N1—C5—C4123.17 (16)
N3—Cu1—N1i90.06 (6)N1—C5—H5118.4
N3iii—Cu1—N1i89.94 (6)C4—C5—H5118.4
N3—Cu1—N1ii89.94 (6)N1—C1—C2122.80 (18)
N3iii—Cu1—N1ii90.06 (6)N1—C1—H1118.6
N1i—Cu1—N1ii180.0C2—C1—H1118.6
C5—N1—C1117.57 (16)C3—C2—C1119.33 (18)
C5—N1—Cu1iv122.55 (12)C3—C2—H2120.3
C1—N1—Cu1iv119.40 (13)C1—C2—H2120.3
C6—N2—N3103.87 (14)N3—N4—N5107.89 (15)
C5—C4—C3118.22 (16)C2—C3—C4118.89 (17)
C5—C4—C6121.33 (16)C2—C3—H3120.6
C3—C4—C6120.42 (16)C4—C3—H3120.6
N2—C6—N5111.67 (15)C7—O1—H1A109.5
N2—C6—C4126.44 (16)O1—C7—H7A109.5
N5—C6—C4121.88 (16)O1—C7—H7B109.5
N4—N3—N2110.72 (14)H7A—C7—H7B109.5
N4—N3—Cu1121.77 (12)O1—C7—H7C109.5
N2—N3—Cu1127.47 (11)H7A—C7—H7C109.5
N4—N5—C6105.85 (15)H7B—C7—H7C109.5
N3—N2—C6—N50.1 (2)C4—C6—N5—N4179.06 (17)
N3—N2—C6—C4179.14 (17)C1—N1—C5—C41.4 (3)
C5—C4—C6—N20.5 (3)Cu1iv—N1—C5—C4170.55 (13)
C3—C4—C6—N2177.71 (19)C3—C4—C5—N10.8 (3)
C5—C4—C6—N5179.43 (18)C6—C4—C5—N1177.41 (16)
C3—C4—C6—N51.2 (3)C5—N1—C1—C21.1 (3)
C6—N2—N3—N40.2 (2)Cu1iv—N1—C1—C2171.19 (17)
C6—N2—N3—Cu1177.41 (12)N1—C1—C2—C30.1 (4)
N3iii—Cu1—N3—N412 (76)N2—N3—N4—N50.2 (2)
N1i—Cu1—N3—N4171.52 (15)Cu1—N3—N4—N5177.56 (13)
N1ii—Cu1—N3—N48.48 (15)C6—N5—N4—N30.1 (2)
N3iii—Cu1—N3—N2165 (76)C1—C2—C3—C40.5 (4)
N1i—Cu1—N3—N211.10 (15)C5—C4—C3—C20.2 (3)
N1ii—Cu1—N3—N2168.90 (15)C6—C4—C3—C2178.4 (2)
N2—C6—N5—N40.0 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5v0.821.972.776 (2)166
Symmetry code: (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C6H4N5)2(CH4O)2]
Mr419.91
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.553 (3), 9.1756 (18), 14.264 (3)
V3)1773.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.35 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
10117, 2142, 1609
Rint0.034
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.102, 1.00
No. of reflections2142
No. of parameters126
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N1i2.0549 (16)Cu1—O12.4999 (15)
Cu1—N32.0167 (15)
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5ii0.821.972.776 (2)166.2
Symmetry code: (ii) x+1/2, y+1/2, z+1.
 

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, C., Ai, H.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m2908–m2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds