metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[{μ2-3-[(1H-benzimidazol-1-yl)meth­yl]benzoato}cadmium(II)] 0.1-hydrate]

aCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: xwwu@sdnu.edu.cn

(Received 25 March 2010; accepted 10 April 2010; online 17 April 2010)

In the title polymeric compound, {[Cd(C15H11N2O2)2]·0.1H2O}n, the CdII atom is coordinated by four carboxyl­ate O atoms and two benzimidazole N atoms from four benzimidazolylmethyl­benzoate anions in a distorted octa­hedral geometry. Each anion bridges two Cd atoms through the terminal carboxyl­ate group and an imidazole N atom, forming polymeric complex chains running along the b axis. The uncoordinated water mol­ecule is equally disordered over two sites; occupancies were fixed as 0.5 for each disordered component. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the use of benzimidazoles and benzimidazole derivatives in the construction of metal-organic frameworks, see: Li et al. (2010[Li, H., Wei, Z., Gong, Q. & Han, Q. (2010). Acta Cryst. E66, m267.]); Vijayan et al. (2006[Vijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318-323.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C15H11N2O2)2]·0.1H2O

  • Mr = 616.72

  • Monoclinic, P 21 /c

  • a = 12.7770 (18) Å

  • b = 10.8304 (15) Å

  • c = 18.522 (3) Å

  • β = 95.007 (2)°

  • V = 2553.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 K

  • 0.51 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.656, Tmax = 0.813

  • 13062 measured reflections

  • 4754 independent reflections

  • 4031 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.03

  • 4754 reflections

  • 370 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.3559 (17)
Cd1—O2 2.3669 (17)
Cd1—O3 2.4209 (19)
Cd1—O4 2.3063 (19)
Cd1—N1i 2.2801 (19)
Cd1—N4ii 2.283 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1iii 0.93 2.59 3.357 (3) 140
C14—H14⋯O4iv 0.93 2.41 3.261 (3) 152
C23—H23B⋯O2v 0.97 2.58 3.277 (3) 129
C29—H29⋯O3v 0.93 2.57 3.424 (3) 154
Symmetry codes: (iii) x, y-1, z; (iv) -x+2, -y+1, -z; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of supramolecular complexes are of great interest not only because of their potential applications but also owing to their intriguing structures. Benzimidazole and benzimidazole-containing derivatives acted as one of the useful classes of organic building blocks to construct metal-organic frameworks (MOFs) (Li et al., 2010; Vijayan et al., 2006). Supramolecular complexes based on bent unsymmetric ligands containing benzimidazole and carboxylic acid groups have been less extensively studied, so these bent unsymmetric ligands offer great potential for creating novel frameworks. In the present work, the new bent organic ligand 3-[(1H-benzimidazole-1-yl)methyl]benzoic acid (HL) was employed in a self-assembly reaction with cadmium (II) iodide under hydrothermal conditions to create the novel supramolecular complex [Cd(C15H11N2O2)20.10(H2O)]n (I).

The compound structure of (I) is shown in Fig. 1. The asymmetric unit contains two L ligands, one Cd(II) and 0.10 water molecule. Compound (I) crystallizes with one unique six-coordinated Cd(II) center in a distorted octahedral {Cd N2O4} environment involving four O atoms from the carboxylate groups of two L ligands and two N atoms from benzimidazole of two other L ligands.

Neighboring Cd(II) ions are bound together by the carboxylate groups and terminal benzimidazole N donors of two L ligands to form a {Cd2L2} bimetallic ring in which the diagonal Cd···Cd separation is 9.907 (6) Å. The dihedral angle between benzimidazole ring and benzene ring is 87.618 (113)°. Small amounts of disordered water molecules are located in the bimetallic ring. Each Cd (II) center of the bimetallic ring is further bonded with two other bridging ligands resulting in a novel infinite one-dimensional extended chains structure in the crystallographic c axis. The Cd···Cd distance between adjacent bimetallic rings is 10.830 (2) Å, and the dihedral angle of benzimidazole ring and benzene ring of the ligand is 62.467 (82)°, it is worthy noted that the Cd···Cd distance is longer than that of in the bimetallic ring, which may be caused by the different features of the ligand. (Fig. 2).

In the solid state, when viewed down the crystallographic b axis, these one-dimensional chains are arranged in an ···AA··· fashion stack through interchain π-π interaction between two benzimidazole ring, the centroid-to-centroid distance of ca. 3.7 Å (Fig. 3).

Related literature top

For the use of benzimidazoles and benzimidazole derivatives in the construction of metal-organic frameworks, see: Li et al. (2010); Vijayan et al. (2006).

Experimental top

A mixture of 3-[(1H-benzimidazole-1-yl)methyl)methyl]benzoic acid (25.2 mg, 0.10 mmol), CdI2 (12.7 mg, 0.10 mmol) and deionized water (2 ml) was sealed in a 5 ml Teflon-lined stainless steel reactor and heated at 453 K for 40 h, and then cooled slowly to room temperature over a period of 50 h. Colorless single crystals were obtained from the reaction mixture.

Refinement top

The lattice water is disordered over two sites, site occupancy factors for each components were refined and converged to 0.048 and 0.046, respectively; in the final cycles of refinement they were fixed as 0.5 for each. H atoms of water molecules were placed at calculated positions and refined with distance constraint of O—H = 0.85±0.001 Å, and Uiso(H) = 1.5Ueq(O). Other H atoms were placed in geometrically idealized positions and refined as riding atoms with C—H = 0.93 (aromatic) and 0.97 Å (methylene), Uiso(H) = 1.2Ueq(C).

Structure description top

The rational design and synthesis of supramolecular complexes are of great interest not only because of their potential applications but also owing to their intriguing structures. Benzimidazole and benzimidazole-containing derivatives acted as one of the useful classes of organic building blocks to construct metal-organic frameworks (MOFs) (Li et al., 2010; Vijayan et al., 2006). Supramolecular complexes based on bent unsymmetric ligands containing benzimidazole and carboxylic acid groups have been less extensively studied, so these bent unsymmetric ligands offer great potential for creating novel frameworks. In the present work, the new bent organic ligand 3-[(1H-benzimidazole-1-yl)methyl]benzoic acid (HL) was employed in a self-assembly reaction with cadmium (II) iodide under hydrothermal conditions to create the novel supramolecular complex [Cd(C15H11N2O2)20.10(H2O)]n (I).

The compound structure of (I) is shown in Fig. 1. The asymmetric unit contains two L ligands, one Cd(II) and 0.10 water molecule. Compound (I) crystallizes with one unique six-coordinated Cd(II) center in a distorted octahedral {Cd N2O4} environment involving four O atoms from the carboxylate groups of two L ligands and two N atoms from benzimidazole of two other L ligands.

Neighboring Cd(II) ions are bound together by the carboxylate groups and terminal benzimidazole N donors of two L ligands to form a {Cd2L2} bimetallic ring in which the diagonal Cd···Cd separation is 9.907 (6) Å. The dihedral angle between benzimidazole ring and benzene ring is 87.618 (113)°. Small amounts of disordered water molecules are located in the bimetallic ring. Each Cd (II) center of the bimetallic ring is further bonded with two other bridging ligands resulting in a novel infinite one-dimensional extended chains structure in the crystallographic c axis. The Cd···Cd distance between adjacent bimetallic rings is 10.830 (2) Å, and the dihedral angle of benzimidazole ring and benzene ring of the ligand is 62.467 (82)°, it is worthy noted that the Cd···Cd distance is longer than that of in the bimetallic ring, which may be caused by the different features of the ligand. (Fig. 2).

In the solid state, when viewed down the crystallographic b axis, these one-dimensional chains are arranged in an ···AA··· fashion stack through interchain π-π interaction between two benzimidazole ring, the centroid-to-centroid distance of ca. 3.7 Å (Fig. 3).

For the use of benzimidazoles and benzimidazole derivatives in the construction of metal-organic frameworks, see: Li et al. (2010); Vijayan et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around the Cd atom, displacement ellipsoids drawn at 30% probability level [symmetry codes: (i) x, 1+y, z; (ii) 1-x, 2-y, -z].
[Figure 2] Fig. 2. One-dimensional chain structure of (I), disordered water molecules located in the bimetallic ring.
Poly[[{µ2-3-[(1H-benzimidazol-1-yl)methyl]benzoato}cadmium(II)] 0.10-hydrate] top
Crystal data top
[Cd(C15H11N2O2)2]·0.1H2OF(000) = 1244
Mr = 616.72Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7057 reflections
a = 12.7770 (18) Åθ = 2.2–28.2°
b = 10.8304 (15) ŵ = 0.90 mm1
c = 18.522 (3) ÅT = 298 K
β = 95.007 (2)°Block, colourless
V = 2553.4 (6) Å30.51 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4754 independent reflections
Radiation source: fine-focus sealed tube4031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1512
Tmin = 0.656, Tmax = 0.813k = 1313
13062 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.9163P]
where P = (Fo2 + 2Fc2)/3
4754 reflections(Δ/σ)max = 0.002
370 parametersΔρmax = 0.63 e Å3
7 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cd(C15H11N2O2)2]·0.1H2OV = 2553.4 (6) Å3
Mr = 616.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7770 (18) ŵ = 0.90 mm1
b = 10.8304 (15) ÅT = 298 K
c = 18.522 (3) Å0.51 × 0.30 × 0.24 mm
β = 95.007 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4754 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4031 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.813Rint = 0.025
13062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0287 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
4754 reflectionsΔρmin = 0.37 e Å3
370 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.83100 (17)0.53070 (18)0.16646 (13)0.0324 (5)
C20.86797 (18)0.41005 (19)0.19581 (12)0.0346 (5)
C30.8300 (2)0.3700 (2)0.26403 (13)0.0435 (6)
H30.78170.41800.29210.052*
C40.8635 (3)0.2588 (2)0.29070 (15)0.0490 (7)
H40.83730.23190.33640.059*
C50.9362 (2)0.1874 (2)0.24938 (14)0.0454 (6)
H50.95960.11360.26790.055*
C60.9740 (2)0.2256 (2)0.18067 (14)0.0377 (5)
C70.93982 (18)0.33745 (19)0.15452 (12)0.0348 (5)
H70.96550.36410.10860.042*
C81.0543 (2)0.1491 (2)0.13545 (15)0.0452 (6)
H8A1.11350.13310.16350.054*
H8B1.07990.19640.09300.054*
C90.91692 (18)0.0199 (2)0.12756 (13)0.0389 (5)
H90.86180.02100.15360.047*
C101.00732 (18)0.1589 (2)0.06694 (12)0.0360 (5)
C111.0459 (2)0.2654 (2)0.03163 (14)0.0426 (6)
H111.00410.33520.02850.051*
C121.1482 (2)0.2631 (2)0.00163 (15)0.0484 (7)
H121.17580.33270.02250.058*
C131.2117 (2)0.1596 (3)0.00641 (14)0.0531 (7)
H131.28040.16190.01470.064*
C141.1756 (2)0.0534 (2)0.04155 (13)0.0457 (6)
H141.21790.01580.04480.055*
C151.07229 (18)0.0563 (2)0.07173 (12)0.0363 (5)
C160.6286 (2)0.73215 (19)0.00888 (14)0.0364 (5)
C170.5579 (2)0.7302 (2)0.05285 (15)0.0410 (6)
C180.4722 (2)0.6511 (2)0.05053 (14)0.0466 (6)
H180.45780.59940.01080.056*
C190.4086 (2)0.6485 (3)0.10666 (16)0.0529 (7)
H190.35180.59450.10500.063*
C200.4286 (2)0.7260 (3)0.16554 (17)0.0509 (7)
H200.38490.72440.20310.061*
C210.51359 (19)0.8060 (2)0.16893 (13)0.0432 (6)
C220.57828 (19)0.8061 (2)0.11322 (13)0.0424 (6)
H220.63660.85770.11590.051*
C230.5332 (2)0.8948 (3)0.23165 (14)0.0527 (7)
H23A0.54020.84910.27690.063*
H23B0.59830.93920.22720.063*
C240.4122 (2)1.0601 (2)0.17843 (14)0.0486 (6)
H240.44651.06920.13650.058*
C250.30136 (18)1.0798 (2)0.25785 (13)0.0392 (5)
C260.2184 (2)1.1123 (2)0.29766 (14)0.0484 (6)
H260.16761.16880.28000.058*
C270.2144 (2)1.0575 (3)0.36398 (15)0.0555 (7)
H270.15951.07710.39180.067*
C280.2903 (2)0.9734 (3)0.39098 (15)0.0547 (7)
H280.28530.93950.43670.066*
C290.3723 (2)0.9388 (2)0.35230 (14)0.0471 (6)
H290.42270.88210.37020.056*
C300.37558 (18)0.9936 (2)0.28477 (12)0.0379 (5)
Cd10.763197 (14)0.744630 (14)0.112674 (10)0.03670 (8)
N10.90940 (15)0.13374 (17)0.10222 (10)0.0377 (4)
N21.01240 (15)0.03038 (16)0.11170 (10)0.0366 (4)
N30.44586 (16)0.98322 (19)0.23252 (11)0.0432 (5)
N40.32673 (16)1.12095 (18)0.19014 (11)0.0452 (5)
O10.84916 (15)0.55239 (15)0.10022 (10)0.0514 (4)
O20.78223 (15)0.60416 (16)0.20854 (10)0.0521 (4)
O30.60131 (16)0.6789 (2)0.06556 (11)0.0643 (5)
O40.71415 (17)0.7877 (2)0.00157 (11)0.0640 (6)
O1W0.593 (5)0.141 (6)0.104 (3)0.116 (19)0.05
H1O10.60600.11560.06200.174*0.05
H2O10.63030.20430.11600.174*0.05
O2W0.540 (8)0.031 (8)0.020 (3)0.19 (5)0.05
H1O20.53170.06760.02080.283*0.05
H2O20.52970.04650.01900.283*0.05
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0276 (11)0.0245 (11)0.0458 (13)0.0005 (9)0.0073 (9)0.0016 (10)
C20.0350 (12)0.0288 (11)0.0412 (12)0.0022 (9)0.0100 (10)0.0029 (9)
C30.0504 (15)0.0370 (12)0.0432 (14)0.0018 (11)0.0044 (11)0.0055 (10)
C40.067 (2)0.0428 (15)0.0380 (14)0.0062 (12)0.0084 (13)0.0037 (10)
C50.0568 (16)0.0309 (12)0.0505 (15)0.0000 (11)0.0158 (12)0.0062 (11)
C60.0386 (13)0.0256 (11)0.0503 (15)0.0008 (10)0.0129 (11)0.0036 (10)
C70.0372 (12)0.0294 (11)0.0385 (12)0.0044 (9)0.0083 (10)0.0007 (9)
C80.0419 (14)0.0282 (11)0.0662 (17)0.0012 (10)0.0090 (12)0.0062 (11)
C90.0350 (12)0.0326 (12)0.0493 (14)0.0032 (10)0.0046 (10)0.0035 (10)
C100.0404 (13)0.0336 (11)0.0351 (12)0.0027 (10)0.0094 (10)0.0003 (9)
C110.0510 (16)0.0365 (13)0.0414 (14)0.0029 (11)0.0095 (12)0.0054 (10)
C120.0550 (17)0.0471 (15)0.0434 (15)0.0145 (12)0.0051 (12)0.0107 (11)
C130.0462 (15)0.0593 (17)0.0524 (16)0.0098 (13)0.0042 (12)0.0031 (13)
C140.0447 (14)0.0426 (13)0.0497 (14)0.0023 (11)0.0042 (11)0.0030 (11)
C150.0412 (13)0.0304 (11)0.0378 (12)0.0042 (10)0.0061 (10)0.0023 (9)
C160.0384 (13)0.0269 (11)0.0452 (14)0.0031 (9)0.0112 (11)0.0023 (10)
C170.0385 (14)0.0345 (12)0.0509 (15)0.0034 (10)0.0084 (11)0.0027 (10)
C180.0459 (15)0.0400 (13)0.0541 (15)0.0020 (11)0.0059 (12)0.0005 (11)
C190.0378 (14)0.0499 (15)0.0721 (19)0.0043 (12)0.0115 (13)0.0071 (14)
C200.0416 (15)0.0574 (16)0.0559 (17)0.0085 (13)0.0164 (13)0.0101 (13)
C210.0366 (13)0.0459 (14)0.0474 (14)0.0140 (11)0.0049 (11)0.0039 (12)
C220.0368 (13)0.0391 (13)0.0517 (15)0.0029 (11)0.0059 (11)0.0013 (11)
C230.0418 (15)0.0668 (18)0.0492 (15)0.0196 (13)0.0020 (11)0.0045 (13)
C240.0482 (15)0.0547 (15)0.0440 (14)0.0086 (13)0.0100 (11)0.0013 (12)
C250.0355 (12)0.0361 (12)0.0461 (13)0.0013 (10)0.0033 (10)0.0067 (10)
C260.0395 (14)0.0475 (14)0.0584 (16)0.0066 (12)0.0058 (12)0.0059 (12)
C270.0398 (14)0.0694 (18)0.0588 (17)0.0026 (14)0.0134 (12)0.0082 (14)
C280.0491 (16)0.0676 (19)0.0482 (15)0.0075 (14)0.0084 (12)0.0032 (13)
C290.0426 (14)0.0488 (14)0.0492 (15)0.0010 (12)0.0001 (11)0.0005 (12)
C300.0337 (12)0.0384 (12)0.0413 (13)0.0008 (10)0.0016 (10)0.0059 (10)
Cd10.03766 (12)0.02956 (11)0.04360 (12)0.00121 (7)0.00763 (8)0.00008 (7)
N10.0387 (11)0.0303 (10)0.0445 (11)0.0010 (8)0.0060 (8)0.0040 (8)
N20.0372 (11)0.0261 (9)0.0472 (11)0.0011 (8)0.0074 (8)0.0017 (8)
N30.0388 (11)0.0478 (12)0.0430 (11)0.0139 (9)0.0037 (9)0.0014 (9)
N40.0440 (12)0.0424 (11)0.0493 (12)0.0095 (10)0.0047 (9)0.0013 (9)
O10.0683 (13)0.0342 (9)0.0515 (11)0.0076 (9)0.0046 (9)0.0052 (8)
O20.0575 (11)0.0395 (9)0.0585 (11)0.0113 (9)0.0012 (9)0.0032 (8)
O30.0602 (13)0.0797 (14)0.0554 (12)0.0188 (11)0.0183 (10)0.0185 (11)
O40.0643 (14)0.0727 (12)0.0587 (13)0.0255 (11)0.0259 (10)0.0174 (11)
O1W0.11 (2)0.11 (2)0.12 (2)0.003 (10)0.007 (10)0.002 (10)
O2W0.30 (13)0.18 (8)0.08 (6)0.15 (9)0.04 (5)0.03 (5)
Geometric parameters (Å, º) top
Cd1—O12.3559 (17)C15—N21.384 (3)
Cd1—O22.3669 (17)C16—O31.221 (3)
Cd1—O32.4209 (19)C16—O41.248 (3)
Cd1—O42.3063 (19)C16—C171.518 (3)
Cd1—N1i2.2801 (19)C17—C181.388 (3)
Cd1—N4ii2.283 (2)C17—C221.394 (4)
C1—O21.243 (3)C18—C191.375 (4)
C1—O11.251 (3)C18—H180.9300
C1—C21.507 (3)C19—C201.382 (4)
C2—C31.383 (3)C19—H190.9300
C2—C71.387 (3)C20—C211.386 (4)
C3—C41.384 (3)C20—H200.9300
C3—H30.9300C21—C221.377 (3)
C4—C51.386 (4)C21—C231.512 (4)
C4—H40.9300C22—H220.9300
C5—C61.385 (4)C23—N31.472 (3)
C5—H50.9300C23—H23A0.9700
C6—C71.390 (3)C23—H23B0.9700
C6—C81.513 (4)C24—N41.310 (3)
C7—H70.9300C24—N31.344 (3)
C8—N21.475 (3)C24—H240.9300
C8—H8A0.9700C25—C261.389 (3)
C8—H8B0.9700C25—C301.392 (3)
C9—N11.326 (3)C25—N41.395 (3)
C9—N21.345 (3)C26—C271.369 (4)
C9—H90.9300C26—H260.9300
C10—N11.387 (3)C27—C281.392 (4)
C10—C151.395 (3)C27—H270.9300
C10—C111.395 (3)C28—C291.372 (4)
C11—C121.376 (4)C28—H280.9300
C11—H110.9300C29—C301.389 (3)
C12—C131.391 (4)C29—H290.9300
C12—H120.9300C30—N31.381 (3)
C13—C141.380 (4)O1W—H1O10.8500
C13—H130.9300O1W—H2O10.8501
C14—C151.388 (3)O2W—H1O20.8499
C14—H140.9300O2W—H2O20.8500
O2—C1—O1122.3 (2)C21—C22—H22119.4
O2—C1—C2119.0 (2)C17—C22—H22119.4
O1—C1—C2118.7 (2)N3—C23—C21110.3 (2)
C3—C2—C7119.2 (2)N3—C23—H23A109.6
C3—C2—C1120.4 (2)C21—C23—H23A109.6
C7—C2—C1120.4 (2)N3—C23—H23B109.6
C2—C3—C4120.3 (2)C21—C23—H23B109.6
C2—C3—H3119.9H23A—C23—H23B108.1
C4—C3—H3119.9N4—C24—N3113.9 (2)
C3—C4—C5120.1 (3)N4—C24—H24123.0
C3—C4—H4119.9N3—C24—H24123.0
C5—C4—H4119.9C26—C25—C30120.5 (2)
C6—C5—C4120.3 (2)C26—C25—N4130.1 (2)
C6—C5—H5119.8C30—C25—N4109.4 (2)
C4—C5—H5119.8C27—C26—C25117.2 (2)
C5—C6—C7119.0 (2)C27—C26—H26121.4
C5—C6—C8120.8 (2)C25—C26—H26121.4
C7—C6—C8120.2 (2)C26—C27—C28121.8 (2)
C2—C7—C6121.0 (2)C26—C27—H27119.1
C2—C7—H7119.5C28—C27—H27119.1
C6—C7—H7119.5C29—C28—C27122.1 (3)
N2—C8—C6113.3 (2)C29—C28—H28119.0
N2—C8—H8A108.9C27—C28—H28119.0
C6—C8—H8A108.9C28—C29—C30116.0 (2)
N2—C8—H8B108.9C28—C29—H29122.0
C6—C8—H8B108.9C30—C29—H29122.0
H8A—C8—H8B107.7N3—C30—C29132.0 (2)
N1—C9—N2113.1 (2)N3—C30—C25105.6 (2)
N1—C9—H9123.5C29—C30—C25122.4 (2)
N2—C9—H9123.5N1i—Cd1—N4ii92.79 (7)
N1—C10—C15109.32 (19)N1i—Cd1—O495.25 (7)
N1—C10—C11130.6 (2)N4ii—Cd1—O4106.60 (8)
C15—C10—C11120.1 (2)N1i—Cd1—O197.51 (7)
C12—C11—C10117.3 (2)N4ii—Cd1—O1146.09 (7)
C12—C11—H11121.3O4—Cd1—O1104.51 (8)
C10—C11—H11121.3N1i—Cd1—O2107.34 (7)
C11—C12—C13121.9 (2)N4ii—Cd1—O290.99 (7)
C11—C12—H12119.1O4—Cd1—O2150.71 (7)
C13—C12—H12119.1O1—Cd1—O255.10 (6)
C14—C13—C12121.9 (3)N1i—Cd1—O3149.16 (7)
C14—C13—H13119.0N4ii—Cd1—O390.86 (8)
C12—C13—H13119.0O4—Cd1—O354.52 (7)
C13—C14—C15116.0 (2)O1—Cd1—O396.36 (7)
C13—C14—H14122.0O2—Cd1—O3103.21 (6)
C15—C14—H14122.0C9—N1—C10105.02 (19)
N2—C15—C14131.5 (2)C9—N1—Cd1iii126.26 (16)
N2—C15—C10105.7 (2)C10—N1—Cd1iii128.69 (14)
C14—C15—C10122.9 (2)C9—N2—C15106.92 (18)
O3—C16—O4122.7 (2)C9—N2—C8129.3 (2)
O3—C16—C17119.8 (2)C15—N2—C8123.54 (19)
O4—C16—C17117.4 (2)C24—N3—C30106.6 (2)
C18—C17—C22118.8 (2)C24—N3—C23126.0 (2)
C18—C17—C16120.3 (2)C30—N3—C23126.9 (2)
C22—C17—C16120.9 (2)C24—N4—C25104.5 (2)
C19—C18—C17120.4 (3)C24—N4—Cd1ii126.74 (17)
C19—C18—H18119.8C25—N4—Cd1ii128.66 (15)
C17—C18—H18119.8C1—O1—Cd191.43 (13)
C18—C19—C20120.2 (3)C1—O2—Cd191.13 (14)
C18—C19—H19119.9C16—O3—Cd189.01 (15)
C20—C19—H19119.9C16—O4—Cd193.73 (15)
C19—C20—C21120.4 (2)H1O1—O1W—H2O1111.1
C19—C20—H20119.8O2Wiv—O2W—H1O1167.2
C21—C20—H20119.8O2Wiv—O2W—H1O273.8
C22—C21—C20119.1 (2)H1O1—O2W—H1O2102.1
C22—C21—C23120.3 (2)O2Wiv—O2W—H2O253.3
C20—C21—C23120.6 (2)H1O1—O2W—H2O2136.9
C21—C22—C17121.2 (2)H1O2—O2W—H2O2115.8
O2—C1—C2—C313.5 (3)N2—C9—N1—Cd1iii178.46 (14)
O1—C1—C2—C3165.4 (2)C15—C10—N1—C90.5 (2)
O2—C1—C2—C7167.1 (2)C11—C10—N1—C9178.3 (2)
O1—C1—C2—C714.1 (3)C15—C10—N1—Cd1iii177.58 (14)
C7—C2—C3—C40.1 (3)C11—C10—N1—Cd1iii3.7 (3)
C1—C2—C3—C4179.6 (2)N1—C9—N2—C151.0 (3)
C2—C3—C4—C50.6 (4)N1—C9—N2—C8174.0 (2)
C3—C4—C5—C61.3 (4)C14—C15—N2—C9179.9 (2)
C4—C5—C6—C71.4 (4)C10—C15—N2—C91.2 (2)
C4—C5—C6—C8179.3 (2)C14—C15—N2—C84.6 (4)
C3—C2—C7—C60.0 (3)C10—C15—N2—C8174.1 (2)
C1—C2—C7—C6179.53 (19)C6—C8—N2—C93.7 (3)
C5—C6—C7—C20.7 (3)C6—C8—N2—C15177.9 (2)
C8—C6—C7—C2178.6 (2)N4—C24—N3—C300.4 (3)
C5—C6—C8—N268.0 (3)N4—C24—N3—C23173.8 (2)
C7—C6—C8—N2114.1 (2)C29—C30—N3—C24178.3 (3)
N1—C10—C11—C12179.6 (2)C25—C30—N3—C240.2 (3)
C15—C10—C11—C120.9 (3)C29—C30—N3—C238.4 (4)
C10—C11—C12—C130.4 (4)C25—C30—N3—C23173.5 (2)
C11—C12—C13—C140.1 (4)C21—C23—N3—C2457.8 (3)
C12—C13—C14—C150.0 (4)C21—C23—N3—C30114.2 (3)
C13—C14—C15—N2178.0 (2)N3—C24—N4—C250.5 (3)
C13—C14—C15—C100.5 (3)N3—C24—N4—Cd1ii177.37 (16)
N1—C10—C15—N21.1 (2)C26—C25—N4—C24179.8 (3)
C11—C10—C15—N2177.8 (2)C30—C25—N4—C240.3 (3)
N1—C10—C15—C14179.9 (2)C26—C25—N4—Cd1ii2.9 (4)
C11—C10—C15—C141.0 (3)C30—C25—N4—Cd1ii177.13 (16)
O3—C16—C17—C1811.5 (4)O2—C1—O1—Cd10.3 (2)
O4—C16—C17—C18167.4 (2)C2—C1—O1—Cd1179.18 (17)
O3—C16—C17—C22169.4 (2)N1i—Cd1—O1—C1105.75 (14)
O4—C16—C17—C2211.7 (4)N4ii—Cd1—O1—C10.8 (2)
C22—C17—C18—C190.4 (4)O4—Cd1—O1—C1156.81 (13)
C16—C17—C18—C19179.5 (2)O2—Cd1—O1—C10.18 (12)
C17—C18—C19—C200.8 (4)O3—Cd1—O1—C1101.87 (14)
C18—C19—C20—C210.6 (4)O1—C1—O2—Cd10.3 (2)
C19—C20—C21—C220.7 (4)C2—C1—O2—Cd1179.18 (17)
C19—C20—C21—C23177.3 (2)N1i—Cd1—O2—C186.91 (14)
C20—C21—C22—C172.0 (4)N4ii—Cd1—O2—C1179.86 (14)
C23—C21—C22—C17176.1 (2)O4—Cd1—O2—C151.9 (2)
C18—C17—C22—C211.8 (4)O1—Cd1—O2—C10.19 (12)
C16—C17—C22—C21179.1 (2)O3—Cd1—O2—C188.75 (14)
C22—C21—C23—N3114.7 (3)O4—C16—O3—Cd11.1 (3)
C20—C21—C23—N363.4 (3)C17—C16—O3—Cd1180.0 (2)
C30—C25—C26—C271.0 (4)N1i—Cd1—O3—C1612.4 (2)
N4—C25—C26—C27178.9 (2)N4ii—Cd1—O3—C16109.26 (16)
C25—C26—C27—C280.4 (4)O4—Cd1—O3—C160.63 (15)
C26—C27—C28—C291.2 (5)O1—Cd1—O3—C16103.93 (16)
C27—C28—C29—C300.5 (4)O2—Cd1—O3—C16159.52 (15)
C28—C29—C30—N3178.7 (3)O3—C16—O4—Cd11.2 (3)
C28—C29—C30—C250.8 (4)C17—C16—O4—Cd1179.96 (18)
C26—C25—C30—N3180.0 (2)N1i—Cd1—O4—C16172.73 (17)
N4—C25—C30—N30.0 (3)N4ii—Cd1—O4—C1678.24 (18)
C26—C25—C30—C291.6 (4)O1—Cd1—O4—C1688.09 (18)
N4—C25—C30—C29178.3 (2)O2—Cd1—O4—C1646.4 (3)
N2—C9—N1—C100.3 (3)O3—Cd1—O4—C160.61 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x, y1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1iii0.932.593.357 (3)140
C14—H14···O4v0.932.413.261 (3)152
C23—H23B···O2vi0.972.583.277 (3)129
C29—H29···O3vi0.932.573.424 (3)154
Symmetry codes: (iii) x, y1, z; (v) x+2, y+1, z; (vi) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C15H11N2O2)2]·0.1H2O
Mr616.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.7770 (18), 10.8304 (15), 18.522 (3)
β (°) 95.007 (2)
V3)2553.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.51 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
13062, 4754, 4031
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.03
No. of reflections4754
No. of parameters370
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.3559 (17)Cd1—O42.3063 (19)
Cd1—O22.3669 (17)Cd1—N1i2.2801 (19)
Cd1—O32.4209 (19)Cd1—N4ii2.283 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1iii0.932.593.357 (3)140
C14—H14···O4iv0.932.413.261 (3)152
C23—H23B···O2v0.972.583.277 (3)129
C29—H29···O3v0.932.573.424 (3)154
Symmetry codes: (iii) x, y1, z; (iv) x+2, y+1, z; (v) x, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the Young Scientists Fund of Shandong Province of China (grant No. 2007BS04002) and the Open Foundation of the State Key Laboratory of Crystal Materials of Shandong University, China (KF0801) for support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Wei, Z., Gong, Q. & Han, Q. (2010). Acta Cryst. E66, m267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318–323.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds