organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Morpholine­carbo­thio­ylsulfan­yl)­acetic acid

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 April 2010; accepted 4 April 2010; online 14 April 2010)

The asymmetric unit of the title compound, C7H11NO3S2, contains two independent mol­ecules with similar mol­ecular structures. The morpholine ring adopts a chair conformation, and the C2N—C(=S)—S fragment is planar in the two independent mol­ecules (r.m.s. deviations = 0.01 and 0.02 Å). The two mol­ecules are disposed about a false center of inversion and are held together by a pair of O—H⋯O hydrogen bonds. The crystal studied was a racemic twin; the minor twin component refined to 17%.

Related literature

For the hydrogen-bonded dicyclo­hexyl­ammonium salt, see: Ng & Hook (1999[Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312-316.]). For the synthesis, see: Nachmias (1952[Nachmias, G. (1952). Ann. Chim. 12, 584-631.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11NO3S2

  • Mr = 221.29

  • Orthorhombic, P c a 21

  • a = 14.7311 (3) Å

  • b = 4.7474 (1) Å

  • c = 28.0284 (5) Å

  • V = 1960.15 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.904, Tmax = 0.904

  • 16961 measured reflections

  • 4495 independent reflections

  • 3533 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.188

  • S = 1.11

  • 4495 reflections

  • 236 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.52 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2199 Friedel pairs

  • Flack parameter: 0.2 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.82 1.88 2.685 (7) 169
O4—H4⋯O2 0.82 1.88 2.689 (7) 170

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: pubCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The class of dithiocarbamyl-acetic acids, R2NC(S)SCH2CO2H, are synthetic plant growth-hormones. In an earlier study, the R2N = O(CH2CH2)2N derivative was characterized as the dicyclohexylammonium salt (Ng & Hook, 1999). The acid itself (Scheme I), exists as a hydrogen-bonded dimer, the two independent molecules being connected across a false center-of-inversion (Fig. 1, Table 1). The carboxyl –CO2 portions feature single as well as double carbon-oxygen bonds.

Related literature top

For the hydrogen-bonded dicyclohexylammonium salt, see: Ng & Hook (1999). For the synthesis, see: Nachmias (1952).

Experimental top

The carboxylic acid was synthesized from morpholine, carbon disulfide and chloroacetic acid (Nachmias, 1952), and was recrystallized from ethanol.

Refinement top

The carbon-carbon distances in the morpholine rings were retraied to 1.54±0.01 Å.

Hydrogen atoms were placed at calculated positions (C–H 0.97, O–H 0.82 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C,O). The final difference Fourier map had a peak 2.2 Å from S2.

The crystal is a racemic twin; the minor twin component refined to 17%.

Structure description top

The class of dithiocarbamyl-acetic acids, R2NC(S)SCH2CO2H, are synthetic plant growth-hormones. In an earlier study, the R2N = O(CH2CH2)2N derivative was characterized as the dicyclohexylammonium salt (Ng & Hook, 1999). The acid itself (Scheme I), exists as a hydrogen-bonded dimer, the two independent molecules being connected across a false center-of-inversion (Fig. 1, Table 1). The carboxyl –CO2 portions feature single as well as double carbon-oxygen bonds.

For the hydrogen-bonded dicyclohexylammonium salt, see: Ng & Hook (1999). For the synthesis, see: Nachmias (1952).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the pair of C7H11NO3S2 molecules disposed about a false center-of-inversion at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
2-(4-Morpholinecarbothioylsulfanyl)acetic acid top
Crystal data top
C7H11NO3S2F(000) = 928
Mr = 221.29Dx = 1.500 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3880 reflections
a = 14.7311 (3) Åθ = 2.9–25.7°
b = 4.7474 (1) ŵ = 0.52 mm1
c = 28.0284 (5) ÅT = 293 K
V = 1960.15 (7) Å3Block, colorless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
4495 independent reflections
Radiation source: fine-focus sealed tube3533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.904, Tmax = 0.904k = 66
16961 measured reflectionsl = 3636
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1026P)2 + 0.7215P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4495 reflectionsΔρmax = 1.52 e Å3
236 parametersΔρmin = 0.37 e Å3
5 restraintsAbsolute structure: Flack (1983), 2199 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (1)
Crystal data top
C7H11NO3S2V = 1960.15 (7) Å3
Mr = 221.29Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.7311 (3) ŵ = 0.52 mm1
b = 4.7474 (1) ÅT = 293 K
c = 28.0284 (5) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
4495 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3533 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.904Rint = 0.060
16961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.188Δρmax = 1.52 e Å3
S = 1.11Δρmin = 0.37 e Å3
4495 reflectionsAbsolute structure: Flack (1983), 2199 Friedel pairs
236 parametersAbsolute structure parameter: 0.2 (1)
5 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.14478 (11)0.9468 (4)0.50019 (5)0.0443 (3)
S20.99909 (9)0.7699 (3)0.43159 (7)0.0498 (3)
S30.60753 (11)0.5544 (4)0.64749 (5)0.0461 (4)
S40.75227 (9)0.7362 (3)0.71543 (6)0.0482 (3)
O10.8902 (4)1.0465 (12)0.5349 (2)0.0628 (15)
H10.84690.96400.54680.094*
O20.9876 (3)0.7466 (9)0.56506 (17)0.0592 (12)
O31.3067 (4)0.5162 (10)0.3578 (2)0.0561 (15)
O40.8628 (3)0.4614 (10)0.6158 (2)0.0575 (14)
H40.90540.54310.60300.086*
O50.7633 (3)0.7541 (9)0.58260 (16)0.0596 (12)
O60.4379 (4)0.9934 (10)0.7892 (3)0.0605 (16)
N11.1727 (3)0.6195 (11)0.42631 (16)0.0446 (11)
N20.5791 (3)0.8762 (10)0.72174 (16)0.0439 (10)
C10.9717 (5)0.9533 (15)0.5416 (2)0.0475 (16)
C21.0451 (4)1.1257 (11)0.5176 (2)0.0510 (13)
H2A1.06241.27640.53920.061*
H2B1.01901.21260.48950.061*
C31.1053 (3)0.7611 (10)0.44898 (18)0.0363 (10)
C41.2672 (4)0.6143 (15)0.4401 (2)0.0527 (14)
H4A1.28350.42660.45070.063*
H4B1.27700.74390.46630.063*
C51.3265 (4)0.6978 (12)0.3981 (2)0.0533 (14)
H5A1.31490.89250.38950.064*
H5B1.39000.68050.40680.064*
C61.2189 (5)0.5326 (16)0.3440 (2)0.055 (2)
H6A1.20940.41050.31680.066*
H6B1.20550.72410.33430.066*
C71.1559 (5)0.4494 (18)0.3830 (3)0.061 (2)
H7A1.09370.47610.37260.073*
H7B1.16420.25140.39030.073*
C80.7808 (5)0.5473 (14)0.6087 (2)0.0425 (14)
C90.7074 (4)0.3719 (11)0.63020 (19)0.0452 (12)
H9A0.73200.27770.65810.054*
H9B0.69060.22720.60740.054*
C100.6437 (3)0.7404 (10)0.69901 (17)0.0348 (10)
C110.4816 (3)0.8793 (13)0.7084 (2)0.0486 (13)
H11A0.47040.74430.68310.058*
H11B0.46461.06490.69700.058*
C120.4262 (4)0.8035 (13)0.7521 (2)0.0528 (14)
H12A0.36250.79750.74340.063*
H12B0.44360.61700.76280.063*
C130.5344 (5)0.9823 (16)0.8041 (3)0.056 (2)
H13A0.54810.79610.81630.067*
H13B0.54451.11720.82950.067*
C140.5974 (4)1.0483 (14)0.7627 (2)0.0462 (15)
H14A0.59071.24490.75400.055*
H14B0.65971.01910.77270.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0386 (8)0.0618 (7)0.0325 (7)0.0035 (7)0.0021 (6)0.0066 (9)
S20.0345 (6)0.0625 (9)0.0525 (7)0.0025 (6)0.0064 (5)0.0034 (6)
S30.0434 (8)0.0601 (7)0.0348 (7)0.0063 (7)0.0038 (6)0.0045 (9)
S40.0357 (6)0.0615 (8)0.0476 (6)0.0024 (6)0.0059 (6)0.0009 (6)
O10.061 (3)0.071 (3)0.056 (3)0.023 (3)0.011 (3)0.006 (2)
O20.055 (3)0.065 (3)0.058 (2)0.013 (2)0.009 (2)0.020 (2)
O30.047 (3)0.083 (4)0.039 (3)0.013 (2)0.013 (3)0.0063 (18)
O40.044 (3)0.069 (3)0.059 (3)0.019 (2)0.013 (2)0.028 (2)
O50.061 (3)0.060 (3)0.058 (3)0.020 (2)0.012 (2)0.028 (2)
O60.034 (3)0.069 (4)0.078 (4)0.0018 (17)0.000 (3)0.011 (2)
N10.032 (2)0.061 (3)0.041 (2)0.003 (2)0.0004 (18)0.011 (2)
N20.032 (2)0.056 (3)0.043 (3)0.002 (2)0.0055 (18)0.010 (2)
C10.054 (4)0.050 (3)0.039 (3)0.012 (3)0.003 (3)0.013 (3)
C20.073 (4)0.039 (3)0.041 (3)0.011 (3)0.004 (3)0.006 (2)
C30.037 (3)0.040 (3)0.032 (2)0.0069 (19)0.0011 (17)0.003 (2)
C40.042 (3)0.069 (4)0.048 (3)0.002 (3)0.003 (2)0.004 (3)
C50.036 (3)0.051 (3)0.073 (4)0.004 (2)0.006 (3)0.008 (3)
C60.064 (5)0.069 (4)0.033 (4)0.011 (3)0.002 (3)0.012 (3)
C70.044 (4)0.073 (4)0.066 (5)0.004 (3)0.005 (3)0.036 (4)
C80.050 (4)0.049 (3)0.028 (3)0.005 (3)0.006 (2)0.009 (2)
C90.056 (3)0.040 (3)0.039 (3)0.005 (3)0.005 (2)0.001 (2)
C100.036 (2)0.040 (3)0.029 (2)0.0089 (19)0.0042 (18)0.007 (2)
C110.030 (2)0.062 (4)0.053 (3)0.006 (3)0.011 (2)0.006 (3)
C120.031 (3)0.053 (3)0.074 (4)0.003 (2)0.003 (2)0.003 (3)
C130.037 (4)0.080 (5)0.051 (5)0.003 (3)0.000 (3)0.005 (3)
C140.044 (3)0.058 (3)0.037 (3)0.015 (3)0.007 (3)0.009 (3)
Geometric parameters (Å, º) top
S1—C21.765 (6)C2—H2B0.9700
S1—C31.782 (5)C4—C51.518 (7)
S2—C31.640 (5)C4—H4A0.9700
S3—C101.774 (5)C4—H4B0.9700
S3—C91.775 (6)C5—H5A0.9700
S4—C101.664 (5)C5—H5B0.9700
O1—C11.294 (8)C6—C71.487 (8)
O1—H10.8200C6—H6A0.9700
O2—C11.204 (8)C6—H6B0.9700
O3—C61.352 (10)C7—H7A0.9700
O3—C51.450 (9)C7—H7B0.9700
O4—C81.291 (8)C8—C91.492 (9)
O4—H40.8200C9—H9A0.9700
O5—C81.251 (8)C9—H9B0.9700
O6—C121.387 (8)C11—C121.514 (7)
O6—C131.481 (10)C11—H11A0.9700
N1—C31.357 (7)C11—H11B0.9700
N1—C41.444 (7)C12—H12A0.9700
N1—C71.479 (8)C12—H12B0.9700
N2—C101.314 (7)C13—C141.519 (7)
N2—C141.434 (8)C13—H13A0.9700
N2—C111.484 (6)C13—H13B0.9700
C1—C21.514 (9)C14—H14A0.9700
C2—H2A0.9700C14—H14B0.9700
C2—S1—C3100.9 (3)N1—C7—C6110.7 (6)
C10—S3—C9102.5 (3)N1—C7—H7A109.5
C1—O1—H1120.0C6—C7—H7A109.5
C6—O3—C5112.3 (5)N1—C7—H7B109.5
C8—O4—H4120.0C6—C7—H7B109.5
C12—O6—C13107.9 (5)H7A—C7—H7B108.1
C3—N1—C4126.0 (4)O5—C8—O4122.1 (6)
C3—N1—C7122.2 (5)O5—C8—C9121.7 (6)
C4—N1—C7111.8 (5)O4—C8—C9116.1 (6)
C10—N2—C14122.1 (4)C8—C9—S3116.0 (4)
C10—N2—C11125.7 (4)C8—C9—H9A108.3
C14—N2—C11112.2 (5)S3—C9—H9A108.3
O2—C1—O1122.6 (7)C8—C9—H9B108.3
O2—C1—C2123.0 (6)S3—C9—H9B108.3
O1—C1—C2114.4 (6)H9A—C9—H9B107.4
C1—C2—S1117.2 (4)N2—C10—S4124.6 (4)
C1—C2—H2A108.0N2—C10—S3114.9 (4)
S1—C2—H2A108.0S4—C10—S3120.5 (3)
C1—C2—H2B108.0N2—C11—C12108.4 (4)
S1—C2—H2B108.0N2—C11—H11A110.0
H2A—C2—H2B107.2C12—C11—H11A110.0
N1—C3—S2124.9 (4)N2—C11—H11B110.0
N1—C3—S1112.6 (4)C12—C11—H11B110.0
S2—C3—S1122.6 (3)H11A—C11—H11B108.4
N1—C4—C5110.1 (5)O6—C12—C11112.6 (5)
N1—C4—H4A109.6O6—C12—H12A109.1
C5—C4—H4A109.6C11—C12—H12A109.1
N1—C4—H4B109.6O6—C12—H12B109.1
C5—C4—H4B109.6C11—C12—H12B109.1
H4A—C4—H4B108.2H12A—C12—H12B107.8
O3—C5—C4109.4 (5)O6—C13—C14111.3 (7)
O3—C5—H5A109.8O6—C13—H13A109.4
C4—C5—H5A109.8C14—C13—H13A109.4
O3—C5—H5B109.8O6—C13—H13B109.4
C4—C5—H5B109.8C14—C13—H13B109.4
H5A—C5—H5B108.2H13A—C13—H13B108.0
O3—C6—C7111.9 (6)N2—C14—C13112.3 (5)
O3—C6—H6A109.2N2—C14—H14A109.2
C7—C6—H6A109.2C13—C14—H14A109.2
O3—C6—H6B109.2N2—C14—H14B109.2
C7—C6—H6B109.2C13—C14—H14B109.1
H6A—C6—H6B107.9H14A—C14—H14B107.9
O2—C1—C2—S129.1 (9)O5—C8—C9—S335.2 (8)
O1—C1—C2—S1150.9 (6)O4—C8—C9—S3149.5 (6)
C3—S1—C2—C174.8 (5)C10—S3—C9—C872.7 (5)
C4—N1—C3—S2178.2 (5)C14—N2—C10—S42.9 (7)
C7—N1—C3—S21.4 (8)C11—N2—C10—S4178.8 (4)
C4—N1—C3—S10.7 (7)C14—N2—C10—S3176.9 (4)
C7—N1—C3—S1179.8 (5)C11—N2—C10—S31.4 (7)
C2—S1—C3—N1175.4 (4)C9—S3—C10—N2174.2 (4)
C2—S1—C3—S23.5 (4)C9—S3—C10—S46.0 (4)
C3—N1—C4—C5126.6 (6)C10—N2—C11—C12128.6 (5)
C7—N1—C4—C553.0 (8)C14—N2—C11—C1253.0 (7)
C6—O3—C5—C459.7 (7)C13—O6—C12—C1163.0 (7)
N1—C4—C5—O355.2 (7)N2—C11—C12—O661.0 (7)
C5—O3—C6—C760.0 (8)C12—O6—C13—C1457.6 (7)
C3—N1—C7—C6127.4 (7)C10—N2—C14—C13130.6 (6)
C4—N1—C7—C652.2 (9)C11—N2—C14—C1350.9 (8)
O3—C6—C7—N155.3 (8)O6—C13—C14—N252.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.821.882.685 (7)169
O4—H4···O20.821.882.689 (7)170

Experimental details

Crystal data
Chemical formulaC7H11NO3S2
Mr221.29
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)14.7311 (3), 4.7474 (1), 28.0284 (5)
V3)1960.15 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.904, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
16961, 4495, 3533
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.188, 1.11
No. of reflections4495
No. of parameters236
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.52, 0.37
Absolute structureFlack (1983), 2199 Friedel pairs
Absolute structure parameter0.2 (1)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.821.882.685 (7)169
O4—H4···O20.821.882.689 (7)170
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNachmias, G. (1952). Ann. Chim. 12, 584–631.  Google Scholar
First citationNg, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312–316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds