metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-aqua­(μ3-1H-benzimidazole-5,6-di­carboxyl­ato-κ3N3:O5:O5′)manganese(II)]

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiang Tan 411104, People's Republic of China
*Correspondence e-mail: tzd0517@163.com

(Received 3 February 2010; accepted 30 March 2010; online 10 April 2010)

In the title complex, [Mn(C9H4N2O4)(H2O)2]n, the MnII atom is in a distorted octa­hedral coordination completed by one N atom from one 1H-benzimidazole-5,6-dicarboxyl­ate ligand, two O atoms from two different 1H-benzimidazole-5,6-dicarboxyl­ate ligands, and three O atoms from three water mol­ecules. Two bridging water mol­ecules and two bridging carboxyl­ate groups from a 1H-benzimidazole-5,6-dicarboxyl­ate ligand connect two MnII ions into a dimeric structure. In the crystal, extensive inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonding forms a three-dimensional network.

Related literature

For background to 1H-benzimidazole-5,6-dicarboxyl­ate complexes and related structures, see: Yao et al. (2008[Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299-2306.]); Wei et al. (2009[Wei, Y. Q., Yu, Y. F., Sa, R. J., Li, Q. H. & Wu, K. C. (2009). CrystEngComm, 11,1054-1060.]); Song et al. (2009a[Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009a). Acta Cryst. E65, m702.],b[Song, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009b). Acta Cryst. E65, m701.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C9H4N2O4)(H2O)2]

  • Mr = 295.11

  • Monoclinic, P 21 /c

  • a = 8.8875 (18) Å

  • b = 9.2079 (18) Å

  • c = 12.939 (3) Å

  • β = 97.22 (3)°

  • V = 1050.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.29 × 0.26 × 0.25 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.708, Tmax = 0.740

  • 8122 measured reflections

  • 1888 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.11

  • 1888 reflections

  • 163 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.98 2.839 (3) 174
O2W—H4W⋯O3ii 0.84 2.56 3.065 (3) 120
O1W—H1W⋯O2ii 0.84 2.10 2.819 (3) 143
O2W—H3W⋯O1Wiii 0.84 2.10 2.934 (3) 169
O1W—H2W⋯O1iv 0.84 1.77 2.575 (3) 160
C4—H4⋯O4v 0.93 2.48 3.216 (3) 136
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+2, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1H-Benzimidazole-5,6-dicarboxylate ligand(H2L) play an important role in coordination chemistry. They usually adopt diverse binding modes as monodentate, chelating to one metal center, bridging to two metal centers (Yao et al., 2008;Wei et al., 2009;Song et al., 2009a,b). In the present paper, we synthesized a novel colorless complex [Mn(C9H4N2O4)(H2O)2]n. It is isostructural to the cobalt compound with reference of Wei et al., 2009.

The coordination geometries of Mn centers are very close to the values observed in the [Co(C9H4N2O4)(H2O)2]n compound. The Mn atoms are linked by water bridges and carboxylate groups, forming an infinite chain. The Mn···Mn distance is 3.2555 (7)Å longer than the Co···Co distance 3.114 (1) Å. In the [Co(C9H4N2O4)(H2O)2]n compound, the Co—O bond lengths range between 2.0304 (18) and 2.2314 (19) Å, whereas in the title compound, the Mn—O bond lengths ranged between 2.1151 (19) and 2.3334 (19) Å. Intermolecular O—H···O , N—H···O and C—H···O hydrogen bonds form the 3D structure (Fig. 2). The hydrogen bonds are in the normal range (Table 1).

Related literature top

For background to 1H-benzimidazole-5,6-dicarboxylate complexes and related structures, see: Yao et al. (2008); Wei et al. (2009); Song et al. (2009a,b).

Experimental top

MnCl2(0.1 mmol), H2L(0.1 mmol), H2O (15 ml) and a small amount NaOH for adjusting pH to 7 was placed in a 23 ml Teflon reactor,which was heated to 426 K for two days and then cooled to room temperature , and left to stand at room temperature for a few days, then the colorless block crystals were obtained.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Structure description top

1H-Benzimidazole-5,6-dicarboxylate ligand(H2L) play an important role in coordination chemistry. They usually adopt diverse binding modes as monodentate, chelating to one metal center, bridging to two metal centers (Yao et al., 2008;Wei et al., 2009;Song et al., 2009a,b). In the present paper, we synthesized a novel colorless complex [Mn(C9H4N2O4)(H2O)2]n. It is isostructural to the cobalt compound with reference of Wei et al., 2009.

The coordination geometries of Mn centers are very close to the values observed in the [Co(C9H4N2O4)(H2O)2]n compound. The Mn atoms are linked by water bridges and carboxylate groups, forming an infinite chain. The Mn···Mn distance is 3.2555 (7)Å longer than the Co···Co distance 3.114 (1) Å. In the [Co(C9H4N2O4)(H2O)2]n compound, the Co—O bond lengths range between 2.0304 (18) and 2.2314 (19) Å, whereas in the title compound, the Mn—O bond lengths ranged between 2.1151 (19) and 2.3334 (19) Å. Intermolecular O—H···O , N—H···O and C—H···O hydrogen bonds form the 3D structure (Fig. 2). The hydrogen bonds are in the normal range (Table 1).

For background to 1H-benzimidazole-5,6-dicarboxylate complexes and related structures, see: Yao et al. (2008); Wei et al. (2009); Song et al. (2009a,b).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A section of the structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) 1-x, 1-y, 1-z. (ii)y, x-1, z. (iii) 2-x, 1-y,2-z.]
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound along the b axis.Hydrogen bonds are shown as dashed lines.
Poly[µ2-aqua-aqua(µ3-1H-benzimidazole-5,6-dicarboxylato- κ3N3:O5:O5')manganese(II)] top
Crystal data top
[Mn(C9H4N2O4)(H2O)2]F(000) = 596
Mr = 295.11Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9020 reflections
a = 8.8875 (18) Åθ = 3.2–27.5°
b = 9.2079 (18) ŵ = 1.28 mm1
c = 12.939 (3) ÅT = 293 K
β = 97.22 (3)°Block, colorless
V = 1050.5 (4) Å30.29 × 0.26 × 0.25 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1888 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1010
Tmin = 0.708, Tmax = 0.740k = 1111
8122 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0562P)2 + 1.2161P]
where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.71 e Å3
18 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Mn(C9H4N2O4)(H2O)2]V = 1050.5 (4) Å3
Mr = 295.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8875 (18) ŵ = 1.28 mm1
b = 9.2079 (18) ÅT = 293 K
c = 12.939 (3) Å0.29 × 0.26 × 0.25 mm
β = 97.22 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1888 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1792 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.740Rint = 0.025
8122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03618 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.11Δρmax = 0.71 e Å3
1888 reflectionsΔρmin = 0.84 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6538 (3)0.9382 (3)0.9155 (2)0.0248 (6)
H10.55520.96780.92150.030*
N10.7164 (2)0.8221 (3)0.96244 (19)0.0229 (5)
O1W0.52018 (17)0.5378 (2)0.88035 (12)0.0232 (4)
Mn10.59756 (4)0.64549 (4)1.03462 (3)0.01916 (18)
C20.8810 (3)0.9343 (3)0.8676 (2)0.0222 (6)
N20.7455 (3)1.0094 (3)0.85830 (19)0.0253 (5)
H20.72411.08710.82260.030*
O21.3361 (2)0.7520 (2)0.77220 (15)0.0249 (4)
O2W0.6154 (2)0.74283 (19)1.18596 (14)0.0364 (5)
C30.8628 (3)0.8183 (3)0.9340 (2)0.0204 (5)
O31.3671 (2)0.7185 (2)0.99961 (16)0.0247 (4)
C40.9821 (3)0.7226 (3)0.9624 (2)0.0229 (6)
H40.97240.64631.00820.028*
O41.2334 (2)0.5175 (2)0.95142 (17)0.0281 (5)
C51.1158 (3)0.7451 (3)0.9201 (2)0.0204 (6)
C61.1295 (3)0.8575 (3)0.8473 (2)0.0208 (6)
C71.2657 (3)0.8663 (3)0.7888 (2)0.0194 (6)
C81.2495 (3)0.6528 (3)0.9593 (2)0.0211 (6)
C131.01235 (18)0.95590 (19)0.82118 (13)0.0237 (6)
H131.02121.03210.77520.028*
H4W0.57000.80401.14510.028*
H1W0.44440.56570.84000.028*
H3W0.57940.65891.17540.028*
H2W0.59000.50890.84730.028*
O11.2983 (3)0.9885 (2)0.75589 (18)0.0341 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0165 (13)0.0247 (15)0.0341 (15)0.0037 (10)0.0065 (11)0.0005 (12)
N10.0160 (11)0.0230 (12)0.0309 (13)0.0014 (9)0.0079 (9)0.0030 (10)
O1W0.0217 (9)0.0265 (10)0.0230 (9)0.0043 (8)0.0091 (7)0.0005 (8)
Mn10.0167 (3)0.0175 (3)0.0242 (3)0.00077 (14)0.00610 (17)0.00014 (15)
C20.0182 (13)0.0197 (13)0.0291 (14)0.0021 (10)0.0048 (11)0.0025 (11)
N20.0205 (12)0.0214 (12)0.0348 (13)0.0057 (9)0.0067 (10)0.0086 (10)
O20.0248 (10)0.0233 (10)0.0285 (10)0.0012 (8)0.0102 (8)0.0021 (8)
O2W0.0467 (14)0.0317 (12)0.0324 (12)0.0080 (10)0.0109 (10)0.0085 (9)
C30.0183 (9)0.0208 (9)0.0225 (9)0.0002 (8)0.0047 (8)0.0010 (8)
O30.0175 (10)0.0255 (11)0.0314 (10)0.0030 (8)0.0044 (8)0.0019 (8)
C40.0192 (13)0.0208 (14)0.0300 (14)0.0011 (10)0.0082 (11)0.0071 (11)
O40.0191 (9)0.0195 (10)0.0470 (12)0.0029 (7)0.0089 (9)0.0052 (9)
C50.0171 (13)0.0184 (13)0.0263 (14)0.0001 (10)0.0055 (10)0.0010 (10)
C60.0182 (13)0.0198 (14)0.0256 (14)0.0015 (9)0.0077 (11)0.0005 (10)
C70.0183 (13)0.0180 (13)0.0228 (13)0.0028 (9)0.0068 (11)0.0012 (10)
C80.0187 (14)0.0230 (15)0.0239 (14)0.0026 (10)0.0112 (11)0.0038 (10)
C130.0232 (14)0.0189 (13)0.0302 (14)0.0006 (10)0.0087 (11)0.0066 (11)
O10.0359 (9)0.0296 (9)0.0411 (9)0.0028 (7)0.0212 (7)0.0013 (7)
Geometric parameters (Å, º) top
C1—N11.317 (4)N2—H20.8600
C1—N21.339 (4)O2—C71.257 (3)
C1—H10.9300O2W—H4W0.8407
N1—C31.396 (3)O2W—H3W0.8411
N1—Mn12.209 (2)C3—C41.392 (4)
O1W—Mn12.2572 (18)O3—C81.262 (4)
O1W—Mn1i2.3334 (19)O3—Mn1iv2.1495 (19)
O1W—H1W0.8386C4—C51.384 (4)
O1W—H2W0.8401C4—H40.9300
Mn1—O4ii2.115 (2)O4—C81.256 (3)
Mn1—O2W2.141 (2)O4—Mn1ii2.115 (2)
Mn1—O3iii2.1496 (19)C5—C61.414 (4)
Mn1—O1Wi2.3334 (19)C5—C81.497 (4)
Mn1—H4W2.0785C6—C131.390 (3)
Mn1—H3W1.8533C6—C71.508 (4)
C2—N21.381 (3)C7—O11.250 (3)
C2—C31.392 (4)C13—H130.9300
C2—C131.393 (3)
N1—C1—N2113.6 (2)N1—Mn1—H3W118.2
N1—C1—H1123.2O1W—Mn1—H3W147.6
N2—C1—H1123.2O1Wi—Mn1—H3W59.0
C1—N1—C3104.6 (2)H4W—Mn1—H3W41.0
C1—N1—Mn1126.53 (18)N2—C2—C3105.7 (2)
C3—N1—Mn1127.15 (18)N2—C2—C13131.3 (2)
Mn1—O1W—Mn1i90.32 (6)C3—C2—C13123.0 (2)
Mn1—O1W—H1W123.2C1—N2—C2107.0 (2)
Mn1i—O1W—H1W98.2C1—N2—H2126.5
Mn1—O1W—H2W115.3C2—N2—H2126.5
Mn1i—O1W—H2W114.5Mn1—O2W—H4W74.3
H1W—O1W—H2W111.5Mn1—O2W—H3W58.9
O4ii—Mn1—O2W104.41 (8)H4W—O2W—H3W111.8
O4ii—Mn1—O3iii152.59 (8)C2—C3—C4120.3 (2)
O2W—Mn1—O3iii91.19 (8)C2—C3—N1109.1 (2)
O4ii—Mn1—N1100.75 (8)C4—C3—N1130.6 (3)
O2W—Mn1—N195.40 (9)C8—O3—Mn1iv130.88 (18)
O3iii—Mn1—N1100.03 (8)C5—C4—C3117.6 (3)
O4ii—Mn1—O1W84.15 (8)C5—C4—H4121.2
O2W—Mn1—O1W166.37 (7)C3—C4—H4121.2
O3iii—Mn1—O1W76.97 (7)C8—O4—Mn1ii128.63 (18)
N1—Mn1—O1W93.33 (8)C4—C5—C6121.5 (2)
O4ii—Mn1—O1Wi78.58 (7)C4—C5—C8117.7 (2)
O2W—Mn1—O1Wi81.81 (7)C6—C5—C8120.6 (2)
O3iii—Mn1—O1Wi81.59 (7)C13—C6—C5121.0 (2)
N1—Mn1—O1Wi176.83 (8)C13—C6—C7117.8 (2)
O1W—Mn1—O1Wi89.68 (6)C5—C6—C7121.0 (2)
O4ii—Mn1—H4W125.7O1—C7—O2123.6 (3)
O2W—Mn1—H4W22.9O1—C7—C6117.1 (2)
O3iii—Mn1—H4W74.5O2—C7—C6119.3 (2)
N1—Mn1—H4W83.0O4—C8—O3126.1 (3)
O1W—Mn1—H4W150.1O4—C8—C5117.2 (2)
O1Wi—Mn1—H4W94.9O3—C8—C5116.7 (2)
O4ii—Mn1—H3W96.4C6—C13—C2116.4 (2)
O2W—Mn1—H3W22.9C6—C13—H13121.8
O3iii—Mn1—H3W89.3C2—C13—H13121.8
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x1, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2v0.861.982.839 (3)174
O2W—H4W···O3iii0.842.563.065 (3)120
O1W—H1W···O2iii0.842.102.819 (3)143
O2W—H3W···O1Wi0.842.102.934 (3)169
O1W—H2W···O1vi0.841.772.575 (3)160
C4—H4···O4ii0.932.483.216 (3)136
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(C9H4N2O4)(H2O)2]
Mr295.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8875 (18), 9.2079 (18), 12.939 (3)
β (°) 97.22 (3)
V3)1050.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.29 × 0.26 × 0.25
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.708, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
8122, 1888, 1792
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.11
No. of reflections1888
No. of parameters163
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.84

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.982.839 (3)173.6
O2W—H4W···O3ii0.842.563.065 (3)119.7
O1W—H1W···O2ii0.842.102.819 (3)143.0
O2W—H3W···O1Wiii0.842.102.934 (3)169.1
O1W—H2W···O1iv0.841.772.575 (3)159.6
C4—H4···O4v0.932.483.216 (3)136
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Scientific Research Project of Hunan Department of Education (No. 09c259) for supporting this work.

References

First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009b). Acta Cryst. E65, m701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009a). Acta Cryst. E65, m702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y. Q., Yu, Y. F., Sa, R. J., Li, Q. H. & Wu, K. C. (2009). CrystEngComm, 11,1054–1060.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds