organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-2-(4-fluoro­phen­yl)-1-(methyl­sulfin­yl)naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 25 March 2010; accepted 27 March 2010; online 2 April 2010)

In the title compound, C19H12BrFO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane through the naphthofuran fragment. The 4-fluoro­phenyl ring is rotated out of the naphthofuran plane, making a dihedral angle of 41.65 (7)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions, and a short Br⋯F contact [3.046 (2) Å] occurs. The O atom of the sulfinyl group is disordered over two positions, with refined site-occupancy factors of 0.912 (4) and 0.088 (4).

Related literature

For the crystal structures of similar 7-bromo-2-phenyl­naphtho[2,1-b]furan derivatives, see: Choi et al. (2006[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5876-o5877.], 2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1956.]). For the biological activity of naphthofuran compounds, see: Einhorn et al. (1984[Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405-410.]); Hranjec et al. (2003[Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319-1324.]); Mahadevan & Vaidya (2003[Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128-134.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12BrFO2S

  • Mr = 403.26

  • Monoclinic, P 21 /c

  • a = 6.0155 (2) Å

  • b = 22.7143 (6) Å

  • c = 11.4364 (3) Å

  • β = 91.716 (1)°

  • V = 1561.94 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 173 K

  • 0.31 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.515, Tmax = 0.746

  • 14194 measured reflections

  • 3547 independent reflections

  • 3086 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.09

  • 3547 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2/C3/C8/C9/C10/C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2Ai 0.93 2.53 3.235 (3) 133
C18—H18⋯Cgii 0.93 2.65 3.347 (3) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing naphthofuran moieties show potent biological activities such as antibacterial (Einhorn et al., 1984), antitumor (Hranjec et al., 2003) and anthelmintic (Mahadevan & Vaidya, 2003) properties. As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 7-bromo-2-phenylnaphtho[2,1-b]furan analogues (Choi et al., 2006, 2009), we report the crystal structure of the title compound (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.040 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The oxygen of the sulfinyl group is disordered over two positions with site-occupancy factors of 0.912 (4) (for O atom labeled A) and 0.088 (4) (for O atom labeled B). The dihedral angle formed by the naphthofuran plane and the 4-fluorophenyl ring is 41.65 (7)°. The crystal packing (Fig. 2) is stabilized by intermolecular C–H···O hydrogen bonds between the 4-fluorophenyl H atom H14 and the oxygen O2Ai of the SO unit. The molecular packing (Fig. 2) is further stabilized by intermolecular C–H···π interactions between the 4-fluorophenyl H atom H18 and the centroid Cgii of the central benzene ring of an adjacent naphthofuran system (see Table 1 for numerical values and symmetry operators; Cg is the centroid of the atoms C2/C3/C8/C9/C10/C11 of the benzene ring). Furthermore, a short Br···Fiv contact (Fig. 2) [3.046 (2) Å] provides additional stabilization.

Related literature top

For the crystal structures of similar 7-bromo-2-phenylnaphtho[2,1-b]furan derivatives, see: Choi et al. (2006, 2009). For the biological activity of naphthofuran compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003).

Experimental top

77% 3-Chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 7-bromo-2-(4-fluorophenyl)-1-(methylsulfanyl)naphtho[2,1-b]furan (310 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 501-502 K; Rf = 0.66 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The SO distances (A & B) were restrained to be the same within a standard deviation of 0.002 Å using SADI command as defined in SHELXTL (Sheldrick, 2008).

Structure description top

Many compounds containing naphthofuran moieties show potent biological activities such as antibacterial (Einhorn et al., 1984), antitumor (Hranjec et al., 2003) and anthelmintic (Mahadevan & Vaidya, 2003) properties. As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 7-bromo-2-phenylnaphtho[2,1-b]furan analogues (Choi et al., 2006, 2009), we report the crystal structure of the title compound (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.040 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The oxygen of the sulfinyl group is disordered over two positions with site-occupancy factors of 0.912 (4) (for O atom labeled A) and 0.088 (4) (for O atom labeled B). The dihedral angle formed by the naphthofuran plane and the 4-fluorophenyl ring is 41.65 (7)°. The crystal packing (Fig. 2) is stabilized by intermolecular C–H···O hydrogen bonds between the 4-fluorophenyl H atom H14 and the oxygen O2Ai of the SO unit. The molecular packing (Fig. 2) is further stabilized by intermolecular C–H···π interactions between the 4-fluorophenyl H atom H18 and the centroid Cgii of the central benzene ring of an adjacent naphthofuran system (see Table 1 for numerical values and symmetry operators; Cg is the centroid of the atoms C2/C3/C8/C9/C10/C11 of the benzene ring). Furthermore, a short Br···Fiv contact (Fig. 2) [3.046 (2) Å] provides additional stabilization.

For the crystal structures of similar 7-bromo-2-phenylnaphtho[2,1-b]furan derivatives, see: Choi et al. (2006, 2009). For the biological activity of naphthofuran compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The bond towards the minor occupied oxygen atom is shown in a dashed mode.
[Figure 2] Fig. 2. C–H···O, C–H···π and Br···F interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. The disordered component of the oxygen of sulfinyl group, part B, has been omitted for clairty. [Symmetry codes: (i) x, - y + 1/2, z - 1/2; (ii) x + 1, y, z ; (iii) x, - y + 1/2, z + 1/2; (iv) x - 1, y, z; (v) x + 2, y, z - 1; (vi) x - 2, y, z + 1.]
7-Bromo-2-(4-fluorophenyl)-1-(methylsulfinyl)naphtho[2,1-b]furan top
Crystal data top
C19H12BrFO2SF(000) = 808
Mr = 403.26Dx = 1.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6681 reflections
a = 6.0155 (2) Åθ = 2.5–27.3°
b = 22.7143 (6) ŵ = 2.79 mm1
c = 11.4364 (3) ÅT = 173 K
β = 91.716 (1)°Block, colourless
V = 1561.94 (8) Å30.31 × 0.28 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3547 independent reflections
Radiation source: Rotating Anode3086 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 1.8°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2928
Tmin = 0.515, Tmax = 0.746l = 1414
14194 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.078H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.3174P]
where P = (Fo2 + 2Fc2)/3
3547 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = 0.66 e Å3
Crystal data top
C19H12BrFO2SV = 1561.94 (8) Å3
Mr = 403.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0155 (2) ŵ = 2.79 mm1
b = 22.7143 (6) ÅT = 173 K
c = 11.4364 (3) Å0.31 × 0.28 × 0.16 mm
β = 91.716 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3086 reflections with I > 2σ(I)
Tmin = 0.515, Tmax = 0.746Rint = 0.031
14194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.078H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
3547 reflectionsΔρmin = 0.66 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.48150 (5)0.382579 (12)1.04709 (2)0.03916 (10)
S0.47791 (10)0.28043 (2)0.66043 (5)0.02628 (13)
F1.2163 (3)0.36776 (7)0.25403 (14)0.0483 (4)
O10.5560 (3)0.45183 (6)0.62399 (13)0.0243 (3)
O2A0.4525 (3)0.25792 (7)0.78045 (15)0.0328 (5)0.912 (4)
O2B0.6982 (13)0.2602 (6)0.6238 (14)0.024 (5)0.088 (4)
C10.4554 (4)0.35832 (9)0.66166 (18)0.0218 (4)
C20.3135 (4)0.39689 (9)0.72727 (18)0.0218 (4)
C30.1281 (4)0.39074 (9)0.80143 (17)0.0224 (4)
C40.0413 (4)0.33627 (10)0.84002 (19)0.0267 (5)
H40.10740.30130.81680.032*
C50.1380 (4)0.33420 (10)0.9107 (2)0.0302 (5)
H50.19310.29820.93530.036*
C60.2378 (4)0.38667 (10)0.94578 (19)0.0284 (5)
C70.1620 (4)0.44040 (10)0.91127 (18)0.0281 (5)
H70.23290.47460.93490.034*
C80.0242 (4)0.44381 (9)0.83966 (18)0.0245 (4)
C90.1093 (4)0.49995 (9)0.80711 (18)0.0272 (5)
H90.03930.53380.83320.033*
C100.2894 (4)0.50541 (9)0.73923 (18)0.0265 (5)
H100.34650.54200.71970.032*
C110.3846 (4)0.45309 (9)0.70009 (17)0.0226 (4)
C120.5951 (4)0.39335 (9)0.60055 (18)0.0222 (4)
C130.7632 (4)0.38339 (9)0.51270 (18)0.0227 (4)
C140.7334 (4)0.34109 (10)0.42469 (19)0.0275 (5)
H140.60910.31670.42450.033*
C150.8873 (4)0.33521 (10)0.3378 (2)0.0314 (5)
H150.86820.30720.27910.038*
C161.0688 (4)0.37188 (10)0.3406 (2)0.0322 (5)
C171.1043 (4)0.41416 (10)0.4261 (2)0.0295 (5)
H171.22960.43820.42560.035*
C180.9504 (4)0.41994 (9)0.51190 (19)0.0252 (4)
H180.97080.44830.56980.030*
C190.2271 (4)0.26380 (10)0.5786 (2)0.0328 (5)
H19A0.20180.22210.57960.049*
H19B0.24090.27680.49930.049*
H19C0.10420.28360.61310.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03555 (15)0.05091 (17)0.03161 (14)0.01198 (11)0.01077 (10)0.00502 (11)
S0.0273 (3)0.0176 (2)0.0338 (3)0.0016 (2)0.0020 (2)0.0026 (2)
F0.0514 (10)0.0486 (9)0.0464 (9)0.0068 (8)0.0279 (8)0.0001 (7)
O10.0293 (8)0.0186 (7)0.0251 (7)0.0030 (6)0.0028 (6)0.0004 (6)
O2A0.0417 (12)0.0238 (9)0.0326 (10)0.0001 (8)0.0051 (8)0.0102 (7)
O2B0.036 (11)0.010 (7)0.025 (9)0.003 (7)0.003 (7)0.007 (6)
C10.0228 (11)0.0192 (9)0.0233 (10)0.0001 (8)0.0023 (8)0.0019 (8)
C20.0258 (11)0.0199 (10)0.0193 (9)0.0000 (8)0.0033 (8)0.0016 (7)
C30.0263 (11)0.0229 (10)0.0177 (9)0.0020 (8)0.0031 (8)0.0008 (8)
C40.0294 (12)0.0228 (10)0.0277 (11)0.0014 (9)0.0008 (9)0.0027 (8)
C50.0323 (13)0.0297 (11)0.0285 (11)0.0081 (10)0.0003 (9)0.0042 (9)
C60.0257 (12)0.0389 (13)0.0207 (10)0.0049 (10)0.0013 (8)0.0001 (9)
C70.0320 (13)0.0304 (11)0.0218 (10)0.0015 (9)0.0009 (9)0.0005 (9)
C80.0298 (12)0.0257 (10)0.0178 (9)0.0006 (9)0.0012 (8)0.0001 (8)
C90.0392 (14)0.0205 (10)0.0219 (10)0.0034 (9)0.0031 (9)0.0010 (8)
C100.0378 (13)0.0184 (10)0.0234 (10)0.0017 (9)0.0014 (9)0.0006 (8)
C110.0254 (11)0.0227 (10)0.0198 (10)0.0024 (8)0.0004 (8)0.0006 (8)
C120.0254 (11)0.0187 (10)0.0222 (10)0.0003 (8)0.0032 (8)0.0007 (7)
C130.0237 (11)0.0220 (10)0.0222 (10)0.0012 (8)0.0008 (8)0.0030 (8)
C140.0298 (12)0.0241 (10)0.0286 (11)0.0009 (9)0.0007 (9)0.0006 (9)
C150.0408 (14)0.0267 (11)0.0269 (11)0.0049 (10)0.0028 (10)0.0031 (9)
C160.0353 (14)0.0326 (12)0.0294 (12)0.0094 (10)0.0094 (10)0.0058 (9)
C170.0255 (12)0.0281 (11)0.0349 (12)0.0001 (9)0.0015 (9)0.0082 (9)
C180.0271 (12)0.0231 (10)0.0250 (11)0.0002 (9)0.0032 (9)0.0011 (8)
C190.0353 (14)0.0251 (11)0.0375 (13)0.0045 (10)0.0070 (10)0.0012 (9)
Geometric parameters (Å, º) top
F—Bri3.0457 (15)C7—H70.9300
Br—C61.898 (2)C8—C91.428 (3)
S—O2B1.475 (3)C9—C101.357 (3)
S—O2A1.4769 (18)C9—H90.9300
S—C11.775 (2)C10—C111.399 (3)
S—C191.792 (2)C10—H100.9300
F—C161.352 (3)C12—C131.464 (3)
O1—C111.370 (3)C13—C181.399 (3)
O1—C121.377 (2)C13—C141.399 (3)
C1—C121.365 (3)C14—C151.385 (3)
C1—C21.448 (3)C14—H140.9300
C2—C111.384 (3)C15—C161.373 (4)
C2—C31.428 (3)C15—H150.9300
C3—C41.419 (3)C16—C171.383 (3)
C3—C81.432 (3)C17—C181.376 (3)
C4—C51.368 (3)C17—H170.9300
C4—H40.9300C18—H180.9300
C5—C61.398 (3)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C6—C71.365 (3)C19—H19C0.9600
C7—C81.409 (3)
C16—F—Bri168.86 (14)C8—C9—H9119.0
O2B—S—O2A106.0 (6)C9—C10—C11116.5 (2)
O2B—S—C1112.5 (6)C9—C10—H10121.7
O2A—S—C1109.13 (10)C11—C10—H10121.7
O2B—S—C19122.4 (7)O1—C11—C2111.52 (18)
O2A—S—C19107.67 (12)O1—C11—C10122.99 (19)
C1—S—C1998.68 (11)C2—C11—C10125.4 (2)
C11—O1—C12106.28 (16)C1—C12—O1110.56 (19)
C12—C1—C2107.11 (18)C1—C12—C13135.23 (19)
C12—C1—S121.91 (17)O1—C12—C13114.09 (17)
C2—C1—S130.82 (16)C18—C13—C14119.3 (2)
C11—C2—C3118.38 (19)C18—C13—C12119.03 (19)
C11—C2—C1104.53 (18)C14—C13—C12121.5 (2)
C3—C2—C1137.00 (19)C15—C14—C13120.5 (2)
C4—C3—C2124.9 (2)C15—C14—H14119.7
C4—C3—C8118.1 (2)C13—C14—H14119.7
C2—C3—C8117.05 (18)C16—C15—C14118.3 (2)
C5—C4—C3121.2 (2)C16—C15—H15120.9
C5—C4—H4119.4C14—C15—H15120.9
C3—C4—H4119.4F—C16—C15118.7 (2)
C4—C5—C6119.5 (2)F—C16—C17118.4 (2)
C4—C5—H5120.2C15—C16—C17122.9 (2)
C6—C5—H5120.2C18—C17—C16118.5 (2)
C7—C6—C5121.9 (2)C18—C17—H17120.7
C7—C6—Br119.41 (18)C16—C17—H17120.7
C5—C6—Br118.63 (17)C17—C18—C13120.5 (2)
C6—C7—C8119.7 (2)C17—C18—H18119.8
C6—C7—H7120.2C13—C18—H18119.8
C8—C7—H7120.2S—C19—H19A109.5
C7—C8—C9119.9 (2)S—C19—H19B109.5
C7—C8—C3119.5 (2)H19A—C19—H19B109.5
C9—C8—C3120.6 (2)S—C19—H19C109.5
C10—C9—C8122.0 (2)H19A—C19—H19C109.5
C10—C9—H9119.0H19B—C19—H19C109.5
O2B—S—C1—C1219.7 (7)C8—C9—C10—C111.6 (3)
O2A—S—C1—C12137.02 (18)C12—O1—C11—C20.6 (2)
C19—S—C1—C12110.77 (19)C12—O1—C11—C10176.4 (2)
O2B—S—C1—C2155.0 (7)C3—C2—C11—O1177.03 (17)
O2A—S—C1—C237.8 (2)C1—C2—C11—O10.1 (2)
C19—S—C1—C274.5 (2)C3—C2—C11—C100.1 (3)
C12—C1—C2—C110.7 (2)C1—C2—C11—C10177.0 (2)
S—C1—C2—C11174.62 (17)C9—C10—C11—O1174.94 (19)
C12—C1—C2—C3175.5 (2)C9—C10—C11—C21.7 (3)
S—C1—C2—C39.1 (4)C2—C1—C12—O11.2 (2)
C11—C2—C3—C4177.8 (2)S—C1—C12—O1174.72 (14)
C1—C2—C3—C46.3 (4)C2—C1—C12—C13174.4 (2)
C11—C2—C3—C81.9 (3)S—C1—C12—C139.8 (4)
C1—C2—C3—C8174.0 (2)C11—O1—C12—C11.1 (2)
C2—C3—C4—C5179.7 (2)C11—O1—C12—C13175.45 (17)
C8—C3—C4—C50.7 (3)C1—C12—C13—C18146.4 (2)
C3—C4—C5—C60.0 (3)O1—C12—C13—C1838.2 (3)
C4—C5—C6—C70.2 (4)C1—C12—C13—C1438.3 (4)
C4—C5—C6—Br178.44 (17)O1—C12—C13—C14137.1 (2)
C5—C6—C7—C81.0 (4)C18—C13—C14—C150.2 (3)
Br—C6—C7—C8177.61 (16)C12—C13—C14—C15175.5 (2)
C6—C7—C8—C9177.6 (2)C13—C14—C15—C160.0 (3)
C6—C7—C8—C31.6 (3)C14—C15—C16—F177.9 (2)
C4—C3—C8—C71.5 (3)C14—C15—C16—C170.1 (4)
C2—C3—C8—C7178.87 (19)F—C16—C17—C18177.6 (2)
C4—C3—C8—C9177.7 (2)C15—C16—C17—C180.3 (4)
C2—C3—C8—C92.0 (3)C16—C17—C18—C130.5 (3)
C7—C8—C9—C10179.4 (2)C14—C13—C18—C170.5 (3)
C3—C8—C9—C100.2 (3)C12—C13—C18—C17175.9 (2)
Symmetry code: (i) x+2, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2/C3/C8/C9/C10/C11 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2Aii0.932.533.235 (3)133
C18—H18···Cgiii0.932.653.347 (3)132
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H12BrFO2S
Mr403.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.0155 (2), 22.7143 (6), 11.4364 (3)
β (°) 91.716 (1)
V3)1561.94 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.31 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.515, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14194, 3547, 3086
Rint0.031
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.09
No. of reflections3547
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.66

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2/C3/C8/C9/C10/C11 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2Ai0.932.533.235 (3)133.2
C18—H18···Cgii0.932.653.347 (3)132.0
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5876–o5877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o1956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEinhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405–410.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319–1324.  CrossRef PubMed CAS Google Scholar
First citationMahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128–134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds