organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 12-bromo­de­hydro­abietate

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: songzq@hotmail.com

(Received 22 March 2010; accepted 31 March 2010; online 28 April 2010)

The title compound [systematic name: (1R)-methyl 6-bromo-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phen­anthrene-1-carboxyl­ate], C21H29BrO2, was synthesized from N-bromo­succinimide and methyl dehydro­abietate, which was prepared through an esterification reaction using dehydro­abietic acid and methanol as raw materials. The three six-membered rings adopt planar (mean deviation = 0.002 Å) half-chair and chair conformations. The two cyclo­hexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by weak inter­molecular C—H⋯O contacts along the b axis.

Related literature

For the isolation of dehydro­abietic acid, see: Halbrook & Lawrence (1966[Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246-4247.]). For the preparation and use of dehydro­abietic acid derivatives, see: Fonseca et al. (2001[Fonseca, T., Gigante, B. & Gilchrist, T. L. (2001). Tetrahedron, 57, 1793-1799.]); Pan et al. (2006[Pan, Y.-M., Zhang, Y., Wang, H.-S. & Li, F. (2006). Chin. J. Org. Chem. 26, 314-317.]). For the synthesis of the title compound, see: Esteves et al. (1999[Esteves, M. A., Narender, N., Gigante, B., Marcelo-Curto, M. J. & Alvarez, A. (1999). Synth. Commun. 29, 275-280.]). For related structures, see: Zhang et al. (2006[Zhang, Y., Pan, Y.-M., Wang, H.-S., Wu, Q. & Zhang, Y. (2006). Acta Cryst. E62, o5425-o5426.]); Rao et al. (2009[Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.]).

[Scheme 1]

Experimental

Crystal data
  • C21H29BrO2

  • Mr = 393.35

  • Monoclinic, C 2

  • a = 13.888 (3) Å

  • b = 6.1260 (12) Å

  • c = 23.382 (5) Å

  • β = 103.19 (3)°

  • V = 1936.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.567, Tmax = 0.675

  • 3657 measured reflections

  • 3505 independent reflections

  • 2754 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.01

  • 3505 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1563 Friedel pairs

  • Flack parameter: 0.010 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O2i 0.96 2.72 3.652 (10) 165
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dehydroabietic acid is a readily obtainable compound, which is isolated from disproportionated rosin by methods of aminaion (Halbrook & Lawrence, 1966). A number of new derivatives of dehydroabietic acid have been prepared (Fonseca et al., 2001). The title compound is one of modified products of dehydroabietic acid, which could be used in synthesis of many fluorescence derivatization reagents (Pan et al., 2006). Although, it has been first prepared by Esteves et al.(1999), the crystal structure of the title compound methyl 12-bromo-dehydroabietate was not yet reported. In this work, we present its crystal structure, the molecular structure is shown in Fig. 1. There are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by weak intermolecular O—H···O contacts and π-π stacking interactions (centroid–centroid distance = 6.126 Å) along the b axis (Fig. 2).

Related literature top

For the isolation of dehydroabietic acid, see: Halbrook & Lawrence (1966). For the preparation and use of dehydroabietic acid derivatives, see: Fonseca et al. (2001); Pan et al. (2006). For the synthesis of the title compound, see: Esteves et al. (1999). For related structures, see: Zhang et al. (2006); Rao et al. (2009).

Experimental top

p-Toluene sulfochloride (4.6 g), potassium carbonate (3.4 g) and methanol anhydrous (20 ml) were mixed and stirred at room temperature for 2 h, then dehydroabietic acid (6.0 g) was added into the mixture to react for 3 h. The mixture was filtered and extracted by ethyl ether and recrystallized by methanol, methyl dehydroabietate (5.3 g) was prepared. Subsequently, methyl dehydroabietate (1.0 g), N-bromosuccinimide (1.0 g) and acetonitrile (100 ml) were mixed and stirred for 24 h at room temperature, the precipitate was filtered and recrystallized from methanol. Suitable crystals of the title compound for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at bond distances of 0.93-0.98 Å and included in the refinement in a riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

Dehydroabietic acid is a readily obtainable compound, which is isolated from disproportionated rosin by methods of aminaion (Halbrook & Lawrence, 1966). A number of new derivatives of dehydroabietic acid have been prepared (Fonseca et al., 2001). The title compound is one of modified products of dehydroabietic acid, which could be used in synthesis of many fluorescence derivatization reagents (Pan et al., 2006). Although, it has been first prepared by Esteves et al.(1999), the crystal structure of the title compound methyl 12-bromo-dehydroabietate was not yet reported. In this work, we present its crystal structure, the molecular structure is shown in Fig. 1. There are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by weak intermolecular O—H···O contacts and π-π stacking interactions (centroid–centroid distance = 6.126 Å) along the b axis (Fig. 2).

For the isolation of dehydroabietic acid, see: Halbrook & Lawrence (1966). For the preparation and use of dehydroabietic acid derivatives, see: Fonseca et al. (2001); Pan et al. (2006). For the synthesis of the title compound, see: Esteves et al. (1999). For related structures, see: Zhang et al. (2006); Rao et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound along (010).
(1R)-methyl 6-bromo-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a- octahydrophenanthrene-1-carboxylate top
Crystal data top
C21H29BrO2F(000) = 824
Mr = 393.35Dx = 1.349 Mg m3
Monoclinic, C2Melting point: 416 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 13.888 (3) ÅCell parameters from 25 reflections
b = 6.1260 (12) Åθ = 10–13°
c = 23.382 (5) ŵ = 2.13 mm1
β = 103.19 (3)°T = 293 K
V = 1936.8 (7) Å3Rod, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2754 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.567, Tmax = 0.675l = 2827
3657 measured reflections3 standard reflections every 200 reflections
3505 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.083P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.64 e Å3
3505 reflectionsΔρmin = 0.40 e Å3
218 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0175 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1563 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.010 (15)
Crystal data top
C21H29BrO2V = 1936.8 (7) Å3
Mr = 393.35Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.888 (3) ŵ = 2.13 mm1
b = 6.1260 (12) ÅT = 293 K
c = 23.382 (5) Å0.30 × 0.20 × 0.20 mm
β = 103.19 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2754 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.567, Tmax = 0.6753 standard reflections every 200 reflections
3657 measured reflections intensity decay: 1%
3505 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.64 e Å3
S = 1.01Δρmin = 0.40 e Å3
3505 reflectionsAbsolute structure: Flack (1983), 1563 Friedel pairs
218 parametersAbsolute structure parameter: 0.010 (15)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.52734 (4)0.20204 (10)0.41747 (2)0.0569 (3)
C10.4547 (4)0.1955 (9)0.2063 (2)0.0396 (12)
H1A0.41310.21110.23420.048*
H1B0.46010.04090.19850.048*
O10.6426 (4)0.1241 (7)0.0769 (2)0.0621 (13)
O20.6696 (4)0.4626 (8)0.0554 (2)0.0841 (17)
C20.4054 (3)0.3087 (14)0.1497 (2)0.0478 (12)
H2A0.34250.23850.13340.057*
H2B0.39220.45940.15810.057*
C30.4686 (3)0.3032 (13)0.10451 (19)0.0448 (11)
H3A0.47440.15320.09240.054*
H3B0.43540.38510.07010.054*
C40.5724 (4)0.3975 (9)0.1272 (2)0.0387 (12)
C50.6204 (3)0.2861 (11)0.18667 (18)0.0324 (9)
H5A0.62580.13180.17680.039*
C60.7266 (4)0.3588 (9)0.2118 (2)0.0423 (14)
H6A0.72690.49960.23090.051*
H6B0.76140.37320.18050.051*
C70.7773 (4)0.1913 (11)0.2557 (3)0.0502 (15)
H7A0.79840.07090.23460.060*
H7B0.83610.25680.28010.060*
C80.7139 (3)0.1013 (9)0.2953 (2)0.0361 (11)
C90.6128 (3)0.1423 (8)0.2847 (2)0.0320 (11)
C100.5593 (3)0.2863 (11)0.23428 (18)0.0319 (9)
C110.5608 (4)0.0505 (9)0.3232 (2)0.0357 (11)
H11A0.49300.07380.31700.043*
C120.6087 (4)0.0746 (8)0.3703 (2)0.0339 (11)
C130.7099 (3)0.1180 (8)0.3821 (2)0.0347 (11)
C140.7593 (4)0.0265 (9)0.3430 (2)0.0406 (12)
H14A0.82690.05170.34900.049*
C150.7620 (4)0.2626 (9)0.4324 (2)0.0419 (14)
H15A0.72390.25760.46290.050*
C160.8676 (4)0.1866 (15)0.4603 (3)0.0641 (15)
H16A0.86620.03790.47300.096*
H16B0.89520.27740.49340.096*
H16C0.90760.19690.43180.096*
C170.7635 (5)0.5004 (10)0.4120 (3)0.0601 (17)
H17A0.69730.54690.39460.090*
H17B0.80330.51130.38340.090*
H17C0.79090.59180.44500.090*
C180.6337 (4)0.3401 (9)0.0833 (2)0.0398 (14)
C190.5695 (5)0.6506 (9)0.1291 (3)0.0527 (16)
H19A0.53880.70560.09080.079*
H19B0.53210.69660.15680.079*
H19C0.63570.70630.14080.079*
C200.5494 (4)0.5132 (8)0.2616 (2)0.0421 (13)
H20A0.61400.56930.27890.063*
H20B0.51600.61130.23160.063*
H20C0.51210.49950.29130.063*
C210.6987 (5)0.0491 (12)0.0371 (3)0.0620 (18)
H21A0.69920.10760.03680.093*
H21B0.66970.10200.00160.093*
H21C0.76530.10210.04920.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0488 (3)0.0726 (4)0.0544 (3)0.0030 (4)0.0226 (2)0.0201 (4)
C10.033 (3)0.045 (3)0.040 (3)0.000 (2)0.008 (2)0.005 (2)
O10.100 (4)0.038 (2)0.066 (3)0.015 (2)0.057 (3)0.002 (2)
O20.135 (5)0.052 (3)0.093 (4)0.006 (3)0.082 (4)0.007 (3)
C20.042 (3)0.052 (3)0.048 (3)0.001 (4)0.006 (2)0.007 (4)
C30.050 (3)0.048 (3)0.035 (2)0.004 (4)0.006 (2)0.002 (4)
C40.046 (3)0.028 (2)0.044 (3)0.005 (2)0.015 (2)0.005 (2)
C50.038 (2)0.023 (2)0.038 (2)0.003 (3)0.0137 (18)0.000 (3)
C60.038 (3)0.044 (4)0.049 (3)0.006 (2)0.018 (2)0.001 (2)
C70.029 (3)0.075 (4)0.052 (3)0.003 (3)0.018 (3)0.005 (3)
C80.033 (3)0.041 (3)0.034 (3)0.000 (2)0.008 (2)0.003 (2)
C90.028 (3)0.029 (3)0.038 (3)0.004 (2)0.005 (2)0.006 (2)
C100.030 (2)0.026 (2)0.041 (2)0.002 (3)0.0099 (17)0.002 (3)
C110.030 (3)0.039 (3)0.040 (3)0.003 (2)0.013 (2)0.000 (2)
C120.039 (3)0.031 (3)0.034 (3)0.005 (2)0.013 (2)0.004 (2)
C130.036 (3)0.034 (3)0.031 (3)0.004 (2)0.001 (2)0.006 (2)
C140.027 (2)0.049 (3)0.045 (3)0.006 (2)0.008 (2)0.001 (3)
C150.043 (3)0.046 (4)0.035 (3)0.004 (2)0.005 (2)0.001 (2)
C160.058 (3)0.060 (4)0.063 (3)0.006 (4)0.008 (3)0.006 (4)
C170.067 (4)0.044 (4)0.062 (4)0.008 (3)0.002 (3)0.003 (3)
C180.051 (3)0.034 (4)0.039 (3)0.004 (3)0.019 (2)0.008 (3)
C190.075 (4)0.028 (3)0.061 (4)0.011 (3)0.029 (3)0.010 (3)
C200.053 (3)0.031 (3)0.043 (3)0.005 (2)0.013 (3)0.004 (2)
C210.090 (5)0.052 (4)0.052 (4)0.026 (4)0.034 (4)0.010 (3)
Geometric parameters (Å, º) top
Br—C121.916 (5)C9—C111.393 (7)
C1—C21.512 (8)C9—C101.524 (7)
C1—C101.553 (7)C10—C201.549 (8)
C1—H1A0.9700C11—C121.382 (7)
C1—H1B0.9700C11—H11A0.9300
O1—C181.340 (8)C12—C131.396 (7)
O1—C211.420 (7)C13—C141.381 (7)
O2—C181.178 (7)C13—C151.517 (7)
C2—C31.520 (6)C14—H14A0.9300
C2—H2A0.9700C15—C171.535 (8)
C2—H2B0.9700C15—C161.535 (8)
C3—C41.532 (7)C15—H15A0.9800
C3—H3A0.9700C16—H16A0.9600
C3—H3B0.9700C16—H16B0.9600
C4—C181.517 (7)C16—H16C0.9600
C4—C191.552 (8)C17—H17A0.9600
C4—C51.555 (7)C17—H17B0.9600
C5—C61.524 (6)C17—H17C0.9600
C5—C101.547 (5)C19—H19A0.9600
C5—H5A0.9800C19—H19B0.9600
C6—C71.507 (8)C19—H19C0.9600
C6—H6A0.9700C20—H20A0.9600
C6—H6B0.9700C20—H20B0.9600
C7—C81.519 (7)C20—H20C0.9600
C7—H7A0.9700C21—H21A0.9600
C7—H7B0.9700C21—H21B0.9600
C8—C141.391 (7)C21—H21C0.9600
C8—C91.391 (7)
C2—C1—C10113.4 (4)C20—C10—C1109.5 (4)
C2—C1—H1A108.9C5—C10—C1108.1 (4)
C10—C1—H1A108.9C12—C11—C9120.8 (4)
C2—C1—H1B108.9C12—C11—H11A119.6
C10—C1—H1B108.9C9—C11—H11A119.6
H1A—C1—H1B107.7C11—C12—C13122.9 (4)
C18—O1—C21118.1 (5)C11—C12—Br116.5 (4)
C1—C2—C3112.3 (5)C13—C12—Br120.5 (4)
C1—C2—H2A109.1C14—C13—C12114.9 (5)
C3—C2—H2A109.1C14—C13—C15122.0 (4)
C1—C2—H2B109.1C12—C13—C15123.1 (5)
C3—C2—H2B109.1C13—C14—C8123.8 (4)
H2A—C2—H2B107.9C13—C14—H14A118.1
C2—C3—C4113.4 (4)C8—C14—H14A118.1
C2—C3—H3A108.9C13—C15—C17110.5 (4)
C4—C3—H3A108.9C13—C15—C16113.1 (5)
C2—C3—H3B108.9C17—C15—C16109.9 (5)
C4—C3—H3B108.9C13—C15—H15A107.7
H3A—C3—H3B107.7C17—C15—H15A107.7
C18—C4—C3107.9 (4)C16—C15—H15A107.7
C18—C4—C19105.9 (4)C15—C16—H16A109.5
C3—C4—C19111.0 (5)C15—C16—H16B109.5
C18—C4—C5108.1 (4)H16A—C16—H16B109.5
C3—C4—C5108.8 (4)C15—C16—H16C109.5
C19—C4—C5115.0 (5)H16A—C16—H16C109.5
C6—C5—C10111.3 (4)H16B—C16—H16C109.5
C6—C5—C4113.4 (4)C15—C17—H17A109.5
C10—C5—C4116.7 (4)C15—C17—H17B109.5
C6—C5—H5A104.7H17A—C17—H17B109.5
C10—C5—H5A104.7C15—C17—H17C109.5
C4—C5—H5A104.7H17A—C17—H17C109.5
C7—C6—C5109.0 (4)H17B—C17—H17C109.5
C7—C6—H6A109.9O2—C18—O1120.4 (5)
C5—C6—H6A109.9O2—C18—C4126.9 (5)
C7—C6—H6B109.9O1—C18—C4112.6 (4)
C5—C6—H6B109.9C4—C19—H19A109.5
H6A—C6—H6B108.3C4—C19—H19B109.5
C6—C7—C8114.6 (4)H19A—C19—H19B109.5
C6—C7—H7A108.6C4—C19—H19C109.5
C8—C7—H7A108.6H19A—C19—H19C109.5
C6—C7—H7B108.6H19B—C19—H19C109.5
C8—C7—H7B108.6C10—C20—H20A109.5
H7A—C7—H7B107.6C10—C20—H20B109.5
C14—C8—C9119.9 (5)H20A—C20—H20B109.5
C14—C8—C7118.2 (4)C10—C20—H20C109.5
C9—C8—C7121.8 (5)H20A—C20—H20C109.5
C8—C9—C11117.6 (5)H20B—C20—H20C109.5
C8—C9—C10122.4 (4)O1—C21—H21A109.5
C11—C9—C10120.0 (4)O1—C21—H21B109.5
C9—C10—C20105.9 (4)H21A—C21—H21B109.5
C9—C10—C5107.8 (4)O1—C21—H21C109.5
C20—C10—C5114.4 (5)H21A—C21—H21C109.5
C9—C10—C1111.3 (5)H21B—C21—H21C109.5
C10—C1—C2—C355.4 (8)C6—C5—C10—C1176.2 (5)
C1—C2—C3—C455.2 (9)C4—C5—C10—C151.6 (7)
C2—C3—C4—C18168.5 (6)C2—C1—C10—C9170.0 (5)
C2—C3—C4—C1976.0 (7)C2—C1—C10—C2073.3 (6)
C2—C3—C4—C551.4 (7)C2—C1—C10—C551.8 (7)
C18—C4—C5—C660.0 (6)C8—C9—C11—C120.6 (7)
C3—C4—C5—C6176.8 (5)C10—C9—C11—C12177.9 (5)
C19—C4—C5—C658.0 (6)C9—C11—C12—C130.4 (8)
C18—C4—C5—C10168.7 (5)C9—C11—C12—Br177.2 (4)
C3—C4—C5—C1051.8 (6)C11—C12—C13—C140.1 (7)
C19—C4—C5—C1073.3 (6)Br—C12—C13—C14176.5 (4)
C10—C5—C6—C765.9 (6)C11—C12—C13—C15177.5 (5)
C4—C5—C6—C7160.2 (5)Br—C12—C13—C150.9 (7)
C5—C6—C7—C840.9 (7)C12—C13—C14—C80.5 (8)
C6—C7—C8—C14169.8 (5)C15—C13—C14—C8177.9 (5)
C6—C7—C8—C910.7 (8)C9—C8—C14—C130.3 (8)
C14—C8—C9—C110.2 (7)C7—C8—C14—C13179.8 (5)
C7—C8—C9—C11179.3 (5)C14—C13—C15—C1786.4 (6)
C14—C8—C9—C10178.2 (5)C12—C13—C15—C1790.9 (6)
C7—C8—C9—C102.3 (8)C14—C13—C15—C1637.3 (7)
C8—C9—C10—C2098.6 (5)C12—C13—C15—C16145.4 (5)
C11—C9—C10—C2079.7 (6)C21—O1—C18—O21.8 (10)
C8—C9—C10—C524.1 (7)C21—O1—C18—C4179.7 (5)
C11—C9—C10—C5157.5 (5)C3—C4—C18—O2117.3 (7)
C8—C9—C10—C1142.5 (5)C19—C4—C18—O21.6 (9)
C11—C9—C10—C139.1 (6)C5—C4—C18—O2125.3 (7)
C6—C5—C10—C955.8 (6)C3—C4—C18—O161.1 (6)
C4—C5—C10—C9172.0 (5)C19—C4—C18—O1179.9 (5)
C6—C5—C10—C2061.7 (6)C5—C4—C18—O156.4 (6)
C4—C5—C10—C2070.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.962.723.652 (10)165
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H29BrO2
Mr393.35
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)13.888 (3), 6.1260 (12), 23.382 (5)
β (°) 103.19 (3)
V3)1936.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.567, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
3657, 3505, 2754
Rint0.035
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.01
No. of reflections3505
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.40
Absolute structureFlack (1983), 1563 Friedel pairs
Absolute structure parameter0.010 (15)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.962.723.652 (10)165.2
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This project was supported by the Forestry Commonwealth Industry Special Foundation of China (No. 200704008).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEsteves, M. A., Narender, N., Gigante, B., Marcelo-Curto, M. J. & Alvarez, A. (1999). Synth. Commun. 29, 275–280.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFonseca, T., Gigante, B. & Gilchrist, T. L. (2001). Tetrahedron, 57, 1793–1799.  Web of Science CrossRef CAS Google Scholar
First citationHalbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246–4247.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPan, Y.-M., Zhang, Y., Wang, H.-S. & Li, F. (2006). Chin. J. Org. Chem. 26, 314–317.  CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Pan, Y.-M., Wang, H.-S., Wu, Q. & Zhang, Y. (2006). Acta Cryst. E62, o5425–o5426.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds