organic compounds
Methyl 12-bromodehydroabietate
aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: songzq@hotmail.com
The title compound [systematic name: (1R)-methyl 6-bromo-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylate], C21H29BrO2, was synthesized from N-bromosuccinimide and methyl dehydroabietate, which was prepared through an esterification reaction using dehydroabietic acid and methanol as raw materials. The three six-membered rings adopt planar (mean deviation = 0.002 Å) half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The is stabilized by weak intermolecular C—H⋯O contacts along the b axis.
Related literature
For the isolation of dehydroabietic acid, see: Halbrook & Lawrence (1966). For the preparation and use of dehydroabietic acid derivatives, see: Fonseca et al. (2001); Pan et al. (2006). For the synthesis of the title compound, see: Esteves et al. (1999). For related structures, see: Zhang et al. (2006); Rao et al. (2009).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810012201/zq2035sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810012201/zq2035Isup2.hkl
p-Toluene sulfochloride (4.6 g), potassium carbonate (3.4 g) and methanol anhydrous (20 ml) were mixed and stirred at room temperature for 2 h, then dehydroabietic acid (6.0 g) was added into the mixture to react for 3 h. The mixture was filtered and extracted by ethyl ether and recrystallized by methanol, methyl dehydroabietate (5.3 g) was prepared. Subsequently, methyl dehydroabietate (1.0 g), N-bromosuccinimide (1.0 g) and acetonitrile (100 ml) were mixed and stirred for 24 h at room temperature, the precipitate was filtered and recrystallized from methanol. Suitable crystals of the title compound for X-ray diffraction were obtained by slow evaporation of a methanol solution.
All H atoms bonded to the C atoms were placed geometrically at bond distances of 0.93-0.98 Å and included in the
in a riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.Dehydroabietic acid is a readily obtainable compound, which is isolated from disproportionated rosin by methods of aminaion (Halbrook & Lawrence, 1966). A number of new derivatives of dehydroabietic acid have been prepared (Fonseca et al., 2001). The title compound is one of modified products of dehydroabietic acid, which could be used in synthesis of many fluorescence derivatization reagents (Pan et al., 2006). Although, it has been first prepared by Esteves et al.(1999), the π-π stacking interactions (centroid–centroid distance = 6.126 Å) along the b axis (Fig. 2).
of the title compound methyl 12-bromo-dehydroabietate was not yet reported. In this work, we present its the molecular structure is shown in Fig. 1. There are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The is stabilized by weak intermolecular O—H···O contacts andFor the isolation of dehydroabietic acid, see: Halbrook & Lawrence (1966). For the preparation and use of dehydroabietic acid derivatives, see: Fonseca et al. (2001); Pan et al. (2006). For the synthesis of the title compound, see: Esteves et al. (1999). For related structures, see: Zhang et al. (2006); Rao et al. (2009).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. | |
Fig. 2. A view of the packing of the title compound along (010). |
C21H29BrO2 | F(000) = 824 |
Mr = 393.35 | Dx = 1.349 Mg m−3 |
Monoclinic, C2 | Melting point: 416 K |
Hall symbol: C 2y | Mo Kα radiation, λ = 0.71073 Å |
a = 13.888 (3) Å | Cell parameters from 25 reflections |
b = 6.1260 (12) Å | θ = 10–13° |
c = 23.382 (5) Å | µ = 2.13 mm−1 |
β = 103.19 (3)° | T = 293 K |
V = 1936.8 (7) Å3 | Rod, colorless |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 2754 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 25.3°, θmin = 1.8° |
ω/2θ scans | h = 0→16 |
Absorption correction: ψ scan (North et al., 1968) | k = −7→7 |
Tmin = 0.567, Tmax = 0.675 | l = −28→27 |
3657 measured reflections | 3 standard reflections every 200 reflections |
3505 independent reflections | intensity decay: 1% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.083P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.128 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.64 e Å−3 |
3505 reflections | Δρmin = −0.40 e Å−3 |
218 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0175 (13) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1563 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.010 (15) |
C21H29BrO2 | V = 1936.8 (7) Å3 |
Mr = 393.35 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 13.888 (3) Å | µ = 2.13 mm−1 |
b = 6.1260 (12) Å | T = 293 K |
c = 23.382 (5) Å | 0.30 × 0.20 × 0.20 mm |
β = 103.19 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2754 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.035 |
Tmin = 0.567, Tmax = 0.675 | 3 standard reflections every 200 reflections |
3657 measured reflections | intensity decay: 1% |
3505 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.128 | Δρmax = 0.64 e Å−3 |
S = 1.01 | Δρmin = −0.40 e Å−3 |
3505 reflections | Absolute structure: Flack (1983), 1563 Friedel pairs |
218 parameters | Absolute structure parameter: 0.010 (15) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.52734 (4) | 0.20204 (10) | 0.41747 (2) | 0.0569 (3) | |
C1 | 0.4547 (4) | −0.1955 (9) | 0.2063 (2) | 0.0396 (12) | |
H1A | 0.4131 | −0.2111 | 0.2342 | 0.048* | |
H1B | 0.4601 | −0.0409 | 0.1985 | 0.048* | |
O1 | 0.6426 (4) | −0.1241 (7) | 0.0769 (2) | 0.0621 (13) | |
O2 | 0.6696 (4) | −0.4626 (8) | 0.0554 (2) | 0.0841 (17) | |
C2 | 0.4054 (3) | −0.3087 (14) | 0.1497 (2) | 0.0478 (12) | |
H2A | 0.3425 | −0.2385 | 0.1334 | 0.057* | |
H2B | 0.3922 | −0.4594 | 0.1581 | 0.057* | |
C3 | 0.4686 (3) | −0.3032 (13) | 0.10451 (19) | 0.0448 (11) | |
H3A | 0.4744 | −0.1532 | 0.0924 | 0.054* | |
H3B | 0.4354 | −0.3851 | 0.0701 | 0.054* | |
C4 | 0.5724 (4) | −0.3975 (9) | 0.1272 (2) | 0.0387 (12) | |
C5 | 0.6204 (3) | −0.2861 (11) | 0.18667 (18) | 0.0324 (9) | |
H5A | 0.6258 | −0.1318 | 0.1768 | 0.039* | |
C6 | 0.7266 (4) | −0.3588 (9) | 0.2118 (2) | 0.0423 (14) | |
H6A | 0.7269 | −0.4996 | 0.2309 | 0.051* | |
H6B | 0.7614 | −0.3732 | 0.1805 | 0.051* | |
C7 | 0.7773 (4) | −0.1913 (11) | 0.2557 (3) | 0.0502 (15) | |
H7A | 0.7984 | −0.0709 | 0.2346 | 0.060* | |
H7B | 0.8361 | −0.2568 | 0.2801 | 0.060* | |
C8 | 0.7139 (3) | −0.1013 (9) | 0.2953 (2) | 0.0361 (11) | |
C9 | 0.6128 (3) | −0.1423 (8) | 0.2847 (2) | 0.0320 (11) | |
C10 | 0.5593 (3) | −0.2863 (11) | 0.23428 (18) | 0.0319 (9) | |
C11 | 0.5608 (4) | −0.0505 (9) | 0.3232 (2) | 0.0357 (11) | |
H11A | 0.4930 | −0.0738 | 0.3170 | 0.043* | |
C12 | 0.6087 (4) | 0.0746 (8) | 0.3703 (2) | 0.0339 (11) | |
C13 | 0.7099 (3) | 0.1180 (8) | 0.3821 (2) | 0.0347 (11) | |
C14 | 0.7593 (4) | 0.0265 (9) | 0.3430 (2) | 0.0406 (12) | |
H14A | 0.8269 | 0.0517 | 0.3490 | 0.049* | |
C15 | 0.7620 (4) | 0.2626 (9) | 0.4324 (2) | 0.0419 (14) | |
H15A | 0.7239 | 0.2576 | 0.4629 | 0.050* | |
C16 | 0.8676 (4) | 0.1866 (15) | 0.4603 (3) | 0.0641 (15) | |
H16A | 0.8662 | 0.0379 | 0.4730 | 0.096* | |
H16B | 0.8952 | 0.2774 | 0.4934 | 0.096* | |
H16C | 0.9076 | 0.1969 | 0.4318 | 0.096* | |
C17 | 0.7635 (5) | 0.5004 (10) | 0.4120 (3) | 0.0601 (17) | |
H17A | 0.6973 | 0.5469 | 0.3946 | 0.090* | |
H17B | 0.8033 | 0.5113 | 0.3834 | 0.090* | |
H17C | 0.7909 | 0.5918 | 0.4450 | 0.090* | |
C18 | 0.6337 (4) | −0.3401 (9) | 0.0833 (2) | 0.0398 (14) | |
C19 | 0.5695 (5) | −0.6506 (9) | 0.1291 (3) | 0.0527 (16) | |
H19A | 0.5388 | −0.7056 | 0.0908 | 0.079* | |
H19B | 0.5321 | −0.6966 | 0.1568 | 0.079* | |
H19C | 0.6357 | −0.7063 | 0.1408 | 0.079* | |
C20 | 0.5494 (4) | −0.5132 (8) | 0.2616 (2) | 0.0421 (13) | |
H20A | 0.6140 | −0.5693 | 0.2789 | 0.063* | |
H20B | 0.5160 | −0.6113 | 0.2316 | 0.063* | |
H20C | 0.5121 | −0.4995 | 0.2913 | 0.063* | |
C21 | 0.6987 (5) | −0.0491 (12) | 0.0371 (3) | 0.0620 (18) | |
H21A | 0.6992 | 0.1076 | 0.0368 | 0.093* | |
H21B | 0.6697 | −0.1020 | −0.0016 | 0.093* | |
H21C | 0.7653 | −0.1021 | 0.0492 | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0488 (3) | 0.0726 (4) | 0.0544 (3) | −0.0030 (4) | 0.0226 (2) | −0.0201 (4) |
C1 | 0.033 (3) | 0.045 (3) | 0.040 (3) | 0.000 (2) | 0.008 (2) | −0.005 (2) |
O1 | 0.100 (4) | 0.038 (2) | 0.066 (3) | −0.015 (2) | 0.057 (3) | −0.002 (2) |
O2 | 0.135 (5) | 0.052 (3) | 0.093 (4) | 0.006 (3) | 0.082 (4) | −0.007 (3) |
C2 | 0.042 (3) | 0.052 (3) | 0.048 (3) | −0.001 (4) | 0.006 (2) | −0.007 (4) |
C3 | 0.050 (3) | 0.048 (3) | 0.035 (2) | −0.004 (4) | 0.006 (2) | −0.002 (4) |
C4 | 0.046 (3) | 0.028 (2) | 0.044 (3) | −0.005 (2) | 0.015 (2) | −0.005 (2) |
C5 | 0.038 (2) | 0.023 (2) | 0.038 (2) | −0.003 (3) | 0.0137 (18) | 0.000 (3) |
C6 | 0.038 (3) | 0.044 (4) | 0.049 (3) | 0.006 (2) | 0.018 (2) | −0.001 (2) |
C7 | 0.029 (3) | 0.075 (4) | 0.052 (3) | 0.003 (3) | 0.018 (3) | −0.005 (3) |
C8 | 0.033 (3) | 0.041 (3) | 0.034 (3) | 0.000 (2) | 0.008 (2) | 0.003 (2) |
C9 | 0.028 (3) | 0.029 (3) | 0.038 (3) | 0.004 (2) | 0.005 (2) | 0.006 (2) |
C10 | 0.030 (2) | 0.026 (2) | 0.041 (2) | −0.002 (3) | 0.0099 (17) | −0.002 (3) |
C11 | 0.030 (3) | 0.039 (3) | 0.040 (3) | −0.003 (2) | 0.013 (2) | 0.000 (2) |
C12 | 0.039 (3) | 0.031 (3) | 0.034 (3) | 0.005 (2) | 0.013 (2) | 0.004 (2) |
C13 | 0.036 (3) | 0.034 (3) | 0.031 (3) | −0.004 (2) | 0.001 (2) | 0.006 (2) |
C14 | 0.027 (2) | 0.049 (3) | 0.045 (3) | −0.006 (2) | 0.008 (2) | 0.001 (3) |
C15 | 0.043 (3) | 0.046 (4) | 0.035 (3) | −0.004 (2) | 0.005 (2) | −0.001 (2) |
C16 | 0.058 (3) | 0.060 (4) | 0.063 (3) | −0.006 (4) | −0.008 (3) | −0.006 (4) |
C17 | 0.067 (4) | 0.044 (4) | 0.062 (4) | −0.008 (3) | −0.002 (3) | −0.003 (3) |
C18 | 0.051 (3) | 0.034 (4) | 0.039 (3) | −0.004 (3) | 0.019 (2) | −0.008 (3) |
C19 | 0.075 (4) | 0.028 (3) | 0.061 (4) | −0.011 (3) | 0.029 (3) | −0.010 (3) |
C20 | 0.053 (3) | 0.031 (3) | 0.043 (3) | −0.005 (2) | 0.013 (3) | 0.004 (2) |
C21 | 0.090 (5) | 0.052 (4) | 0.052 (4) | −0.026 (4) | 0.034 (4) | −0.010 (3) |
Br—C12 | 1.916 (5) | C9—C11 | 1.393 (7) |
C1—C2 | 1.512 (8) | C9—C10 | 1.524 (7) |
C1—C10 | 1.553 (7) | C10—C20 | 1.549 (8) |
C1—H1A | 0.9700 | C11—C12 | 1.382 (7) |
C1—H1B | 0.9700 | C11—H11A | 0.9300 |
O1—C18 | 1.340 (8) | C12—C13 | 1.396 (7) |
O1—C21 | 1.420 (7) | C13—C14 | 1.381 (7) |
O2—C18 | 1.178 (7) | C13—C15 | 1.517 (7) |
C2—C3 | 1.520 (6) | C14—H14A | 0.9300 |
C2—H2A | 0.9700 | C15—C17 | 1.535 (8) |
C2—H2B | 0.9700 | C15—C16 | 1.535 (8) |
C3—C4 | 1.532 (7) | C15—H15A | 0.9800 |
C3—H3A | 0.9700 | C16—H16A | 0.9600 |
C3—H3B | 0.9700 | C16—H16B | 0.9600 |
C4—C18 | 1.517 (7) | C16—H16C | 0.9600 |
C4—C19 | 1.552 (8) | C17—H17A | 0.9600 |
C4—C5 | 1.555 (7) | C17—H17B | 0.9600 |
C5—C6 | 1.524 (6) | C17—H17C | 0.9600 |
C5—C10 | 1.547 (5) | C19—H19A | 0.9600 |
C5—H5A | 0.9800 | C19—H19B | 0.9600 |
C6—C7 | 1.507 (8) | C19—H19C | 0.9600 |
C6—H6A | 0.9700 | C20—H20A | 0.9600 |
C6—H6B | 0.9700 | C20—H20B | 0.9600 |
C7—C8 | 1.519 (7) | C20—H20C | 0.9600 |
C7—H7A | 0.9700 | C21—H21A | 0.9600 |
C7—H7B | 0.9700 | C21—H21B | 0.9600 |
C8—C14 | 1.391 (7) | C21—H21C | 0.9600 |
C8—C9 | 1.391 (7) | ||
C2—C1—C10 | 113.4 (4) | C20—C10—C1 | 109.5 (4) |
C2—C1—H1A | 108.9 | C5—C10—C1 | 108.1 (4) |
C10—C1—H1A | 108.9 | C12—C11—C9 | 120.8 (4) |
C2—C1—H1B | 108.9 | C12—C11—H11A | 119.6 |
C10—C1—H1B | 108.9 | C9—C11—H11A | 119.6 |
H1A—C1—H1B | 107.7 | C11—C12—C13 | 122.9 (4) |
C18—O1—C21 | 118.1 (5) | C11—C12—Br | 116.5 (4) |
C1—C2—C3 | 112.3 (5) | C13—C12—Br | 120.5 (4) |
C1—C2—H2A | 109.1 | C14—C13—C12 | 114.9 (5) |
C3—C2—H2A | 109.1 | C14—C13—C15 | 122.0 (4) |
C1—C2—H2B | 109.1 | C12—C13—C15 | 123.1 (5) |
C3—C2—H2B | 109.1 | C13—C14—C8 | 123.8 (4) |
H2A—C2—H2B | 107.9 | C13—C14—H14A | 118.1 |
C2—C3—C4 | 113.4 (4) | C8—C14—H14A | 118.1 |
C2—C3—H3A | 108.9 | C13—C15—C17 | 110.5 (4) |
C4—C3—H3A | 108.9 | C13—C15—C16 | 113.1 (5) |
C2—C3—H3B | 108.9 | C17—C15—C16 | 109.9 (5) |
C4—C3—H3B | 108.9 | C13—C15—H15A | 107.7 |
H3A—C3—H3B | 107.7 | C17—C15—H15A | 107.7 |
C18—C4—C3 | 107.9 (4) | C16—C15—H15A | 107.7 |
C18—C4—C19 | 105.9 (4) | C15—C16—H16A | 109.5 |
C3—C4—C19 | 111.0 (5) | C15—C16—H16B | 109.5 |
C18—C4—C5 | 108.1 (4) | H16A—C16—H16B | 109.5 |
C3—C4—C5 | 108.8 (4) | C15—C16—H16C | 109.5 |
C19—C4—C5 | 115.0 (5) | H16A—C16—H16C | 109.5 |
C6—C5—C10 | 111.3 (4) | H16B—C16—H16C | 109.5 |
C6—C5—C4 | 113.4 (4) | C15—C17—H17A | 109.5 |
C10—C5—C4 | 116.7 (4) | C15—C17—H17B | 109.5 |
C6—C5—H5A | 104.7 | H17A—C17—H17B | 109.5 |
C10—C5—H5A | 104.7 | C15—C17—H17C | 109.5 |
C4—C5—H5A | 104.7 | H17A—C17—H17C | 109.5 |
C7—C6—C5 | 109.0 (4) | H17B—C17—H17C | 109.5 |
C7—C6—H6A | 109.9 | O2—C18—O1 | 120.4 (5) |
C5—C6—H6A | 109.9 | O2—C18—C4 | 126.9 (5) |
C7—C6—H6B | 109.9 | O1—C18—C4 | 112.6 (4) |
C5—C6—H6B | 109.9 | C4—C19—H19A | 109.5 |
H6A—C6—H6B | 108.3 | C4—C19—H19B | 109.5 |
C6—C7—C8 | 114.6 (4) | H19A—C19—H19B | 109.5 |
C6—C7—H7A | 108.6 | C4—C19—H19C | 109.5 |
C8—C7—H7A | 108.6 | H19A—C19—H19C | 109.5 |
C6—C7—H7B | 108.6 | H19B—C19—H19C | 109.5 |
C8—C7—H7B | 108.6 | C10—C20—H20A | 109.5 |
H7A—C7—H7B | 107.6 | C10—C20—H20B | 109.5 |
C14—C8—C9 | 119.9 (5) | H20A—C20—H20B | 109.5 |
C14—C8—C7 | 118.2 (4) | C10—C20—H20C | 109.5 |
C9—C8—C7 | 121.8 (5) | H20A—C20—H20C | 109.5 |
C8—C9—C11 | 117.6 (5) | H20B—C20—H20C | 109.5 |
C8—C9—C10 | 122.4 (4) | O1—C21—H21A | 109.5 |
C11—C9—C10 | 120.0 (4) | O1—C21—H21B | 109.5 |
C9—C10—C20 | 105.9 (4) | H21A—C21—H21B | 109.5 |
C9—C10—C5 | 107.8 (4) | O1—C21—H21C | 109.5 |
C20—C10—C5 | 114.4 (5) | H21A—C21—H21C | 109.5 |
C9—C10—C1 | 111.3 (5) | H21B—C21—H21C | 109.5 |
C10—C1—C2—C3 | −55.4 (8) | C6—C5—C10—C1 | 176.2 (5) |
C1—C2—C3—C4 | 55.2 (9) | C4—C5—C10—C1 | −51.6 (7) |
C2—C3—C4—C18 | −168.5 (6) | C2—C1—C10—C9 | 170.0 (5) |
C2—C3—C4—C19 | 76.0 (7) | C2—C1—C10—C20 | −73.3 (6) |
C2—C3—C4—C5 | −51.4 (7) | C2—C1—C10—C5 | 51.8 (7) |
C18—C4—C5—C6 | −60.0 (6) | C8—C9—C11—C12 | −0.6 (7) |
C3—C4—C5—C6 | −176.8 (5) | C10—C9—C11—C12 | 177.9 (5) |
C19—C4—C5—C6 | 58.0 (6) | C9—C11—C12—C13 | 0.4 (8) |
C18—C4—C5—C10 | 168.7 (5) | C9—C11—C12—Br | 177.2 (4) |
C3—C4—C5—C10 | 51.8 (6) | C11—C12—C13—C14 | 0.1 (7) |
C19—C4—C5—C10 | −73.3 (6) | Br—C12—C13—C14 | −176.5 (4) |
C10—C5—C6—C7 | −65.9 (6) | C11—C12—C13—C15 | 177.5 (5) |
C4—C5—C6—C7 | 160.2 (5) | Br—C12—C13—C15 | 0.9 (7) |
C5—C6—C7—C8 | 40.9 (7) | C12—C13—C14—C8 | −0.5 (8) |
C6—C7—C8—C14 | 169.8 (5) | C15—C13—C14—C8 | −177.9 (5) |
C6—C7—C8—C9 | −10.7 (8) | C9—C8—C14—C13 | 0.3 (8) |
C14—C8—C9—C11 | 0.2 (7) | C7—C8—C14—C13 | 179.8 (5) |
C7—C8—C9—C11 | −179.3 (5) | C14—C13—C15—C17 | 86.4 (6) |
C14—C8—C9—C10 | −178.2 (5) | C12—C13—C15—C17 | −90.9 (6) |
C7—C8—C9—C10 | 2.3 (8) | C14—C13—C15—C16 | −37.3 (7) |
C8—C9—C10—C20 | 98.6 (5) | C12—C13—C15—C16 | 145.4 (5) |
C11—C9—C10—C20 | −79.7 (6) | C21—O1—C18—O2 | −1.8 (10) |
C8—C9—C10—C5 | −24.1 (7) | C21—O1—C18—C4 | 179.7 (5) |
C11—C9—C10—C5 | 157.5 (5) | C3—C4—C18—O2 | −117.3 (7) |
C8—C9—C10—C1 | −142.5 (5) | C19—C4—C18—O2 | 1.6 (9) |
C11—C9—C10—C1 | 39.1 (6) | C5—C4—C18—O2 | 125.3 (7) |
C6—C5—C10—C9 | 55.8 (6) | C3—C4—C18—O1 | 61.1 (6) |
C4—C5—C10—C9 | −172.0 (5) | C19—C4—C18—O1 | 179.9 (5) |
C6—C5—C10—C20 | −61.7 (6) | C5—C4—C18—O1 | −56.4 (6) |
C4—C5—C10—C20 | 70.6 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21A···O2i | 0.96 | 2.72 | 3.652 (10) | 165 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H29BrO2 |
Mr | 393.35 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 293 |
a, b, c (Å) | 13.888 (3), 6.1260 (12), 23.382 (5) |
β (°) | 103.19 (3) |
V (Å3) | 1936.8 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.13 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.567, 0.675 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3657, 3505, 2754 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.128, 1.01 |
No. of reflections | 3505 |
No. of parameters | 218 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.40 |
Absolute structure | Flack (1983), 1563 Friedel pairs |
Absolute structure parameter | 0.010 (15) |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21A···O2i | 0.96 | 2.72 | 3.652 (10) | 165.2 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
This project was supported by the Forestry Commonwealth Industry Special Foundation of China (No. 200704008).
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Esteves, M. A., Narender, N., Gigante, B., Marcelo-Curto, M. J. & Alvarez, A. (1999). Synth. Commun. 29, 275–280. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fonseca, T., Gigante, B. & Gilchrist, T. L. (2001). Tetrahedron, 57, 1793–1799. Web of Science CrossRef CAS Google Scholar
Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246–4247. CrossRef CAS Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pan, Y.-M., Zhang, Y., Wang, H.-S. & Li, F. (2006). Chin. J. Org. Chem. 26, 314–317. CAS Google Scholar
Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y., Pan, Y.-M., Wang, H.-S., Wu, Q. & Zhang, Y. (2006). Acta Cryst. E62, o5425–o5426. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dehydroabietic acid is a readily obtainable compound, which is isolated from disproportionated rosin by methods of aminaion (Halbrook & Lawrence, 1966). A number of new derivatives of dehydroabietic acid have been prepared (Fonseca et al., 2001). The title compound is one of modified products of dehydroabietic acid, which could be used in synthesis of many fluorescence derivatization reagents (Pan et al., 2006). Although, it has been first prepared by Esteves et al.(1999), the crystal structure of the title compound methyl 12-bromo-dehydroabietate was not yet reported. In this work, we present its crystal structure, the molecular structure is shown in Fig. 1. There are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by weak intermolecular O—H···O contacts and π-π stacking interactions (centroid–centroid distance = 6.126 Å) along the b axis (Fig. 2).