metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Acetato-bis­­(μ-2-{[(3-chloro-2-hy­droxy­prop­yl)(2-pyridylmeth­yl)amino]meth­yl}phenolato)dinickel(II) chloride

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, cLaboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil, and dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 March 2010; accepted 19 April 2010; online 24 April 2010)

The title salt, [Ni2(C16H18ClN2O2)2(CH3COO)]Cl, features a dinuclear cation in which the Ni atoms are triply bridged by two phenolate O ligands and a bidentate acetate ligand with all of the bridging distances essentially symmetric. Each Ni atom is also coordinated by the amine N, pyridine N and hydr­oxy O atoms of the 2-{[(3-chloro-2-hydroxy­prop­yl)(2-pyridylmeth­yl)amino]meth­yl}phenolate ligand which is, therefore, penta­dentate. The resultant N3O3 donor sets define octa­hedral coordination geometries. The chloride counter-anion is connected to the cation via two Ohydr­oxy—H⋯Cl hydrogen bonds.

Related literature

For the structure of the perchlorate salt, see: Horn et al. (2006[Horn, A., Fim, L., Bortoluzzi, A. J., Szpoganicz, B., de Silva, M., Novak, M. A., Neto, M. B., Eberlin, L. S., Catharino, R. R., Eberlin, M. N. & Fernandes, C. (2006). J. Mol. Struct. 797, 154-164.]). For the synthesis, see: Horn et al. (2000[Horn, A., Neves, A., Vencato, I., Drago, V., Zucco, C., Werner, R. & Haase, W. (2000). J. Braz. Chem. Soc. 11, 7-10.]); Neves et al. (1993[Neves, A., de Brito, M. A., Vencato, I., Drago, V., Griesar, K. W., Haase, W. & Mascarenhas, Y. P. (1993). Inorg. Chim. Acta, 214, 5-8.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C16H18ClN2O2)2(C2H3O2)]Cl

  • Mr = 823.46

  • Orthorhombic, P n a 21

  • a = 19.0992 (6) Å

  • b = 18.0097 (5) Å

  • c = 10.1288 (3) Å

  • V = 3484.01 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 120 K

  • 0.18 × 0.09 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.665, Tmax = 1.000

  • 25109 measured reflections

  • 7859 independent reflections

  • 6149 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.05

  • 7859 reflections

  • 449 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.75 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3653 Friedel pairs

  • Flack parameter: −0.012 (18)

Table 1
Selected bond lengths (Å)

Ni1—O1 2.131 (4)
Ni1—O4 1.991 (4)
Ni1—O5 2.046 (4)
Ni1—O2 2.047 (4)
Ni1—N1 2.077 (5)
Ni1—N2 2.111 (4)
Ni2—O2 2.035 (4)
Ni2—O3 2.157 (4)
Ni2—O4 2.031 (4)
Ni2—O6 2.038 (4)
Ni2—N3 2.095 (5)
Ni2—N4 2.087 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯Cl3 0.84 2.19 3.015 (4) 166
O3—H3o⋯Cl3 0.84 2.20 3.020 (4) 166

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Complexes related to the title salt, (I), are of interest as synthetic models for urease (Horn et al., 2006). The molecular structure of the dinuclear cation in (I) (Fig. 1) reveals the two Ni atoms to be triply bridged. Two of the bridges are provided by single O atoms derived from two phenoxides, and the third bridge arises from a bidentate acetate ligand with each of the bridging distances effectively symmetric (Table 1). Each Ni atom is also coordinated by the amino- and pyridine-N and hydroxy-O atoms so that the N-(2-oxybenzyl)-N-(2-pyridylmethyl)(3-chloro-2-hydroxy anion is pentadentate. Each Ni atom exists within similar octahedral N2O4 donor sets. The Cl- anion is associated with the cation via two O–H···O hydrogen bonds (Fig. 1 and Table 2). The structure is isomorphous with the perchlorate salt (Horn et al., 2006). The major difference between the structures of the cations relates to the disposition of the terminal chlorides. When each molecule is viewed down its respective Ni···Ni axis, both chlorides are orientated in the same direction for the perchlorate but, in (I), they are orientated in opposite directions.

Related literature top

For the structure of the isomorphous perchlorate salt, see: Horn et al. (2006). For the synthesis, see: Horn et al. (2000); Neves et al. (1993).

Experimental top

The chloride salt was prepared analogously to the isostructural perchlorate salt (Horn et al., 2006) from [Ni(OH2)6]Cl2 (1 mmol), N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)-[(3-chloro)(2-hydroxy)]propylamine (1 mmol) (Neves et al., 1993; Horn et al., 2000), NaOAc (6 mmol) in MeOH. The crystals used in the structure determination were grown from MeOH solution. Anal. Found: C, 49.46; H, 4.85; N, 6.69%. Calc. for C34H39Cl3N4Ni2O10: C, 49.59; H, 4.77; N, 6.80%.

Refinement top

The O- and C-bound H atoms were geometrically placed (O–H = 0.84 Å and C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(parent atom).

Structure description top

Complexes related to the title salt, (I), are of interest as synthetic models for urease (Horn et al., 2006). The molecular structure of the dinuclear cation in (I) (Fig. 1) reveals the two Ni atoms to be triply bridged. Two of the bridges are provided by single O atoms derived from two phenoxides, and the third bridge arises from a bidentate acetate ligand with each of the bridging distances effectively symmetric (Table 1). Each Ni atom is also coordinated by the amino- and pyridine-N and hydroxy-O atoms so that the N-(2-oxybenzyl)-N-(2-pyridylmethyl)(3-chloro-2-hydroxy anion is pentadentate. Each Ni atom exists within similar octahedral N2O4 donor sets. The Cl- anion is associated with the cation via two O–H···O hydrogen bonds (Fig. 1 and Table 2). The structure is isomorphous with the perchlorate salt (Horn et al., 2006). The major difference between the structures of the cations relates to the disposition of the terminal chlorides. When each molecule is viewed down its respective Ni···Ni axis, both chlorides are orientated in the same direction for the perchlorate but, in (I), they are orientated in opposite directions.

For the structure of the isomorphous perchlorate salt, see: Horn et al. (2006). For the synthesis, see: Horn et al. (2000); Neves et al. (1993).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the ionic components comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O–H···Cl hydrogen bonds are shown as black dashed lines.
µ-Acetato-bis(µ-2-{[(3-chloro-2-hydroxypropyl)(2- pyridylmethyl)amino]methyl}phenolato)dinickel(II) chloride top
Crystal data top
[Ni2(C16H18ClN2O2)2(C2H3O2)]ClF(000) = 1704
Mr = 823.46Dx = 1.570 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4394 reflections
a = 19.0992 (6) Åθ = 2.9–27.5°
b = 18.0097 (5) ŵ = 1.36 mm1
c = 10.1288 (3) ÅT = 120 K
V = 3484.01 (18) Å3Prism, light-blue
Z = 40.18 × 0.09 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7859 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode6149 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
φ and ω scansh = 1724
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2323
Tmin = 0.665, Tmax = 1.000l = 1312
25109 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0888P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7859 reflectionsΔρmax = 0.82 e Å3
449 parametersΔρmin = 0.75 e Å3
3 restraintsAbsolute structure: Flack (1983), 3653 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (18)
Crystal data top
[Ni2(C16H18ClN2O2)2(C2H3O2)]ClV = 3484.01 (18) Å3
Mr = 823.46Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.0992 (6) ŵ = 1.36 mm1
b = 18.0097 (5) ÅT = 120 K
c = 10.1288 (3) Å0.18 × 0.09 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7859 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
6149 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 1.000Rint = 0.070
25109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.152Δρmax = 0.82 e Å3
S = 1.05Δρmin = 0.75 e Å3
7859 reflectionsAbsolute structure: Flack (1983), 3653 Friedel pairs
449 parametersAbsolute structure parameter: 0.012 (18)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.19933 (4)0.51824 (3)0.33432 (8)0.02004 (16)
Ni20.15818 (3)0.66526 (3)0.21542 (8)0.01972 (16)
Cl10.18142 (8)0.72214 (8)0.33520 (14)0.0302 (3)
Cl20.47811 (8)0.40832 (8)0.34445 (17)0.0359 (3)
O10.2907 (2)0.48411 (19)0.2298 (4)0.0247 (8)
H1O0.29910.51150.16460.037*
O20.23231 (19)0.62629 (19)0.3420 (4)0.0251 (8)
O30.2253 (2)0.6853 (2)0.0480 (4)0.0217 (8)
H3O0.25400.65090.03270.033*
O40.1534 (2)0.5554 (2)0.1708 (4)0.0234 (8)
O50.1173 (2)0.5475 (2)0.4535 (4)0.0244 (8)
O60.0829 (2)0.65273 (19)0.3564 (4)0.0225 (8)
N10.2610 (2)0.4867 (2)0.4937 (4)0.0226 (10)
N20.1629 (2)0.4082 (2)0.3550 (5)0.0218 (10)
N30.0824 (2)0.6913 (2)0.0732 (4)0.0196 (9)
N40.1451 (2)0.7777 (2)0.2582 (5)0.0231 (10)
C10.3240 (3)0.4468 (3)0.4455 (6)0.0270 (13)
H1A0.31270.39340.43610.032*
H1B0.36170.45140.51190.032*
C20.3504 (3)0.4764 (3)0.3130 (6)0.0239 (12)
H20.37360.52570.32560.029*
C30.4012 (3)0.4222 (3)0.2458 (6)0.0320 (14)
H3A0.41480.44200.15840.038*
H3B0.37740.37390.23180.038*
C40.2764 (3)0.5511 (3)0.5770 (6)0.0288 (13)
H4A0.30140.53390.65700.035*
H4B0.23170.57380.60570.035*
C50.3209 (3)0.6105 (3)0.5081 (6)0.0271 (12)
C60.2931 (3)0.6461 (3)0.3954 (5)0.0235 (12)
C70.3340 (3)0.7018 (3)0.3374 (6)0.0288 (12)
H70.31720.72660.26080.035*
C80.3981 (3)0.7214 (4)0.3894 (7)0.0398 (16)
H80.42440.75990.34880.048*
C90.4248 (3)0.6858 (4)0.4998 (8)0.0391 (16)
H90.46930.69900.53440.047*
C100.3850 (3)0.6305 (3)0.5586 (6)0.0330 (14)
H100.40230.60610.63500.040*
C110.2153 (3)0.4350 (3)0.5682 (6)0.0278 (13)
H11A0.18150.46400.62150.033*
H11B0.24430.40530.62970.033*
C120.1756 (3)0.3833 (3)0.4780 (6)0.0263 (13)
C130.1253 (3)0.3658 (3)0.2734 (6)0.0287 (13)
H130.11480.38420.18770.034*
C140.1011 (3)0.2963 (3)0.3088 (7)0.0352 (16)
H140.07490.26720.24810.042*
C150.1152 (3)0.2708 (3)0.4304 (8)0.0376 (16)
H150.09960.22280.45620.045*
C160.1522 (3)0.3143 (3)0.5174 (7)0.0340 (15)
H160.16170.29690.60410.041*
C170.1171 (3)0.7182 (3)0.0491 (5)0.0261 (12)
H17A0.12510.77230.04160.031*
H17B0.08550.70970.12510.031*
C180.1868 (3)0.6799 (3)0.0760 (5)0.0211 (11)
H180.17930.62670.10070.025*
C190.2292 (3)0.7196 (3)0.1813 (5)0.0246 (12)
H19A0.27430.69360.19450.030*
H19B0.23940.77090.15200.030*
C200.0372 (3)0.6240 (3)0.0516 (6)0.0262 (12)
H20A0.01750.60830.13760.031*
H20B0.00250.63800.00610.031*
C210.0744 (3)0.5590 (3)0.0095 (6)0.0235 (12)
C220.1311 (3)0.5269 (3)0.0579 (5)0.0196 (11)
C230.1641 (3)0.4645 (3)0.0001 (6)0.0249 (12)
H230.20270.44200.04330.030*
C240.1405 (3)0.4360 (3)0.1187 (6)0.0311 (14)
H240.16250.39360.15560.037*
C250.0853 (3)0.4688 (3)0.1839 (6)0.0274 (13)
H250.06980.44950.26620.033*
C260.0526 (3)0.5294 (3)0.1292 (6)0.0293 (13)
H260.01430.55160.17420.035*
C270.0408 (3)0.7512 (3)0.1318 (6)0.0246 (12)
H27A0.00440.72940.18970.030*
H27B0.01690.77910.06070.030*
C280.0848 (3)0.8032 (3)0.2102 (6)0.0227 (11)
C290.1830 (3)0.8205 (3)0.3388 (7)0.0275 (12)
H290.22550.80160.37410.033*
C300.1619 (3)0.8923 (3)0.3728 (6)0.0313 (14)
H300.18940.92150.43120.038*
C310.1006 (3)0.9203 (3)0.3207 (7)0.0339 (14)
H310.08620.96960.34050.041*
C320.0604 (3)0.8755 (3)0.2388 (6)0.0296 (13)
H320.01760.89310.20280.036*
C330.0792 (3)0.6026 (3)0.4437 (5)0.0233 (12)
C340.0251 (3)0.6152 (3)0.5522 (6)0.0262 (12)
H34A0.00320.57020.56330.039*
H34B0.00530.65680.52780.039*
H34C0.04910.62660.63530.039*
Cl30.34784 (8)0.58123 (8)0.01265 (16)0.0320 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0222 (4)0.0200 (3)0.0179 (3)0.0015 (3)0.0005 (3)0.0029 (3)
Ni20.0234 (4)0.0184 (3)0.0173 (3)0.0009 (3)0.0004 (3)0.0020 (3)
Cl10.0378 (9)0.0341 (7)0.0187 (6)0.0001 (6)0.0009 (6)0.0014 (6)
Cl20.0244 (7)0.0414 (7)0.0419 (8)0.0061 (6)0.0009 (7)0.0031 (7)
O10.023 (2)0.029 (2)0.022 (2)0.0013 (16)0.0012 (17)0.0024 (18)
O20.026 (2)0.0247 (17)0.0252 (19)0.0030 (15)0.0050 (19)0.0030 (18)
O30.023 (2)0.0243 (19)0.0182 (18)0.0054 (16)0.0007 (16)0.0041 (16)
O40.029 (2)0.0234 (18)0.0180 (18)0.0029 (16)0.0045 (16)0.0037 (16)
O50.032 (2)0.0199 (18)0.0220 (19)0.0044 (17)0.0044 (17)0.0045 (16)
O60.029 (2)0.0181 (16)0.021 (2)0.0036 (14)0.0046 (16)0.0032 (16)
N10.025 (3)0.024 (2)0.019 (2)0.0015 (19)0.0013 (19)0.0064 (19)
N20.026 (3)0.0138 (19)0.026 (3)0.0015 (17)0.007 (2)0.0002 (19)
N30.023 (2)0.018 (2)0.017 (2)0.0008 (18)0.0017 (18)0.0049 (18)
N40.028 (3)0.020 (2)0.021 (2)0.0013 (19)0.0039 (19)0.0021 (19)
C10.025 (3)0.028 (3)0.028 (3)0.002 (2)0.003 (3)0.001 (3)
C20.021 (3)0.021 (3)0.030 (3)0.002 (2)0.002 (2)0.002 (2)
C30.031 (3)0.032 (3)0.034 (3)0.004 (2)0.004 (3)0.007 (3)
C40.028 (3)0.040 (3)0.019 (3)0.012 (3)0.001 (2)0.003 (3)
C50.034 (3)0.024 (3)0.023 (3)0.005 (2)0.002 (3)0.006 (2)
C60.028 (3)0.023 (3)0.019 (3)0.003 (2)0.003 (2)0.006 (2)
C70.030 (3)0.033 (3)0.024 (3)0.000 (2)0.000 (3)0.000 (3)
C80.033 (4)0.044 (4)0.043 (4)0.012 (3)0.012 (3)0.017 (3)
C90.028 (4)0.038 (3)0.051 (4)0.002 (3)0.011 (3)0.010 (3)
C100.031 (4)0.033 (3)0.035 (3)0.003 (3)0.008 (3)0.002 (3)
C110.025 (3)0.030 (3)0.029 (3)0.010 (2)0.006 (2)0.014 (3)
C120.031 (3)0.024 (3)0.023 (3)0.000 (2)0.004 (2)0.011 (2)
C130.031 (3)0.020 (3)0.035 (3)0.003 (2)0.002 (3)0.007 (3)
C140.028 (3)0.025 (3)0.053 (5)0.002 (2)0.011 (3)0.007 (3)
C150.027 (4)0.028 (3)0.058 (4)0.005 (3)0.016 (3)0.012 (3)
C160.038 (4)0.027 (3)0.038 (4)0.009 (3)0.011 (3)0.016 (3)
C170.027 (3)0.033 (3)0.018 (3)0.001 (2)0.003 (2)0.003 (2)
C180.028 (3)0.022 (3)0.014 (2)0.001 (2)0.000 (2)0.001 (2)
C190.030 (3)0.026 (3)0.018 (3)0.002 (2)0.004 (2)0.000 (2)
C200.020 (3)0.032 (3)0.026 (3)0.001 (2)0.002 (2)0.000 (3)
C210.025 (3)0.022 (3)0.024 (3)0.003 (2)0.001 (2)0.006 (2)
C220.024 (3)0.017 (2)0.019 (2)0.002 (2)0.001 (2)0.000 (2)
C230.030 (3)0.024 (3)0.021 (3)0.000 (2)0.005 (2)0.003 (2)
C240.037 (4)0.037 (3)0.018 (3)0.003 (3)0.004 (2)0.006 (3)
C250.031 (3)0.029 (3)0.022 (3)0.003 (2)0.000 (3)0.005 (3)
C260.027 (3)0.035 (3)0.026 (3)0.007 (2)0.004 (2)0.007 (2)
C270.020 (3)0.027 (3)0.027 (3)0.002 (2)0.004 (2)0.006 (2)
C280.032 (3)0.018 (2)0.019 (2)0.002 (2)0.008 (3)0.004 (2)
C290.031 (3)0.024 (2)0.028 (3)0.002 (2)0.005 (3)0.005 (3)
C300.043 (4)0.022 (3)0.029 (3)0.005 (2)0.007 (3)0.008 (3)
C310.045 (4)0.019 (3)0.037 (3)0.003 (2)0.006 (3)0.007 (3)
C320.032 (3)0.025 (3)0.032 (3)0.001 (2)0.004 (3)0.001 (3)
C330.017 (3)0.032 (3)0.020 (3)0.002 (2)0.002 (2)0.001 (2)
C340.027 (3)0.028 (3)0.023 (3)0.002 (2)0.006 (2)0.001 (2)
Cl30.0358 (8)0.0266 (7)0.0335 (8)0.0047 (6)0.0120 (7)0.0045 (6)
Geometric parameters (Å, º) top
Ni1—O12.131 (4)C9—C101.387 (9)
Ni1—O41.991 (4)C9—H90.9500
Ni1—O52.046 (4)C10—H100.9500
Ni1—O22.047 (4)C11—C121.508 (9)
Ni1—N12.077 (5)C11—H11A0.9900
Ni1—N22.111 (4)C11—H11B0.9900
Ni2—O22.035 (4)C12—C161.379 (8)
Ni2—O32.157 (4)C13—C141.382 (8)
Ni2—O42.031 (4)C13—H130.9500
Ni2—O62.038 (4)C14—C151.342 (10)
Ni2—N32.095 (5)C14—H140.9500
Ni2—N42.087 (4)C15—C161.376 (10)
Cl1—C191.807 (6)C15—H150.9500
Cl2—C31.795 (6)C16—H160.9500
O1—C21.425 (7)C17—C181.524 (8)
O1—H1O0.8400C17—H17A0.9900
O2—C61.330 (7)C17—H17B0.9900
O3—C181.458 (7)C18—C191.518 (8)
O3—H3O0.8400C18—H181.0000
O4—C221.323 (6)C19—H19A0.9900
O5—C331.234 (7)C19—H19B0.9900
O6—C331.267 (6)C20—C211.502 (8)
N1—C41.463 (7)C20—H20A0.9900
N1—C111.484 (7)C20—H20B0.9900
N1—C11.485 (7)C21—C261.389 (8)
N2—C131.335 (7)C21—C221.405 (8)
N2—C121.347 (7)C22—C231.414 (7)
N3—C271.465 (7)C23—C241.384 (8)
N3—C171.487 (7)C23—H230.9500
N3—C201.504 (7)C24—C251.376 (9)
N4—C281.332 (7)C24—H240.9500
N4—C291.335 (8)C25—C261.375 (8)
C1—C21.530 (8)C25—H250.9500
C1—H1A0.9900C26—H260.9500
C1—H1B0.9900C27—C281.487 (8)
C2—C31.534 (8)C27—H27A0.9900
C2—H21.0000C27—H27B0.9900
C3—H3A0.9900C28—C321.413 (7)
C3—H3B0.9900C29—C301.397 (8)
C4—C51.534 (8)C29—H290.9500
C4—H4A0.9900C30—C311.379 (9)
C4—H4B0.9900C30—H300.9500
C5—C101.374 (9)C31—C321.389 (9)
C5—C61.413 (8)C31—H310.9500
C6—C71.401 (8)C32—H320.9500
C7—C81.379 (9)C33—C341.526 (8)
C7—H70.9500C34—H34A0.9800
C8—C91.386 (10)C34—H34B0.9800
C8—H80.9500C34—H34C0.9800
O4—Ni1—O593.83 (16)C8—C9—H9120.8
O4—Ni1—O281.22 (15)C10—C9—H9120.8
O5—Ni1—O288.20 (15)C5—C10—C9121.1 (6)
O4—Ni1—N1171.32 (17)C5—C10—H10119.4
O5—Ni1—N192.62 (17)C9—C10—H10119.4
O2—Ni1—N193.20 (17)N1—C11—C12112.0 (5)
O4—Ni1—N2104.66 (17)N1—C11—H11A109.2
O5—Ni1—N286.02 (16)C12—C11—H11A109.2
O2—Ni1—N2172.01 (18)N1—C11—H11B109.2
N1—Ni1—N281.57 (18)C12—C11—H11B109.2
O4—Ni1—O192.56 (15)H11A—C11—H11B107.9
O5—Ni1—O1173.60 (16)N2—C12—C16120.6 (6)
O2—Ni1—O192.36 (15)N2—C12—C11116.4 (5)
N1—Ni1—O180.98 (17)C16—C12—C11122.9 (5)
N2—Ni1—O192.77 (15)N2—C13—C14122.5 (6)
O4—Ni2—O280.56 (14)N2—C13—H13118.8
O4—Ni2—O690.93 (14)C14—C13—H13118.8
O2—Ni2—O690.64 (15)C15—C14—C13118.8 (6)
O4—Ni2—N4170.50 (17)C15—C14—H14120.6
O2—Ni2—N4106.69 (17)C13—C14—H14120.6
O6—Ni2—N482.97 (16)C14—C15—C16119.7 (6)
O4—Ni2—N391.90 (16)C14—C15—H15120.1
O2—Ni2—N3172.29 (16)C16—C15—H15120.1
O6—Ni2—N391.11 (16)C15—C16—C12119.7 (6)
N4—Ni2—N380.98 (17)C15—C16—H16120.2
O4—Ni2—O390.83 (15)C12—C16—H16120.2
O2—Ni2—O398.00 (15)N3—C17—C18113.0 (4)
O6—Ni2—O3171.36 (15)N3—C17—H17A109.0
N4—Ni2—O394.15 (16)C18—C17—H17A109.0
N3—Ni2—O380.38 (16)N3—C17—H17B109.0
C2—O1—Ni1113.0 (3)C18—C17—H17B109.0
C2—O1—H1O111.7H17A—C17—H17B107.8
Ni1—O1—H1O112.2O3—C18—C19107.8 (4)
C6—O2—Ni2140.5 (3)O3—C18—C17104.9 (4)
C6—O2—Ni1122.6 (3)C19—C18—C17112.2 (5)
Ni2—O2—Ni195.16 (15)O3—C18—H18110.6
C18—O3—Ni2111.5 (3)C19—C18—H18110.6
C18—O3—H3O96.9C17—C18—H18110.6
Ni2—O3—H3O114.1C18—C19—Cl1110.4 (4)
C22—O4—Ni1136.9 (3)C18—C19—H19A109.6
C22—O4—Ni2125.8 (3)Cl1—C19—H19A109.6
Ni1—O4—Ni297.03 (16)C18—C19—H19B109.6
C33—O5—Ni1127.6 (3)Cl1—C19—H19B109.6
C33—O6—Ni2127.4 (4)H19A—C19—H19B108.1
C4—N1—C11108.8 (4)C21—C20—N3114.5 (5)
C4—N1—C1114.2 (4)C21—C20—H20A108.6
C11—N1—C1109.8 (4)N3—C20—H20A108.6
C4—N1—Ni1110.3 (3)C21—C20—H20B108.6
C11—N1—Ni1103.5 (3)N3—C20—H20B108.6
C1—N1—Ni1109.6 (3)H20A—C20—H20B107.6
C13—N2—C12118.7 (5)C26—C21—C22119.9 (5)
C13—N2—Ni1130.7 (4)C26—C21—C20121.0 (5)
C12—N2—Ni1110.2 (4)C22—C21—C20119.1 (5)
C27—N3—C17109.8 (4)O4—C22—C21120.5 (5)
C27—N3—C20109.9 (4)O4—C22—C23121.6 (5)
C17—N3—C20113.4 (4)C21—C22—C23118.0 (5)
C27—N3—Ni2105.1 (3)C24—C23—C22120.6 (6)
C17—N3—Ni2109.7 (3)C24—C23—H23119.7
C20—N3—Ni2108.5 (3)C22—C23—H23119.7
C28—N4—C29119.6 (5)C25—C24—C23120.5 (6)
C28—N4—Ni2111.2 (3)C25—C24—H24119.7
C29—N4—Ni2128.5 (4)C23—C24—H24119.7
N1—C1—C2112.8 (5)C26—C25—C24119.6 (6)
N1—C1—H1A109.0C26—C25—H25120.2
C2—C1—H1A109.0C24—C25—H25120.2
N1—C1—H1B109.0C25—C26—C21121.4 (6)
C2—C1—H1B109.0C25—C26—H26119.3
H1A—C1—H1B107.8C21—C26—H26119.3
O1—C2—C1106.7 (4)N3—C27—C28112.0 (5)
O1—C2—C3107.8 (5)N3—C27—H27A109.2
C1—C2—C3112.1 (5)C28—C27—H27A109.2
O1—C2—H2110.0N3—C27—H27B109.2
C1—C2—H2110.0C28—C27—H27B109.2
C3—C2—H2110.0H27A—C27—H27B107.9
C2—C3—Cl2111.0 (4)N4—C28—C32121.8 (5)
C2—C3—H3A109.4N4—C28—C27117.8 (4)
Cl2—C3—H3A109.4C32—C28—C27120.3 (5)
C2—C3—H3B109.4N4—C29—C30121.9 (6)
Cl2—C3—H3B109.4N4—C29—H29119.0
H3A—C3—H3B108.0C30—C29—H29119.0
N1—C4—C5113.7 (5)C31—C30—C29119.3 (6)
N1—C4—H4A108.8C31—C30—H30120.4
C5—C4—H4A108.8C29—C30—H30120.4
N1—C4—H4B108.8C30—C31—C32119.0 (5)
C5—C4—H4B108.8C30—C31—H31120.5
H4A—C4—H4B107.7C32—C31—H31120.5
C10—C5—C6121.1 (6)C31—C32—C28118.5 (6)
C10—C5—C4120.5 (5)C31—C32—H32120.8
C6—C5—C4118.4 (5)C28—C32—H32120.8
O2—C6—C7120.5 (5)O5—C33—O6126.6 (5)
O2—C6—C5122.4 (5)O5—C33—C34117.5 (5)
C7—C6—C5117.0 (5)O6—C33—C34115.8 (5)
C8—C7—C6121.2 (6)C33—C34—H34A109.5
C8—C7—H7119.4C33—C34—H34B109.5
C6—C7—H7119.4H34A—C34—H34B109.5
C7—C8—C9121.1 (6)C33—C34—H34C109.5
C7—C8—H8119.5H34A—C34—H34C109.5
C9—C8—H8119.5H34B—C34—H34C109.5
C8—C9—C10118.5 (6)
O4—Ni1—O1—C2159.3 (3)O6—Ni2—N4—C2872.9 (4)
O5—Ni1—O1—C216.9 (15)N3—Ni2—N4—C2819.3 (4)
O2—Ni1—O1—C278.0 (3)O3—Ni2—N4—C2898.9 (4)
N1—Ni1—O1—C214.9 (3)O4—Ni2—N4—C29147.3 (9)
N2—Ni1—O1—C295.9 (3)O2—Ni2—N4—C298.4 (5)
O4—Ni2—O2—C6145.6 (6)O6—Ni2—N4—C2996.9 (5)
O6—Ni2—O2—C6123.5 (6)N3—Ni2—N4—C29170.8 (5)
N4—Ni2—O2—C640.7 (6)O3—Ni2—N4—C2991.3 (5)
N3—Ni2—O2—C6133.4 (12)C4—N1—C1—C290.3 (6)
O3—Ni2—O2—C656.1 (6)C11—N1—C1—C2147.1 (5)
O4—Ni2—O2—Ni118.17 (15)Ni1—N1—C1—C234.0 (5)
O6—Ni2—O2—Ni172.67 (16)Ni1—O1—C2—C135.5 (5)
N4—Ni2—O2—Ni1155.52 (16)Ni1—O1—C2—C3156.1 (4)
N3—Ni2—O2—Ni130.4 (13)N1—C1—C2—O146.0 (6)
O3—Ni2—O2—Ni1107.68 (16)N1—C1—C2—C3163.8 (5)
O4—Ni1—O2—C6149.3 (4)O1—C2—C3—Cl2179.5 (4)
O5—Ni1—O2—C6116.5 (4)C1—C2—C3—Cl262.4 (6)
N1—Ni1—O2—C624.0 (4)C11—N1—C4—C5177.5 (5)
N2—Ni1—O2—C672.9 (13)C1—N1—C4—C559.4 (6)
O1—Ni1—O2—C657.1 (4)Ni1—N1—C4—C564.6 (5)
O4—Ni1—O2—Ni218.52 (15)N1—C4—C5—C10120.3 (6)
O5—Ni1—O2—Ni275.64 (16)N1—C4—C5—C662.4 (7)
N1—Ni1—O2—Ni2168.16 (17)Ni2—O2—C6—C719.9 (9)
N2—Ni1—O2—Ni2119.3 (12)Ni1—O2—C6—C7140.9 (4)
O1—Ni1—O2—Ni2110.74 (16)Ni2—O2—C6—C5163.0 (4)
O4—Ni2—O3—C1872.2 (3)Ni1—O2—C6—C536.2 (7)
O2—Ni2—O3—C18152.8 (3)C10—C5—C6—O2177.8 (5)
O6—Ni2—O3—C1829.5 (11)C4—C5—C6—O24.9 (8)
N4—Ni2—O3—C1899.7 (3)C10—C5—C6—C70.6 (8)
N3—Ni2—O3—C1819.6 (3)C4—C5—C6—C7177.9 (5)
O5—Ni1—O4—C22117.5 (5)O2—C6—C7—C8178.0 (5)
O2—Ni1—O4—C22154.9 (5)C5—C6—C7—C80.8 (9)
N1—Ni1—O4—C22104.6 (12)C6—C7—C8—C91.0 (10)
N2—Ni1—O4—C2230.7 (5)C7—C8—C9—C101.0 (10)
O1—Ni1—O4—C2262.9 (5)C6—C5—C10—C90.7 (10)
O5—Ni1—O4—Ni268.96 (17)C4—C5—C10—C9177.9 (6)
O2—Ni1—O4—Ni218.62 (15)C8—C9—C10—C50.8 (10)
N1—Ni1—O4—Ni268.9 (11)C4—N1—C11—C12158.8 (5)
N2—Ni1—O4—Ni2155.85 (15)C1—N1—C11—C1275.4 (6)
O1—Ni1—O4—Ni2110.61 (16)Ni1—N1—C11—C1241.6 (5)
O2—Ni2—O4—C22155.8 (4)C13—N2—C12—C162.1 (8)
O6—Ni2—O4—C22113.8 (4)Ni1—N2—C12—C16175.7 (5)
N4—Ni2—O4—C2263.8 (12)C13—N2—C12—C11177.1 (5)
N3—Ni2—O4—C2222.6 (4)Ni1—N2—C12—C113.4 (6)
O3—Ni2—O4—C2257.8 (4)N1—C11—C12—N226.8 (7)
O2—Ni2—O4—Ni118.77 (16)N1—C11—C12—C16154.1 (6)
O6—Ni2—O4—Ni171.72 (17)C12—N2—C13—C142.3 (8)
N4—Ni2—O4—Ni1121.6 (10)Ni1—N2—C13—C14174.4 (4)
N3—Ni2—O4—Ni1162.86 (17)N2—C13—C14—C150.8 (9)
O3—Ni2—O4—Ni1116.74 (16)C13—C14—C15—C160.9 (9)
O4—Ni1—O5—C3336.2 (5)C14—C15—C16—C121.1 (9)
O2—Ni1—O5—C3344.9 (5)N2—C12—C16—C150.4 (9)
N1—Ni1—O5—C33138.0 (5)C11—C12—C16—C15178.7 (6)
N2—Ni1—O5—C33140.6 (5)C27—N3—C17—C18149.5 (5)
O1—Ni1—O5—C33140.0 (12)C20—N3—C17—C1887.0 (6)
O4—Ni2—O6—C3346.0 (4)Ni2—N3—C17—C1834.5 (5)
O2—Ni2—O6—C3334.6 (5)Ni2—O3—C18—C19160.7 (3)
N4—Ni2—O6—C33141.3 (5)Ni2—O3—C18—C1741.0 (5)
N3—Ni2—O6—C33137.9 (4)N3—C17—C18—O350.0 (6)
O3—Ni2—O6—C33147.7 (9)N3—C17—C18—C19166.7 (4)
O4—Ni1—N1—C473.6 (12)O3—C18—C19—Cl1175.2 (3)
O5—Ni1—N1—C464.4 (4)C17—C18—C19—Cl160.3 (5)
O2—Ni1—N1—C424.0 (4)C27—N3—C20—C21179.5 (5)
N2—Ni1—N1—C4150.0 (4)C17—N3—C20—C2156.1 (6)
O1—Ni1—N1—C4115.9 (4)Ni2—N3—C20—C2166.1 (5)
O4—Ni1—N1—C11170.1 (10)N3—C20—C21—C26120.4 (6)
O5—Ni1—N1—C1151.9 (3)N3—C20—C21—C2261.2 (7)
O2—Ni1—N1—C11140.2 (3)Ni1—O4—C22—C21150.4 (4)
N2—Ni1—N1—C1133.7 (3)Ni2—O4—C22—C2137.5 (7)
O1—Ni1—N1—C11127.9 (3)Ni1—O4—C22—C2330.7 (8)
O4—Ni1—N1—C153.0 (12)Ni2—O4—C22—C23141.3 (4)
O5—Ni1—N1—C1169.0 (3)C26—C21—C22—O4178.7 (5)
O2—Ni1—N1—C1102.6 (3)C20—C21—C22—O42.9 (8)
N2—Ni1—N1—C183.4 (3)C26—C21—C22—C230.2 (8)
O1—Ni1—N1—C110.7 (3)C20—C21—C22—C23178.2 (5)
O4—Ni1—N2—C138.2 (5)O4—C22—C23—C24179.3 (5)
O5—Ni1—N2—C13101.2 (5)C21—C22—C23—C240.4 (8)
O2—Ni1—N2—C13144.9 (11)C22—C23—C24—C251.1 (9)
N1—Ni1—N2—C13165.6 (5)C23—C24—C25—C261.1 (9)
O1—Ni1—N2—C1385.2 (5)C24—C25—C26—C210.5 (9)
O4—Ni1—N2—C12164.4 (4)C22—C21—C26—C250.2 (8)
O5—Ni1—N2—C1271.5 (4)C20—C21—C26—C25178.2 (5)
O2—Ni1—N2—C1227.7 (14)C17—N3—C27—C2880.8 (5)
N1—Ni1—N2—C1221.8 (4)C20—N3—C27—C28153.7 (4)
O1—Ni1—N2—C12102.2 (4)Ni2—N3—C27—C2837.1 (5)
O4—Ni2—N3—C27143.3 (3)C29—N4—C28—C322.1 (8)
O2—Ni2—N3—C27155.4 (11)Ni2—N4—C28—C32172.9 (4)
O6—Ni2—N3—C2752.4 (3)C29—N4—C28—C27174.0 (5)
N4—Ni2—N3—C2730.3 (3)Ni2—N4—C28—C273.2 (6)
O3—Ni2—N3—C27126.1 (3)N3—C27—C28—N424.1 (7)
O4—Ni2—N3—C1798.6 (3)N3—C27—C28—C32159.8 (5)
O2—Ni2—N3—C1786.5 (13)C28—N4—C29—C301.3 (8)
O6—Ni2—N3—C17170.4 (3)Ni2—N4—C29—C30170.3 (4)
N4—Ni2—N3—C1787.7 (3)N4—C29—C30—C310.8 (9)
O3—Ni2—N3—C178.1 (3)C29—C30—C31—C321.9 (9)
O4—Ni2—N3—C2025.8 (3)C30—C31—C32—C281.2 (9)
O2—Ni2—N3—C2037.9 (14)N4—C28—C32—C310.9 (8)
O6—Ni2—N3—C2065.2 (3)C27—C28—C32—C31175.1 (5)
N4—Ni2—N3—C20147.9 (4)Ni1—O5—C33—O60.4 (9)
O3—Ni2—N3—C20116.3 (3)Ni1—O5—C33—C34175.1 (4)
O4—Ni2—N4—C2822.5 (12)Ni2—O6—C33—O56.8 (9)
O2—Ni2—N4—C28161.5 (4)Ni2—O6—C33—C34168.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···Cl30.842.193.015 (4)166
O3—H3o···Cl30.842.203.020 (4)166

Experimental details

Crystal data
Chemical formula[Ni2(C16H18ClN2O2)2(C2H3O2)]Cl
Mr823.46
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)19.0992 (6), 18.0097 (5), 10.1288 (3)
V3)3484.01 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.18 × 0.09 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.665, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25109, 7859, 6149
Rint0.070
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.05
No. of reflections7859
No. of parameters449
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.75
Absolute structureFlack (1983), 3653 Friedel pairs
Absolute structure parameter0.012 (18)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O12.131 (4)Ni2—O22.035 (4)
Ni1—O41.991 (4)Ni2—O32.157 (4)
Ni1—O52.046 (4)Ni2—O42.031 (4)
Ni1—O22.047 (4)Ni2—O62.038 (4)
Ni1—N12.077 (5)Ni2—N32.095 (5)
Ni1—N22.111 (4)Ni2—N42.087 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···Cl30.842.193.015 (4)166
O3—H3o···Cl30.842.203.020 (4)166
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHorn, A., Fim, L., Bortoluzzi, A. J., Szpoganicz, B., de Silva, M., Novak, M. A., Neto, M. B., Eberlin, L. S., Catharino, R. R., Eberlin, M. N. & Fernandes, C. (2006). J. Mol. Struct. 797, 154–164.  CrossRef CAS Google Scholar
First citationHorn, A., Neves, A., Vencato, I., Drago, V., Zucco, C., Werner, R. & Haase, W. (2000). J. Braz. Chem. Soc. 11, 7–10.  CAS Google Scholar
First citationNeves, A., de Brito, M. A., Vencato, I., Drago, V., Griesar, K. W., Haase, W. & Mascarenhas, Y. P. (1993). Inorg. Chim. Acta, 214, 5–8.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds