metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-6-methyl­pyrimidin-1-ium-4-olate-κ2N3,O)bis­­(nitrato-κ2O,O′)cadmium(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 6 April 2010; accepted 29 April 2010; online 8 May 2010)

In the title compound, [Cd(NO3)2(C5H7N3O)2], the CdII atom is eight-coordinated by two amine N atoms and two O atoms from two zwitterionic, biodentate 2-amino-6-methyl­pyrimidin-1-ium-4-olate ligands and by four O atoms from two nitrate groups. Intra­molecular N—H⋯O hydrogen bonds occur. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, two of which are bifurcated, between the nitrate anions and the organic groups.

Related literature

For common applications of this material, see: Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]); Ye et al. (2008[Ye, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]). For the geometry around the Cd atom, see: Han et al. (2008[Han, T.-T., Ma, J.-F., Zhang, L.-P. & Li, Q.-J. (2008). Acta Cryst. E64, m322.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)2(C5H7N3O)2]

  • Mr = 486.69

  • Triclinic, [P \overline 1]

  • a = 7.7230 (12) Å

  • b = 9.5247 (16) Å

  • c = 13.113 (2) Å

  • α = 70.198 (9)°

  • β = 81.954 (8)°

  • γ = 69.840 (8)°

  • V = 851.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.46 × 0.26 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.455, Tmax = 0.851

  • 17615 measured reflections

  • 4031 independent reflections

  • 3603 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.21

  • 4031 reflections

  • 244 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2Ai 0.86 1.97 2.779 (3) 156
N6—H6A⋯O7 0.86 2.26 3.090 (6) 163
N6—H6B⋯O4ii 0.86 2.34 2.892 (4) 122
N6—H6B⋯O2Ai 0.86 2.56 3.230 (5) 135
N5A—H5A⋯O2iii 0.86 2.17 2.935 (3) 149
N6A—H6C⋯O5 0.86 2.36 3.169 (4) 157
N6A—H6D⋯O2iii 0.86 2.25 2.996 (4) 145
N6A—H6D⋯O3iv 0.86 2.26 2.765 (4) 117
C3—H3⋯O6v 0.93 2.31 3.160 (5) 152
C3A—H3A⋯O8vi 0.93 2.42 3.301 (5) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) x+1, y-1, z; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chemists and physicists of the solid state have shown an increasing interest in the study of the metal-organic coordination compounds in recent years owing to their interesting properties such as fluorescence and dielectric behaviour. (Aminabhavi et al., 1986; Ye et al., 2008).

Here we report the synthesis and crystal structure of the title compound Cd(NO3)2(C5H7N3O)2. In the atomic arrangement of this material, the distorted polyhedral Cd environment contains two nitrate anions and two organic moieties. Each one of them is coordinated in the bidental mode; the CdII is thus eight coordinated (Fig.1), with normal bond distances and angles around the cation (Han et al., 2008). The polyhedra are interconnected by a set of N—H···O and C—H···O hydrogen bonds generated by the organic entities (Table 1). Two of the H-bonds present, N6—H6B···(O2A, O4) and N6A—H6D···(O2, O3), are bifurcated. Fig. 2 shows the results of H-bonding, in the form of undulated columns running along the c axis, laterally interlinked to form a three dimensional infinite network

Related literature top

For common applications of this material, see: Aminabhavi et al. (1986); Ye et al. (2008). For the geometry around the Cd atom, see: Han et al. (2008).

Experimental top

A solution of Cd(NO3)2 (0.1 mmol) in ethanol was added dropwise to a solution of 2-Amino-4-hydroxy-6-methylpyrimidine 0.1 mmol in ethanol. After stirring for 30 min, the mixture was filtered. Crystals suitable for X-ray analysis were obtained by evaporating the filtrate at room temperature.

Refinement top

All H atoms were located in a difference Fourier synthesis, placed in calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults (N-H: 0.86Å, C-H: 0.93-0.97Å; Uiso(H) = 1.2Ueq(N,C)). The original structure validation reported that the U values of the coordinating oxygen atoms were too large in relation to the Cd centre, causing the Hirshfeld test to fail. This may be due to mild disorder of the nitrate anions. Restraints on the anisotropic temperature factors (DELU and SIMU instructions in SHELXL97, Sheldrick, 2008) were used to obtain more meaningful anisotropic displacement ellipsoids.

Structure description top

Chemists and physicists of the solid state have shown an increasing interest in the study of the metal-organic coordination compounds in recent years owing to their interesting properties such as fluorescence and dielectric behaviour. (Aminabhavi et al., 1986; Ye et al., 2008).

Here we report the synthesis and crystal structure of the title compound Cd(NO3)2(C5H7N3O)2. In the atomic arrangement of this material, the distorted polyhedral Cd environment contains two nitrate anions and two organic moieties. Each one of them is coordinated in the bidental mode; the CdII is thus eight coordinated (Fig.1), with normal bond distances and angles around the cation (Han et al., 2008). The polyhedra are interconnected by a set of N—H···O and C—H···O hydrogen bonds generated by the organic entities (Table 1). Two of the H-bonds present, N6—H6B···(O2A, O4) and N6A—H6D···(O2, O3), are bifurcated. Fig. 2 shows the results of H-bonding, in the form of undulated columns running along the c axis, laterally interlinked to form a three dimensional infinite network

For common applications of this material, see: Aminabhavi et al. (1986); Ye et al. (2008). For the geometry around the Cd atom, see: Han et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. The packing diagram of the compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
Bis(2-amino-6-methylpyrimidin-1-ium-4-olate- κ2N3,O)bis(nitrato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(NO3)2(C5H7N3O)2]Z = 2
Mr = 486.69F(000) = 484
Triclinic, P1Dx = 1.898 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7230 (12) ÅCell parameters from 5520 reflections
b = 9.5247 (16) Åθ = 2.4–28.1°
c = 13.113 (2) ŵ = 1.34 mm1
α = 70.198 (9)°T = 293 K
β = 81.954 (8)°Prism, pale yellow
γ = 69.840 (8)°0.46 × 0.26 × 0.12 mm
V = 851.7 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4031 independent reflections
Radiation source: fine-focus sealed tube3603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.455, Tmax = 0.851k = 1212
17615 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0212P)2 + 0.4728P]
where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.90 e Å3
40 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd(NO3)2(C5H7N3O)2]γ = 69.840 (8)°
Mr = 486.69V = 851.7 (2) Å3
Triclinic, P1Z = 2
a = 7.7230 (12) ÅMo Kα radiation
b = 9.5247 (16) ŵ = 1.34 mm1
c = 13.113 (2) ÅT = 293 K
α = 70.198 (9)°0.46 × 0.26 × 0.12 mm
β = 81.954 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4031 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3603 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.851Rint = 0.072
17615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03540 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.21Δρmax = 0.90 e Å3
4031 reflectionsΔρmin = 0.53 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.22645 (3)0.32956 (3)0.258827 (17)0.04945 (10)
O20.4649 (4)0.0693 (3)0.24489 (17)0.0565 (6)
N10.3762 (4)0.2872 (3)0.1050 (2)0.0498 (7)
N50.5178 (5)0.3015 (4)0.0651 (2)0.0639 (9)
H50.52360.35490.13240.077*
N60.2800 (6)0.5130 (4)0.0387 (3)0.0745 (11)
H6A0.19920.55580.00330.089*
H6B0.28880.56500.10600.089*
C20.4911 (5)0.1373 (4)0.1459 (2)0.0507 (8)
C30.6252 (6)0.0693 (4)0.0768 (3)0.0601 (10)
H30.70460.03290.10390.072*
C40.6385 (6)0.1518 (5)0.0279 (3)0.0623 (10)
C60.3913 (6)0.3665 (4)0.0005 (3)0.0556 (9)
C70.7740 (9)0.0931 (6)0.1087 (3)0.0917 (17)
H7A0.85760.00850.07290.138*
H7B0.84200.16530.14250.138*
H7C0.70970.08490.16290.138*
O2A0.4636 (4)0.4609 (3)0.25671 (16)0.0533 (6)
N1A0.3893 (4)0.2887 (3)0.40365 (19)0.0438 (6)
N5A0.5494 (4)0.1982 (3)0.56308 (19)0.0488 (7)
H5A0.56550.13840.62930.059*
N6A0.3128 (5)0.1088 (4)0.5545 (2)0.0619 (8)
H6C0.22760.10780.51920.074*
H6D0.33040.05100.62110.074*
C2A0.4959 (5)0.3809 (3)0.3549 (2)0.0423 (7)
C3A0.6342 (5)0.3833 (4)0.4149 (2)0.0456 (7)
H3A0.70590.44870.38310.055*
C4A0.6597 (5)0.2896 (4)0.5181 (2)0.0453 (7)
C6A0.4159 (5)0.1988 (3)0.5068 (2)0.0443 (7)
C7A0.8029 (6)0.2786 (5)0.5881 (3)0.0638 (11)
H7D0.87350.34600.54740.096*
H7E0.88320.17190.61240.096*
H7F0.74430.31100.64970.096*
O30.1415 (5)0.0957 (4)0.3034 (3)0.0956 (10)
O40.0274 (4)0.2774 (3)0.2105 (2)0.0698 (7)
O50.0767 (4)0.1314 (3)0.3670 (2)0.0715 (7)
N70.0335 (4)0.1660 (3)0.2942 (3)0.0566 (7)
O60.2209 (6)0.7168 (5)0.2270 (4)0.1398 (18)
O70.0306 (6)0.6029 (4)0.1502 (3)0.0970 (10)
O80.0144 (4)0.5168 (3)0.3197 (3)0.0777 (8)
N80.0712 (7)0.6164 (4)0.2318 (4)0.0848 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05007 (18)0.04931 (15)0.03951 (15)0.02325 (12)0.01013 (11)0.00889 (11)
O20.0728 (18)0.0538 (13)0.0279 (10)0.0242 (12)0.0036 (10)0.0106 (9)
N10.0603 (18)0.0503 (14)0.0319 (12)0.0293 (13)0.0118 (12)0.0116 (11)
N50.106 (3)0.0681 (19)0.0242 (12)0.056 (2)0.0100 (15)0.0095 (13)
N60.098 (3)0.0601 (18)0.0487 (17)0.0347 (18)0.0312 (18)0.0240 (14)
C20.064 (2)0.0525 (18)0.0323 (15)0.0304 (16)0.0103 (14)0.0062 (13)
C30.084 (3)0.0541 (19)0.0358 (16)0.0302 (19)0.0002 (17)0.0016 (15)
C40.094 (3)0.067 (2)0.0363 (16)0.049 (2)0.0020 (18)0.0056 (16)
C60.077 (3)0.0561 (19)0.0347 (16)0.0423 (18)0.0224 (17)0.0137 (14)
C70.142 (5)0.100 (3)0.049 (2)0.070 (4)0.027 (3)0.023 (2)
O2A0.0667 (17)0.0557 (13)0.0286 (10)0.0307 (12)0.0075 (10)0.0115 (9)
N1A0.0449 (15)0.0420 (13)0.0320 (12)0.0162 (11)0.0046 (10)0.0076 (10)
N5A0.0604 (18)0.0455 (14)0.0263 (11)0.0142 (13)0.0079 (11)0.0063 (10)
N6A0.064 (2)0.0629 (18)0.0420 (15)0.0308 (16)0.0009 (14)0.0144 (13)
C2A0.0467 (18)0.0402 (15)0.0298 (13)0.0139 (13)0.0013 (12)0.0017 (12)
C3A0.0511 (19)0.0459 (16)0.0351 (14)0.0196 (14)0.0007 (13)0.0026 (13)
C4A0.0505 (19)0.0409 (15)0.0373 (15)0.0096 (14)0.0049 (13)0.0068 (13)
C6A0.0471 (18)0.0388 (15)0.0330 (14)0.0123 (13)0.0014 (12)0.0036 (12)
C7A0.071 (3)0.064 (2)0.052 (2)0.016 (2)0.0212 (19)0.0103 (18)
O30.086 (2)0.0819 (19)0.123 (3)0.0598 (18)0.002 (2)0.0050 (19)
O40.0662 (16)0.0681 (15)0.0648 (15)0.0399 (12)0.0210 (13)0.0183 (12)
O50.0709 (17)0.0653 (14)0.0620 (15)0.0327 (12)0.0126 (13)0.0160 (12)
N70.0485 (17)0.0447 (15)0.0663 (19)0.0201 (13)0.0011 (15)0.0005 (14)
O60.123 (3)0.078 (2)0.142 (3)0.020 (2)0.014 (3)0.011 (2)
O70.108 (2)0.0589 (14)0.093 (2)0.0209 (14)0.0085 (19)0.0116 (14)
O80.0704 (18)0.0586 (15)0.0870 (19)0.0134 (12)0.0107 (14)0.0056 (13)
N80.084 (3)0.0497 (19)0.106 (3)0.026 (2)0.000 (3)0.002 (2)
Geometric parameters (Å, º) top
Cd1—N12.268 (3)C7—H7C0.9600
Cd1—N1A2.274 (2)O2A—C2A1.263 (3)
Cd1—O82.354 (3)N1A—C6A1.333 (3)
Cd1—O42.392 (3)N1A—C2A1.352 (4)
Cd1—O52.479 (3)N5A—C6A1.347 (4)
Cd1—O2A2.542 (3)N5A—C4A1.362 (4)
Cd1—O72.544 (3)N5A—H5A0.8600
Cd1—O22.576 (3)N6A—C6A1.315 (4)
O2—C21.263 (4)N6A—H6C0.8600
N1—C61.333 (4)N6A—H6D0.8600
N1—C21.362 (4)C2A—C3A1.423 (4)
N5—C61.336 (5)C3A—C4A1.343 (4)
N5—C41.371 (5)C3A—H3A0.9300
N5—H50.8600C4A—C7A1.488 (5)
N6—C61.327 (5)C7A—H7D0.9600
N6—H6A0.8600C7A—H7E0.9600
N6—H6B0.8600C7A—H7F0.9600
C2—C31.408 (5)O3—N71.208 (4)
C3—C41.341 (4)O4—N71.251 (4)
C3—H30.9300O5—N71.251 (4)
C4—C71.489 (6)O6—N81.213 (5)
C7—H7A0.9600O7—N81.252 (5)
C7—H7B0.9600O8—N81.239 (5)
N1—Cd1—N1A120.14 (10)N6—C6—N1119.3 (4)
N1—Cd1—O8141.62 (10)N6—C6—N5119.5 (3)
N1A—Cd1—O887.92 (10)N1—C6—N5121.1 (3)
N1—Cd1—O488.27 (10)C4—C7—H7A109.5
N1A—Cd1—O4142.19 (9)C4—C7—H7B109.5
O8—Cd1—O481.88 (11)H7A—C7—H7B109.5
N1—Cd1—O5115.01 (10)C4—C7—H7C109.5
N1A—Cd1—O591.51 (9)H7A—C7—H7C109.5
O8—Cd1—O587.40 (11)H7B—C7—H7C109.5
O4—Cd1—O551.91 (9)C2A—O2A—Cd189.6 (2)
N1—Cd1—O2A84.62 (9)C6A—N1A—C2A120.1 (3)
N1A—Cd1—O2A54.56 (8)C6A—N1A—Cd1140.1 (2)
O8—Cd1—O2A93.25 (10)C2A—N1A—Cd199.45 (17)
O4—Cd1—O2A161.62 (8)C6A—N5A—C4A121.8 (2)
O5—Cd1—O2A145.97 (8)C6A—N5A—H5A119.1
N1—Cd1—O790.67 (12)C4A—N5A—H5A119.1
N1A—Cd1—O7122.16 (11)C6A—N6A—H6C120.0
O8—Cd1—O751.02 (12)C6A—N6A—H6D120.0
O4—Cd1—O777.85 (11)H6C—N6A—H6D120.0
O5—Cd1—O7119.94 (12)O2A—C2A—N1A116.2 (3)
O2A—Cd1—O785.30 (11)O2A—C2A—C3A124.2 (3)
N1—Cd1—O254.13 (8)N1A—C2A—C3A119.6 (3)
N1A—Cd1—O285.12 (8)C4A—C3A—C2A119.0 (3)
O8—Cd1—O2163.01 (10)C4A—C3A—H3A120.5
O4—Cd1—O294.21 (10)C2A—C3A—H3A120.5
O5—Cd1—O277.32 (10)C3A—C4A—N5A119.0 (3)
O2A—Cd1—O295.29 (9)C3A—C4A—C7A123.9 (4)
O7—Cd1—O2144.40 (11)N5A—C4A—C7A117.0 (3)
C2—O2—Cd189.2 (2)N6A—C6A—N1A120.3 (3)
C6—N1—C2119.6 (3)N6A—C6A—N5A119.2 (3)
C6—N1—Cd1139.4 (3)N1A—C6A—N5A120.5 (3)
C2—N1—Cd1100.62 (19)C4A—C7A—H7D109.5
C6—N5—C4121.7 (3)C4A—C7A—H7E109.5
C6—N5—H5119.2H7D—C7A—H7E109.5
C4—N5—H5119.2C4A—C7A—H7F109.5
C6—N6—H6A120.0H7D—C7A—H7F109.5
C6—N6—H6B120.0H7E—C7A—H7F109.5
H6A—N6—H6B120.0N7—O4—Cd197.6 (2)
O2—C2—N1115.6 (3)N7—O5—Cd193.4 (2)
O2—C2—C3125.2 (3)O3—N7—O5122.1 (3)
N1—C2—C3119.2 (3)O3—N7—O4120.9 (3)
C4—C3—C2120.1 (4)O5—N7—O4117.0 (3)
C4—C3—H3120.0N8—O7—Cd190.7 (2)
C2—C3—H3120.0N8—O8—Cd1100.3 (3)
C3—C4—N5118.3 (4)O6—N8—O7123.2 (5)
C3—C4—C7125.1 (4)O6—N8—O8120.4 (5)
N5—C4—C7116.6 (3)O7—N8—O8116.4 (4)
N1—Cd1—O2—C24.3 (2)O2A—Cd1—N1A—C2A2.61 (17)
N1A—Cd1—O2—C2128.8 (2)O7—Cd1—N1A—C2A58.1 (2)
O8—Cd1—O2—C2165.0 (3)O2—Cd1—N1A—C2A97.42 (19)
O4—Cd1—O2—C289.1 (2)Cd1—O2A—C2A—N1A4.2 (3)
O5—Cd1—O2—C2138.5 (2)Cd1—O2A—C2A—C3A176.0 (3)
O2A—Cd1—O2—C275.1 (2)C6A—N1A—C2A—O2A179.1 (3)
O7—Cd1—O2—C214.2 (3)Cd1—N1A—C2A—O2A4.8 (3)
N1A—Cd1—N1—C6119.0 (3)C6A—N1A—C2A—C3A1.1 (5)
O8—Cd1—N1—C612.7 (4)Cd1—N1A—C2A—C3A175.4 (2)
O4—Cd1—N1—C687.3 (4)O2A—C2A—C3A—C4A178.1 (3)
O5—Cd1—N1—C6133.3 (3)N1A—C2A—C3A—C4A2.1 (5)
O2A—Cd1—N1—C675.7 (4)C2A—C3A—C4A—N5A1.6 (5)
O7—Cd1—N1—C69.5 (4)C2A—C3A—C4A—C7A178.4 (3)
O2—Cd1—N1—C6176.2 (4)C6A—N5A—C4A—C3A0.2 (5)
N1A—Cd1—N1—C253.2 (2)C6A—N5A—C4A—C7A179.8 (3)
O8—Cd1—N1—C2175.10 (19)C2A—N1A—C6A—N6A179.9 (3)
O4—Cd1—N1—C2100.5 (2)Cd1—N1A—C6A—N6A8.7 (5)
O5—Cd1—N1—C254.6 (2)C2A—N1A—C6A—N5A0.4 (5)
O2A—Cd1—N1—C296.4 (2)Cd1—N1A—C6A—N5A170.9 (2)
O7—Cd1—N1—C2178.3 (2)C4A—N5A—C6A—N6A179.6 (3)
O2—Cd1—N1—C24.06 (19)C4A—N5A—C6A—N1A0.9 (5)
Cd1—O2—C2—N16.4 (3)N1—Cd1—O4—N7122.3 (2)
Cd1—O2—C2—C3174.6 (4)N1A—Cd1—O4—N719.0 (3)
C6—N1—C2—O2178.4 (3)O8—Cd1—O4—N794.9 (2)
Cd1—N1—C2—O27.5 (3)O5—Cd1—O4—N71.8 (2)
C6—N1—C2—C30.6 (5)O2A—Cd1—O4—N7170.5 (2)
Cd1—N1—C2—C3173.6 (3)O7—Cd1—O4—N7146.6 (3)
O2—C2—C3—C4178.7 (4)O2—Cd1—O4—N768.5 (2)
N1—C2—C3—C40.1 (6)N1—Cd1—O5—N764.1 (2)
C2—C3—C4—N50.7 (6)N1A—Cd1—O5—N7171.4 (2)
C2—C3—C4—C7180.0 (4)O8—Cd1—O5—N783.5 (2)
C6—N5—C4—C31.1 (6)O4—Cd1—O5—N71.8 (2)
C6—N5—C4—C7179.5 (4)O2A—Cd1—O5—N7175.47 (18)
C2—N1—C6—N6179.4 (3)O7—Cd1—O5—N742.3 (3)
Cd1—N1—C6—N68.3 (6)O2—Cd1—O5—N7104.0 (2)
C2—N1—C6—N50.2 (5)Cd1—O5—N7—O3176.9 (4)
Cd1—N1—C6—N5171.0 (3)Cd1—O5—N7—O43.0 (3)
C4—N5—C6—N6178.6 (3)Cd1—O4—N7—O3176.8 (3)
C4—N5—C6—N10.7 (5)Cd1—O4—N7—O53.2 (4)
N1—Cd1—O2A—C2A130.6 (2)N1—Cd1—O7—N8170.1 (3)
N1A—Cd1—O2A—C2A2.76 (18)N1A—Cd1—O7—N863.0 (3)
O8—Cd1—O2A—C2A87.9 (2)O8—Cd1—O7—N87.3 (3)
O4—Cd1—O2A—C2A161.7 (3)O4—Cd1—O7—N882.0 (3)
O5—Cd1—O2A—C2A2.3 (3)O5—Cd1—O7—N850.5 (3)
O7—Cd1—O2A—C2A138.3 (2)O2A—Cd1—O7—N8105.4 (3)
O2—Cd1—O2A—C2A77.41 (19)O2—Cd1—O7—N8162.1 (2)
N1—Cd1—N1A—C6A118.0 (3)N1—Cd1—O8—N83.3 (4)
O8—Cd1—N1A—C6A89.6 (3)N1A—Cd1—O8—N8143.1 (3)
O4—Cd1—N1A—C6A15.7 (4)O4—Cd1—O8—N873.4 (3)
O5—Cd1—N1A—C6A2.3 (3)O5—Cd1—O8—N8125.3 (3)
O2A—Cd1—N1A—C6A174.9 (4)O2A—Cd1—O8—N888.8 (3)
O7—Cd1—N1A—C6A129.6 (3)O7—Cd1—O8—N87.5 (3)
O2—Cd1—N1A—C6A74.9 (3)O2—Cd1—O8—N8151.1 (3)
N1—Cd1—N1A—C2A54.3 (2)Cd1—O7—N8—O6165.2 (5)
O8—Cd1—N1A—C2A98.1 (2)Cd1—O7—N8—O812.1 (4)
O4—Cd1—N1A—C2A171.99 (18)Cd1—O8—N8—O6164.1 (4)
O5—Cd1—N1A—C2A174.6 (2)Cd1—O8—N8—O713.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O2Ai0.861.972.779 (3)156
N6—H6A···O70.862.263.090 (6)163
N6—H6B···O4ii0.862.342.892 (4)122
N6—H6B···O2Ai0.862.563.230 (5)135
N5A—H5A···O2iii0.862.172.935 (3)149
N6A—H6C···O50.862.363.169 (4)157
N6A—H6D···O2iii0.862.252.996 (4)145
N6A—H6D···O3iv0.862.262.765 (4)117
C3—H3···O6v0.932.313.160 (5)152
C3A—H3A···O8vi0.932.423.301 (5)157
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(NO3)2(C5H7N3O)2]
Mr486.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7230 (12), 9.5247 (16), 13.113 (2)
α, β, γ (°)70.198 (9), 81.954 (8), 69.840 (8)
V3)851.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.46 × 0.26 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.455, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
17615, 4031, 3603
Rint0.072
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.21
No. of reflections4031
No. of parameters244
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.53

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O2Ai0.861.972.779 (3)156.4
N6—H6A···O70.862.263.090 (6)163.2
N6—H6B···O4ii0.862.342.892 (4)121.9
N6—H6B···O2Ai0.862.563.230 (5)135.0
N5A—H5A···O2iii0.862.172.935 (3)148.7
N6A—H6C···O50.862.363.169 (4)157.4
N6A—H6D···O2iii0.862.252.996 (4)145.1
N6A—H6D···O3iv0.862.262.765 (4)117.2
C3—H3···O6v0.932.313.160 (5)152.1
C3A—H3A···O8vi0.932.423.301 (5)157.0
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y1, z; (vi) x+1, y, z.
 

Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), under scholarship SFRH/BD/38387/2008.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, T.-T., Ma, J.-F., Zhang, L.-P. & Li, Q.-J. (2008). Acta Cryst. E64, m322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds