metal-organic compounds
(2-Aminopyrimidine-κN1)diaqua(pyridine-2,6-dicarboxylato-κ3O2,N,O6)nickel(II) monohydrate
aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com
The reaction of Ni(NO3)2·6H2O with pyridine-2,6-dicarboxylic acid, NaOH and 2-aminopyrimidine in aqueous solution leads to the formation of the title complex, [Ni(C7H3NO4)(C4H5N3)(H2O)2]·H2O. The NiII ion is coordinated by one N and two O atoms of the tridentate chelating pyridine-2,6-dicarboxylate anion, one heterocyclic N atom of the 2-aminopyrimidine ligand, and two water molecules. The resulting geometry for the [NiN2O4] coordination environment can be described as distorted octahedral. One uncoordinated water molecule completes the Extensive O—H⋯O and N—H⋯O hydrogen-bonding interactions between the NH2 group of 2-aminopyrimidine, carboxylate groups, and coordinated and uncoordinated water molecules contribute to the formation of a three-dimensional supramolecular structure.
Related literature
For transition metal complexes with 2-aminopyrimidine, see: Ponticelli et al. (1999); Prince et al. (2003); Lee et al. (2003); Masaki et al. (2002). For related structures, see: Tabatabaee et al. (2008); Tabatabaee, Aghabozorg et al. (2009); Tabatabaee, Masoodpour et al. (2009); Tabatabaee, Sharif et al. (2009); Altin et al. (2004); Aghabozorg et al. (2007, 2008); Li et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810016843/bh2281sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016843/bh2281Isup2.hkl
Pyridine-2,6-dicarboxylic acid (0.167 g, 1 mmol) was dissolved in 10 ml of deionized water containing 0.08 g (2 mmol) of NaOH, and stirred for 30 min. at room temperature. A water solution of Ni(NO3)2.6H2O (0.29 g, 1 mmol) and 2-aminopyrimidine (0.095 g, 1 mmol) were added to the pyridine-2,6-dicarboxylic acid solution. Reaction mixture was placed in a Parr-Teflon lined stainless steel vessel. It was sealed and heated to 403 K for 8 h. Blue crystals of the complex were obtained upon slow cooling (Yield: 88%).
The H atoms bonded to O and N atoms were found in a difference map and normalized to distances of 0.86 and 0.85 Å, and positions of other H atoms were calculated. All hydrogen atoms were refined in isotropic approximation using a riding model, with Uiso(H) parameters equal to 1.5 Ueq(Oi), 1.2 Ueq(Ni) and 1.2 Ueq(Ci), where U(Xi) are the equivalent thermal parameters of the atoms to which the corresponding H atoms are bonded.
Pyrimidine derivatives possess considerable biological activity and have been widely used in medicinal and industrial applications. The complexing ability of 2-aminopyrimidine derivatives with transition metal ions is of great interest. Several transition metal complexes of 2-aminopyrimidine with halide salts, MX2 (M= Pt, Pd, Cu, Mn, Co and Ni), have been synthesized and their crystal structures reported (Ponticelli et al., 1999; Prince et al., 2003; Lee et al., 2003; Masaki et al., 2002).
In continuation of our recent works on aminopyrimidine derivatives and hydrothermal synthesis of complexes (Tabatabaee et al., 2008; Tabatabaee, Aghabozorg et al., 2009; Tabatabaee, Masoodpour et al., 2009; Tabatabaee, Sharif et al., 2009), in this communication we wish to report our results on the synthesis and characterization of the first complex of NiII with pyridine-2,6-dicarboxylic acid (pydcH2) and neutral 2-aminopyrimidine (amp), under hydrothermal conditions.
The title compound consists of [Ni(amp)(pydc)(H2O)2] and one uncoordinated water molecule (Fig. 1). The metal ion is hexacoordinated by nitrogen atom N1 and two oxygen atoms O1 and O3 of the pydc2– fragment, which acts as a tridentate ligand, two oxygen atoms of two coordinated water molecules (O1W and O2W) and heterocyclic nitrogen atom of amp (N2). N1 and N2 atoms occupy the axial positions (shortest coordination bond lengths), while oxygen atoms form the equatorial plane. The
of a four-coordinated CuII complex with pyridine-2,6-dicarboxylate and 2-aminopyrimidine, formulated [Cu(amp)(pydc)].3H2O has been reported by Altin et al. (Altin et al., 2004). Cu2+ ion in [Cu(amp)(pydc)] is four-coordinated with a pydc2– tridentate ligand and N atom from 2-aminopyrimidine. In the title complex, N1—Ni1—N2 angle is deviated by 1.06° from linearity. The dihedral angle between the mean planes of the pyridine and pyrimidine rings is 18.5 (1)°, indicating that pyridine and pyrimidine ligands are almost parallel to each other. Ni—N distances of 1.975 (4) and 2.062 (4) Å and Ni—O distances [Ni1—O1W: 2.070 (4), Ni1—O2W: 2.076 (4), Ni1—O1: 2.117 (3) and Ni1—O7: 2.136 (4) Å] are consistent with the corresponding data reported in the literature (Aghabozorg et al., 2007; Li et al., 2007). According to bond lengths, bond angles and torsion angles, arrangement of the six donor atoms around Ni1 is distorted octahedral.The extensive O—H···O, N—H···O hydrogen bonding interactions (Table 1) between complex and uncoordinated water molecule (Fig. 2) play an important role in stabilizing the crystal (Aghabozorg et al., 2008; Tabatabaee, Aghabozorg et al., 2009; Tabatabaee, Masoodpour et al., 2009; Tabatabaee, Sharif et al., 2009) and the formation of a three dimensional supramolecular
(Fig. 3).For transition metal complexes with 2-aminopyrimidine, see: Ponticelli et al. (1999); Prince et al. (2003); Lee et al. (2003); Masaki et al. (2002). For related structures, see: Tabatabaee et al. (2008); Tabatabaee, Aghabozorg et al. (2009); Tabatabaee, Masoodpour et al. (2009); Tabatabaee, Sharif et al. (2009); Altin et al. (2004); Aghabozorg et al. (2007, 2008); Li et al. (2007).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP-like view (30% probability level) of the title compound. The angle between the least-squares planes (N1/C2/C3/C4/C5/C6) and (N2/N3/N4/C8/C9/C10/C11) is 18.5 (1)°. | |
Fig. 2. Fragment of hydrogen bonds (shown with dashed lines) in the title compound. Symmetry transformations used to generate equivalent atoms: #A x, y+1, z; #B -x+1, -y, -z; #C -x+1, -y+1, -z; #D x, -y+1/2, z-1/2; #E x+1, y, z; #F -x+1, y-1/2, -z+1/2. | |
Fig. 3. Fragment of crystal packing (view along crystallographic axes c). Only H atoms involved in hydrogen bonding are depicted. Hydrogen bonds are shown with dashed lines. |
[Ni(C7H3NO4)(C4H5N3)(H2O)2]·H2O | F(000) = 768 |
Mr = 372.97 | Dx = 1.773 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 896 reflections |
a = 9.6073 (8) Å | θ = 2.9–25.0° |
b = 10.2038 (10) Å | µ = 1.44 mm−1 |
c = 14.6095 (15) Å | T = 120 K |
β = 102.677 (2)° | Prism, blue |
V = 1397.3 (2) Å3 | 0.24 × 0.22 × 0.15 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 2725 independent reflections |
Radiation source: fine-focus sealed tube | 2396 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −11→11 |
Tmin = 0.717, Tmax = 0.810 | k = −12→12 |
12010 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: mixed |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.07P)2 + 9.P] where P = (Fo2 + 2Fc2)/3 |
2725 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
0 constraints |
[Ni(C7H3NO4)(C4H5N3)(H2O)2]·H2O | V = 1397.3 (2) Å3 |
Mr = 372.97 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6073 (8) Å | µ = 1.44 mm−1 |
b = 10.2038 (10) Å | T = 120 K |
c = 14.6095 (15) Å | 0.24 × 0.22 × 0.15 mm |
β = 102.677 (2)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2725 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2396 reflections with I > 2σ(I) |
Tmin = 0.717, Tmax = 0.810 | Rint = 0.029 |
12010 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.65 e Å−3 |
2725 reflections | Δρmin = −0.51 e Å−3 |
208 parameters |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.71391 (7) | 0.20931 (6) | 0.07096 (4) | 0.0268 (2) | |
N1 | 0.7944 (4) | 0.0931 (3) | 0.1775 (2) | 0.0212 (8) | |
N2 | 0.6262 (5) | 0.3303 (4) | −0.0398 (3) | 0.0364 (11) | |
N3 | 0.5712 (6) | 0.5362 (6) | −0.1177 (3) | 0.0574 (17) | |
N4 | 0.7236 (6) | 0.5244 (4) | 0.0275 (3) | 0.0451 (13) | |
H4B | 0.7678 | 0.4812 | 0.0758 | 0.054* | |
H4C | 0.7332 | 0.6080 | 0.0254 | 0.054* | |
O1 | 0.7779 (4) | 0.3446 (3) | 0.1821 (2) | 0.0328 (8) | |
O2 | 0.8528 (5) | 0.3529 (3) | 0.3379 (2) | 0.0395 (9) | |
O3 | 0.6800 (4) | 0.0198 (4) | 0.0080 (2) | 0.0328 (8) | |
O4 | 0.7485 (7) | −0.1853 (4) | 0.0367 (3) | 0.0740 (18) | |
C1 | 0.8233 (6) | 0.2929 (4) | 0.2627 (3) | 0.0289 (11) | |
C2 | 0.8404 (5) | 0.1458 (4) | 0.2621 (3) | 0.0229 (9) | |
C3 | 0.8944 (5) | 0.0683 (5) | 0.3388 (3) | 0.0290 (10) | |
H3A | 0.9272 | 0.1048 | 0.3979 | 0.035* | |
C4 | 0.8982 (6) | −0.0660 (5) | 0.3249 (4) | 0.0376 (12) | |
H4A | 0.9347 | −0.1210 | 0.3753 | 0.045* | |
C5 | 0.8481 (7) | −0.1188 (5) | 0.2367 (4) | 0.0394 (13) | |
H5A | 0.8490 | −0.2088 | 0.2272 | 0.047* | |
C6 | 0.7967 (5) | −0.0346 (4) | 0.1630 (3) | 0.0271 (10) | |
C7 | 0.7374 (5) | −0.0716 (5) | 0.0620 (3) | 0.0307 (11) | |
C8 | 0.6402 (7) | 0.4615 (6) | −0.0441 (3) | 0.0416 (15) | |
C9 | 0.5438 (7) | 0.2718 (7) | −0.1134 (4) | 0.0497 (17) | |
H9A | 0.5343 | 0.1812 | −0.1121 | 0.060* | |
C10 | 0.4716 (7) | 0.3385 (8) | −0.1914 (4) | 0.060 (2) | |
H10A | 0.4143 | 0.2962 | −0.2424 | 0.072* | |
C11 | 0.4907 (8) | 0.4728 (8) | −0.1885 (4) | 0.068 (3) | |
H11A | 0.4436 | 0.5216 | −0.2397 | 0.082* | |
O1W | 0.5159 (4) | 0.2003 (4) | 0.1048 (2) | 0.0419 (10) | |
H1 | 0.4722 | 0.1549 | 0.0585 | 0.063* | |
H2 | 0.4721 | 0.2693 | 0.1148 | 0.063* | |
O2W | 0.9039 (4) | 0.2190 (3) | 0.0257 (2) | 0.0266 (7) | |
H3 | 0.8894 | 0.1987 | −0.0320 | 0.040* | |
H4 | 0.9753 | 0.1835 | 0.0619 | 0.040* | |
O3W | 0.1432 (4) | 0.1177 (3) | 0.1323 (2) | 0.0320 (8) | |
H5 | 0.1465 | 0.0351 | 0.1402 | 0.048* | |
H6 | 0.1922 | 0.1248 | 0.0907 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0394 (4) | 0.0241 (3) | 0.0137 (3) | 0.0101 (3) | −0.0012 (2) | −0.0018 (2) |
N1 | 0.0236 (19) | 0.0191 (18) | 0.0180 (17) | 0.0013 (14) | −0.0016 (14) | −0.0012 (14) |
N2 | 0.057 (3) | 0.038 (2) | 0.0124 (18) | 0.029 (2) | 0.0047 (18) | −0.0002 (16) |
N3 | 0.080 (4) | 0.071 (4) | 0.028 (3) | 0.056 (3) | 0.028 (3) | 0.027 (3) |
N4 | 0.087 (4) | 0.024 (2) | 0.029 (2) | 0.020 (2) | 0.023 (2) | 0.0073 (18) |
O1 | 0.062 (2) | 0.0211 (16) | 0.0139 (15) | 0.0066 (16) | 0.0060 (15) | 0.0004 (13) |
O2 | 0.081 (3) | 0.0207 (17) | 0.0148 (16) | −0.0061 (17) | 0.0053 (16) | −0.0018 (13) |
O3 | 0.0317 (18) | 0.041 (2) | 0.0225 (16) | 0.0007 (15) | 0.0000 (14) | −0.0072 (15) |
O4 | 0.174 (6) | 0.021 (2) | 0.031 (2) | −0.021 (3) | 0.029 (3) | −0.0078 (17) |
C1 | 0.048 (3) | 0.017 (2) | 0.019 (2) | −0.004 (2) | 0.001 (2) | 0.0006 (17) |
C2 | 0.028 (2) | 0.019 (2) | 0.020 (2) | −0.0006 (17) | 0.0011 (17) | −0.0022 (17) |
C3 | 0.040 (3) | 0.027 (2) | 0.017 (2) | 0.003 (2) | 0.0000 (19) | 0.0004 (18) |
C4 | 0.060 (4) | 0.024 (2) | 0.028 (3) | 0.013 (2) | 0.009 (2) | 0.010 (2) |
C5 | 0.071 (4) | 0.020 (2) | 0.031 (3) | 0.003 (2) | 0.018 (3) | 0.000 (2) |
C6 | 0.036 (3) | 0.019 (2) | 0.027 (2) | −0.0036 (19) | 0.0095 (19) | −0.0023 (18) |
C7 | 0.038 (3) | 0.028 (2) | 0.029 (2) | −0.013 (2) | 0.014 (2) | −0.007 (2) |
C8 | 0.067 (4) | 0.043 (3) | 0.020 (2) | 0.038 (3) | 0.020 (2) | 0.012 (2) |
C9 | 0.059 (4) | 0.066 (4) | 0.019 (2) | 0.039 (3) | −0.002 (2) | −0.007 (2) |
C10 | 0.052 (4) | 0.111 (6) | 0.017 (2) | 0.056 (4) | 0.005 (2) | −0.002 (3) |
C11 | 0.082 (5) | 0.107 (6) | 0.021 (3) | 0.077 (5) | 0.023 (3) | 0.025 (3) |
O1W | 0.041 (2) | 0.067 (3) | 0.0181 (16) | 0.0300 (19) | 0.0075 (15) | 0.0021 (16) |
O2W | 0.043 (2) | 0.0210 (16) | 0.0131 (14) | 0.0062 (14) | −0.0003 (13) | −0.0016 (12) |
O3W | 0.047 (2) | 0.0229 (17) | 0.0244 (16) | 0.0005 (15) | 0.0040 (15) | 0.0003 (13) |
Ni1—N1 | 1.975 (4) | C2—C3 | 1.377 (6) |
Ni1—N2 | 2.062 (4) | C3—C4 | 1.388 (7) |
Ni1—O1W | 2.070 (4) | C3—H3A | 0.9300 |
Ni1—O2W | 2.076 (4) | C4—C5 | 1.382 (7) |
Ni1—O1 | 2.117 (3) | C4—H4A | 0.9300 |
Ni1—O3 | 2.136 (4) | C5—C6 | 1.381 (7) |
N1—C6 | 1.321 (6) | C5—H5A | 0.9300 |
N1—C2 | 1.330 (5) | C6—C7 | 1.509 (6) |
N2—C9 | 1.329 (7) | C9—C10 | 1.377 (8) |
N2—C8 | 1.348 (8) | C9—H9A | 0.9300 |
N3—C11 | 1.317 (10) | C10—C11 | 1.382 (12) |
N3—C8 | 1.365 (6) | C10—H10A | 0.9300 |
N4—C8 | 1.334 (8) | C11—H11A | 0.9300 |
N4—H4B | 0.8600 | O1W—H1 | 0.8500 |
N4—H4C | 0.8600 | O1W—H2 | 0.8499 |
O1—C1 | 1.278 (5) | O2W—H3 | 0.8500 |
O2—C1 | 1.235 (6) | O2W—H4 | 0.8500 |
O3—C7 | 1.267 (6) | O3W—H5 | 0.8500 |
O4—C7 | 1.230 (6) | O3W—H6 | 0.8500 |
C1—C2 | 1.510 (6) | ||
N1—Ni1—N2 | 178.94 (18) | C2—C3—H3A | 121.1 |
N1—Ni1—O1W | 90.35 (15) | C4—C3—H3A | 121.1 |
N2—Ni1—O1W | 88.59 (17) | C5—C4—C3 | 120.4 (5) |
N1—Ni1—O2W | 93.46 (14) | C5—C4—H4A | 119.8 |
N2—Ni1—O2W | 87.59 (16) | C3—C4—H4A | 119.8 |
O1W—Ni1—O2W | 175.37 (12) | C6—C5—C4 | 118.5 (5) |
N1—Ni1—O1 | 77.84 (13) | C6—C5—H5A | 120.8 |
N2—Ni1—O1 | 102.19 (15) | C4—C5—H5A | 120.8 |
O1W—Ni1—O1 | 88.48 (15) | N1—C6—C5 | 120.2 (4) |
O2W—Ni1—O1 | 94.88 (13) | N1—C6—C7 | 112.9 (4) |
N1—Ni1—O3 | 78.02 (13) | C5—C6—C7 | 126.9 (4) |
N2—Ni1—O3 | 101.92 (15) | O4—C7—O3 | 124.2 (5) |
O1W—Ni1—O3 | 90.07 (15) | O4—C7—C6 | 119.4 (5) |
O2W—Ni1—O3 | 88.15 (13) | O3—C7—C6 | 116.4 (4) |
O1—Ni1—O3 | 155.80 (13) | N4—C8—N2 | 119.3 (4) |
C6—N1—C2 | 122.3 (4) | N4—C8—N3 | 117.0 (6) |
C6—N1—Ni1 | 118.9 (3) | N2—C8—N3 | 123.7 (6) |
C2—N1—Ni1 | 118.8 (3) | N2—C9—C10 | 123.4 (7) |
C9—N2—C8 | 117.1 (5) | N2—C9—H9A | 118.3 |
C9—N2—Ni1 | 115.7 (4) | C10—C9—H9A | 118.3 |
C8—N2—Ni1 | 127.1 (4) | C9—C10—C11 | 115.1 (6) |
C11—N3—C8 | 116.4 (6) | C9—C10—H10A | 122.4 |
C8—N4—H4B | 120.0 | C11—C10—H10A | 122.4 |
C8—N4—H4C | 120.0 | N3—C11—C10 | 124.2 (5) |
H4B—N4—H4C | 120.0 | N3—C11—H11A | 117.9 |
C1—O1—Ni1 | 114.9 (3) | C10—C11—H11A | 117.9 |
C7—O3—Ni1 | 113.2 (3) | Ni1—O1W—H1 | 98.9 |
O2—C1—O1 | 125.5 (4) | Ni1—O1W—H2 | 121.3 |
O2—C1—C2 | 119.6 (4) | H1—O1W—H2 | 114.3 |
O1—C1—C2 | 114.8 (4) | Ni1—O2W—H3 | 109.9 |
N1—C2—C3 | 120.9 (4) | Ni1—O2W—H4 | 115.4 |
N1—C2—C1 | 113.2 (4) | H3—O2W—H4 | 116.5 |
C3—C2—C1 | 126.0 (4) | H5—O3W—H6 | 99.9 |
C2—C3—C4 | 117.7 (4) | ||
O1W—Ni1—N1—C6 | 92.7 (4) | O2—C1—C2—N1 | 175.1 (5) |
O2W—Ni1—N1—C6 | −84.7 (4) | O1—C1—C2—N1 | −5.0 (6) |
O1—Ni1—N1—C6 | −179.0 (4) | O2—C1—C2—C3 | −3.6 (8) |
O3—Ni1—N1—C6 | 2.7 (3) | O1—C1—C2—C3 | 176.3 (5) |
O1W—Ni1—N1—C2 | −85.3 (3) | N1—C2—C3—C4 | −0.4 (7) |
O2W—Ni1—N1—C2 | 97.3 (3) | C1—C2—C3—C4 | 178.2 (5) |
O1—Ni1—N1—C2 | 3.0 (3) | C2—C3—C4—C5 | −0.5 (8) |
O3—Ni1—N1—C2 | −175.3 (4) | C3—C4—C5—C6 | 1.1 (9) |
O1W—Ni1—N2—C9 | −75.1 (4) | C2—N1—C6—C5 | 0.0 (7) |
O2W—Ni1—N2—C9 | 102.3 (4) | Ni1—N1—C6—C5 | −177.9 (4) |
O1—Ni1—N2—C9 | −163.2 (4) | C2—N1—C6—C7 | 179.2 (4) |
O3—Ni1—N2—C9 | 14.7 (4) | Ni1—N1—C6—C7 | 1.3 (5) |
O1W—Ni1—N2—C8 | 102.8 (5) | C4—C5—C6—N1 | −0.8 (8) |
O2W—Ni1—N2—C8 | −79.8 (5) | C4—C5—C6—C7 | −179.9 (5) |
O1—Ni1—N2—C8 | 14.7 (5) | Ni1—O3—C7—O4 | −169.6 (5) |
O3—Ni1—N2—C8 | −167.4 (4) | Ni1—O3—C7—C6 | 9.5 (5) |
N1—Ni1—O1—C1 | −5.9 (4) | N1—C6—C7—O4 | 171.6 (5) |
N2—Ni1—O1—C1 | 173.0 (4) | C5—C6—C7—O4 | −9.3 (8) |
O1W—Ni1—O1—C1 | 84.8 (4) | N1—C6—C7—O3 | −7.5 (6) |
O2W—Ni1—O1—C1 | −98.4 (4) | C5—C6—C7—O3 | 171.6 (5) |
O3—Ni1—O1—C1 | −2.0 (6) | C9—N2—C8—N4 | −179.0 (5) |
N1—Ni1—O3—C7 | −6.9 (3) | Ni1—N2—C8—N4 | 3.2 (7) |
N2—Ni1—O3—C7 | 174.2 (3) | C9—N2—C8—N3 | 2.3 (8) |
O1W—Ni1—O3—C7 | −97.2 (3) | Ni1—N2—C8—N3 | −175.6 (4) |
O2W—Ni1—O3—C7 | 87.1 (3) | C11—N3—C8—N4 | 179.1 (5) |
O1—Ni1—O3—C7 | −10.7 (6) | C11—N3—C8—N2 | −2.1 (8) |
Ni1—O1—C1—O2 | −172.6 (5) | C8—N2—C9—C10 | −1.2 (9) |
Ni1—O1—C1—C2 | 7.4 (6) | Ni1—N2—C9—C10 | 176.9 (5) |
C6—N1—C2—C3 | 0.6 (7) | N2—C9—C10—C11 | 0.0 (9) |
Ni1—N1—C2—C3 | 178.6 (4) | C8—N3—C11—C10 | 0.8 (9) |
C6—N1—C2—C1 | −178.1 (4) | C9—C10—C11—N3 | 0.2 (9) |
Ni1—N1—C2—C1 | −0.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4B···O1 | 0.86 | 2.07 | 2.867 (5) | 153 |
N4—H4C···O4i | 0.86 | 2.12 | 2.973 (6) | 173 |
O1W—H1···O4ii | 0.85 | 2.29 | 2.906 (7) | 130 |
O1W—H1···O3ii | 0.85 | 2.37 | 3.152 (5) | 152 |
O1W—H2···N3iii | 0.85 | 2.03 | 2.835 (7) | 158 |
O2W—H3···O2iv | 0.85 | 1.93 | 2.777 (4) | 178 |
O2W—H4···O3Wv | 0.85 | 1.84 | 2.685 (5) | 173 |
O3W—H5···O2vi | 0.85 | 1.89 | 2.736 (4) | 177 |
O3W—H6···O4ii | 0.85 | 2.15 | 2.964 (6) | 159 |
O3W—H6···O3ii | 0.85 | 2.56 | 3.253 (5) | 140 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z; (iv) x, −y+1/2, z−1/2; (v) x+1, y, z; (vi) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C7H3NO4)(C4H5N3)(H2O)2]·H2O |
Mr | 372.97 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.6073 (8), 10.2038 (10), 14.6095 (15) |
β (°) | 102.677 (2) |
V (Å3) | 1397.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.44 |
Crystal size (mm) | 0.24 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.717, 0.810 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12010, 2725, 2396 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.163, 1.01 |
No. of reflections | 2725 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.51 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4B···O1 | 0.86 | 2.073 | 2.867 (5) | 153 |
N4—H4C···O4i | 0.86 | 2.117 | 2.973 (6) | 173 |
O1W—H1···O4ii | 0.85 | 2.287 | 2.906 (7) | 130 |
O1W—H1···O3ii | 0.85 | 2.374 | 3.152 (5) | 152 |
O2W—H3···O2iii | 0.85 | 1.928 | 2.777 (4) | 178 |
O2W—H4···O3Wiv | 0.85 | 1.839 | 2.685 (5) | 173 |
O3W—H5···O2v | 0.85 | 1.887 | 2.736 (4) | 177 |
O3W—H6···O4ii | 0.85 | 2.153 | 2.964 (6) | 159 |
O3W—H6···O3ii | 0.85 | 2.557 | 3.253 (5) | 140 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z; (iii) x, −y+1/2, z−1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The author is grateful to Islamic Azad University, Yazd Branch, for the support of this work.
References
Aghabozorg, H., Bahrami, Z., Tabatabaie, M., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2022–m2023. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Altin, E., Kirchmaier, R. & Lentz, A. (2004). Z. Kristallogr. New Cryst. Struct. 219, 35–36. CAS Google Scholar
Bruker (1998). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Lee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. & Awwadi, F. (2003). J. Coord. Chem. 56, 1425–1442. Web of Science CSD CrossRef CAS Google Scholar
Li, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881–2889. Web of Science CSD CrossRef CAS Google Scholar
Masaki, M. E., Prince, B. J. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337–1351. Web of Science CSD CrossRef CAS Google Scholar
Ponticelli, G., Spanu, A., Cocco, M. T. & Onnis, V. (1999). Transition Met. Chem. 24, 370–372. Web of Science CrossRef CAS Google Scholar
Prince, B. J., Turnbull, M. M. & Willett, R. D. (2003). J. Coord. Chem. 56, 441–452. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tabatabaee, M., Hakimi, F., Roshani, M., Mirjalili, M. & Kavasi, H. R. (2008). Acta Cryst. E64, o2112. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tabatabaee, M., Masoodpour, L., Gassemzadeh, M. & Hakimi, F. (2009). Acta Cryst. E65, o2979. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tabatabaee, M., Sharif, M. A., Vakili, F. & Saheli, S. (2009). J. Rare Earth, 27, 356–361. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine derivatives possess considerable biological activity and have been widely used in medicinal and industrial applications. The complexing ability of 2-aminopyrimidine derivatives with transition metal ions is of great interest. Several transition metal complexes of 2-aminopyrimidine with halide salts, MX2 (M= Pt, Pd, Cu, Mn, Co and Ni), have been synthesized and their crystal structures reported (Ponticelli et al., 1999; Prince et al., 2003; Lee et al., 2003; Masaki et al., 2002).
In continuation of our recent works on aminopyrimidine derivatives and hydrothermal synthesis of complexes (Tabatabaee et al., 2008; Tabatabaee, Aghabozorg et al., 2009; Tabatabaee, Masoodpour et al., 2009; Tabatabaee, Sharif et al., 2009), in this communication we wish to report our results on the synthesis and characterization of the first complex of NiII with pyridine-2,6-dicarboxylic acid (pydcH2) and neutral 2-aminopyrimidine (amp), under hydrothermal conditions.
The title compound consists of [Ni(amp)(pydc)(H2O)2] and one uncoordinated water molecule (Fig. 1). The metal ion is hexacoordinated by nitrogen atom N1 and two oxygen atoms O1 and O3 of the pydc2– fragment, which acts as a tridentate ligand, two oxygen atoms of two coordinated water molecules (O1W and O2W) and heterocyclic nitrogen atom of amp (N2). N1 and N2 atoms occupy the axial positions (shortest coordination bond lengths), while oxygen atoms form the equatorial plane. The crystal structure of a four-coordinated CuII complex with pyridine-2,6-dicarboxylate and 2-aminopyrimidine, formulated [Cu(amp)(pydc)].3H2O has been reported by Altin et al. (Altin et al., 2004). Cu2+ ion in [Cu(amp)(pydc)] is four-coordinated with a pydc2– tridentate ligand and N atom from 2-aminopyrimidine. In the title complex, N1—Ni1—N2 angle is deviated by 1.06° from linearity. The dihedral angle between the mean planes of the pyridine and pyrimidine rings is 18.5 (1)°, indicating that pyridine and pyrimidine ligands are almost parallel to each other. Ni—N distances of 1.975 (4) and 2.062 (4) Å and Ni—O distances [Ni1—O1W: 2.070 (4), Ni1—O2W: 2.076 (4), Ni1—O1: 2.117 (3) and Ni1—O7: 2.136 (4) Å] are consistent with the corresponding data reported in the literature (Aghabozorg et al., 2007; Li et al., 2007). According to bond lengths, bond angles and torsion angles, arrangement of the six donor atoms around Ni1 is distorted octahedral.
The extensive O—H···O, N—H···O hydrogen bonding interactions (Table 1) between complex and uncoordinated water molecule (Fig. 2) play an important role in stabilizing the crystal (Aghabozorg et al., 2008; Tabatabaee, Aghabozorg et al., 2009; Tabatabaee, Masoodpour et al., 2009; Tabatabaee, Sharif et al., 2009) and the formation of a three dimensional supramolecular crystal structure (Fig. 3).