organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

16-Iso­propyl-5,9-di­methyl­tetra­cyclo­[10.2.2.01,10.04,9]hexa­dec-15-ene-5,13,14-tri­carboxylic acid di­methyl­formamide disolvate

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: songzq@hotmail.com

(Received 17 March 2010; accepted 6 May 2010; online 12 May 2010)

The title compound, C24H34O6·2C3H7NO, which was isolated from fumaric-modified rosin, has four asymmetrically fused six-membered rings and three carboxylic acid substituents. It contains two fused and unbridged cyclo­hexane rings, which form a trans ring junction with a chair conformation. The asymmetric unit includes one fumaropimaric acid and two dimethyl­formamide mol­ecules. The crystal structure is stabilized through inter­molecular O—H⋯O hydrogen bonds between dimethyl­formamide and fumaropimaric acid.

Related literature

For various applications of rosin, see: Halbrook & Lawrence (1958[Halbrook, N. J. & Lawrence, R. V. (1958). J. Am. Chem. Soc. 80, 368-370.]). For the separation of the title compound, see: Aldrich (1971[Aldrich, P. H. (1971). US Patent No. 3 562 243.]); Halbrook & Lawrence (1959[Halbrook, N. J. & Lawrence, R. V. (1959). US Patent No. 2 889 362.]); Song et al. (2009[Song, Z. Q., Xu, X., Shang, S. B., Wang, H. X. & Rao, X. P (2009). Chinese Patent CN 101591239.]).

[Scheme 1]

Experimental

Crystal data
  • C24H34O6·2C3H7NO

  • Mr = 564.70

  • Orthorhombic, P 21 21 21

  • a = 7.1260 (14) Å

  • b = 11.342 (2) Å

  • c = 39.610 (8) Å

  • V = 3201.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 5821 measured reflections

  • 3355 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.182

  • S = 0.99

  • 3355 reflections

  • 355 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O7i 0.82 1.85 2.653 (8) 168
O4—H4B⋯O8ii 0.82 1.74 2.549 (6) 168
O5—H5A⋯O3iii 0.82 1.96 2.781 (5) 176
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As an abundant and renewable material, rosin is mainly known as additives and modifiers for various applications (Halbrook et al., 1958). Fumaric modified rosin is one of modified products of rosin. The title compound has been isolated by solvent extracting (Aldrich et al., 1971) and solvent washing (Halbrook et al., 1959) from fumaric modified rosin, but there are some problems such as complicated operation and large amounts of toxic organic solvents. Therefore, a new method has been used to separate the title compound (Song et al., 2009). In this work, we describe the crystal structure of the title compound (I). The molecular structure is shown in Fig. 1 and the crystal packing in Fig. 2.

Related literature top

For various applications of rosin, see: Halbrook & Lawrence (1958). For the separation of the title compound, see: Aldrich (1971); Halbrook & Lawrence (1959); Song et al. (2009).

Experimental top

The fumaric modified rosin (10 g) was dissolved in ethyl alcohol, then 5% sodium hydroxide solution (30 mL) and 2% aqueous sodium chloride solution (500 ml) was added dropwise successively with constant stirring. After dropping the mixture was stirred for another 15 minutes and then filtered. The filtrate was adjusted pH to 3 using 5% hydrochloric acid solution. The title compound was precipitated from the solution. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of DMF solution. The crystal data were collected on an Enraf–Nonius CAD-4 diffractometer. Data collection and cell refinement were performed using Enraf–Nonius CAD-4 Software.

Refinement top

All H atoms bonded to the C atoms and O atoms were placed geometrically at the distances of 0.93-0.98 Å and 0.82 Å respectively, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom. 2466 Friedel pairs were averaged before the final refinement as the absolute configuration could not be determined unambiguously.

Structure description top

As an abundant and renewable material, rosin is mainly known as additives and modifiers for various applications (Halbrook et al., 1958). Fumaric modified rosin is one of modified products of rosin. The title compound has been isolated by solvent extracting (Aldrich et al., 1971) and solvent washing (Halbrook et al., 1959) from fumaric modified rosin, but there are some problems such as complicated operation and large amounts of toxic organic solvents. Therefore, a new method has been used to separate the title compound (Song et al., 2009). In this work, we describe the crystal structure of the title compound (I). The molecular structure is shown in Fig. 1 and the crystal packing in Fig. 2.

For various applications of rosin, see: Halbrook & Lawrence (1958). For the separation of the title compound, see: Aldrich (1971); Halbrook & Lawrence (1959); Song et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 25% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound.
16-Isopropyl-5,9-dimethyltetracyclo[10.2.2.01,10.04,9]hexadec-15-ene- 5,13,14-tricarboxylic acid dimethylformamide disolvate top
Crystal data top
C24H34O6·2C3H7NOF(000) = 1224
Mr = 564.70Dx = 1.172 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 25 reflections
a = 7.1260 (14) Åθ = 9–12°
b = 11.342 (2) ŵ = 0.08 mm1
c = 39.610 (8) ÅT = 296 K
V = 3201.4 (11) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2039 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.3°, θmin = 1.0°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.975, Tmax = 0.992l = 047
5821 measured reflections3 standard reflections every 200 reflections
3355 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1012P)2]
where P = (Fo2 + 2Fc2)/3
3355 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C24H34O6·2C3H7NOV = 3201.4 (11) Å3
Mr = 564.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1260 (14) ŵ = 0.08 mm1
b = 11.342 (2) ÅT = 296 K
c = 39.610 (8) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2039 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.975, Tmax = 0.9923 standard reflections every 200 reflections
5821 measured reflections intensity decay: 1%
3355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.182H-atom parameters constrained
S = 0.99Δρmax = 0.38 e Å3
3355 reflectionsΔρmin = 0.37 e Å3
355 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0202 (7)0.3704 (5)0.10397 (15)0.0998 (17)
O20.7495 (8)0.3154 (4)0.08207 (11)0.0955 (16)
H2A0.80530.32570.06420.143*
O30.8126 (5)0.3478 (3)0.11878 (9)0.0512 (9)
O40.7388 (7)0.2389 (3)0.07384 (9)0.0740 (12)
H4B0.82810.27350.06530.111*
O50.1597 (5)0.3461 (4)0.15090 (11)0.0789 (13)
H5A0.05520.34880.14230.118*
O60.2060 (6)0.2170 (4)0.10993 (11)0.0724 (12)
C10.6924 (6)0.0877 (4)0.14378 (11)0.0376 (10)
C20.8335 (7)0.0249 (4)0.12060 (12)0.0446 (12)
H2B0.77640.01300.09860.053*
H2C0.94250.07500.11760.053*
C30.8951 (7)0.0909 (4)0.13419 (13)0.0462 (12)
H3A0.96050.07920.15540.055*
H3B0.98140.12770.11850.055*
C40.7256 (7)0.1714 (4)0.13976 (12)0.0416 (11)
H4A0.65240.16370.11890.050*
C50.7738 (7)0.3056 (4)0.14164 (13)0.0497 (13)
C60.5870 (8)0.3741 (5)0.14560 (15)0.0602 (15)
H6A0.51480.36630.12490.072*
H6B0.61470.45710.14880.072*
C70.4702 (8)0.3317 (4)0.17471 (16)0.0579 (15)
H7A0.53850.34380.19560.069*
H7B0.35520.37730.17580.069*
C80.4223 (7)0.2011 (4)0.17099 (14)0.0482 (13)
H8A0.35060.17620.19050.058*
H8B0.34340.19100.15120.058*
C90.5950 (7)0.1214 (4)0.16751 (12)0.0405 (11)
C100.5277 (6)0.0027 (4)0.15488 (11)0.0372 (11)
H10A0.45420.01220.13440.045*
C110.3962 (7)0.0695 (4)0.17891 (13)0.0455 (12)
H11A0.39510.03090.20080.055*
H11B0.26940.06830.17000.055*
C120.4619 (7)0.1977 (4)0.18299 (13)0.0445 (12)
H12A0.38050.23990.19890.053*
C130.4592 (7)0.2585 (4)0.14818 (12)0.0456 (12)
H13A0.51210.33770.15090.055*
C140.5889 (7)0.1887 (4)0.12420 (12)0.0401 (11)
H14A0.50910.15140.10710.048*
C150.7754 (7)0.1409 (4)0.17497 (12)0.0396 (11)
H15A0.90270.13410.17970.048*
C160.6604 (7)0.1978 (4)0.19544 (12)0.0463 (12)
C170.7100 (11)0.2617 (6)0.22769 (16)0.0840 (15)
H17A0.62140.23700.24520.101*
C180.6869 (14)0.3950 (5)0.22221 (16)0.094 (2)
H18A0.56220.41110.21430.140*
H18B0.77640.42150.20580.140*
H18C0.70750.43560.24310.140*
C190.9084 (10)0.2325 (6)0.23979 (15)0.0840 (15)
H19A0.92050.14880.24270.126*
H19B0.93150.27120.26090.126*
H19C0.99790.25930.22340.126*
C200.9122 (8)0.3388 (5)0.16926 (16)0.0671 (16)
H20A1.02600.29460.16640.101*
H20B0.93960.42160.16790.101*
H20C0.85860.32140.19090.101*
C210.8668 (10)0.3355 (5)0.10798 (18)0.0660 (17)
C220.6957 (8)0.1143 (4)0.20269 (12)0.0499 (13)
H22A0.73420.19180.20950.075*
H22B0.61070.08240.21910.075*
H22C0.80390.06420.20090.075*
C230.7250 (7)0.2684 (5)0.10591 (12)0.0437 (12)
C240.2656 (7)0.2712 (4)0.13405 (13)0.0468 (12)
N10.3130 (14)0.9174 (8)0.03150 (17)0.120 (3)
O70.3811 (15)0.8410 (9)0.01985 (18)0.187 (4)
C250.310 (2)0.8890 (15)0.0001 (3)0.195 (6)
H25A0.20450.92390.00940.234*
C260.244 (2)0.8464 (12)0.0571 (4)0.206 (6)
H26A0.22500.76800.04860.309*
H26B0.12660.87760.06500.309*
H26C0.33220.84440.07540.309*
C270.343 (3)1.0316 (11)0.0438 (3)0.216 (7)
H27A0.37591.08270.02540.325*
H27B0.44311.03040.06000.325*
H27C0.23051.05980.05430.325*
O80.0025 (8)0.3316 (5)0.03938 (11)0.0894 (15)
N20.2801 (9)0.4273 (5)0.04118 (14)0.0842 (17)
C280.1104 (10)0.4000 (5)0.05282 (15)0.0647 (16)
H28A0.07140.43600.07270.078*
C290.3562 (15)0.3693 (11)0.0120 (3)0.181 (6)
H29A0.26110.32110.00180.271*
H29B0.46000.32060.01870.271*
H29C0.39830.42730.00390.271*
C300.3990 (13)0.5018 (7)0.0597 (2)0.123 (3)
H30A0.33180.53350.07870.185*
H30B0.44120.56510.04560.185*
H30C0.50520.45770.06760.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.075 (3)0.099 (4)0.126 (4)0.022 (3)0.030 (3)0.025 (3)
O20.109 (4)0.117 (4)0.061 (3)0.005 (4)0.008 (3)0.027 (3)
O30.0382 (18)0.0476 (19)0.068 (2)0.0019 (18)0.0004 (18)0.0041 (18)
O40.092 (3)0.075 (3)0.054 (2)0.025 (3)0.014 (2)0.001 (2)
O50.045 (2)0.092 (3)0.099 (3)0.023 (2)0.019 (2)0.032 (3)
O60.048 (2)0.083 (3)0.086 (3)0.005 (2)0.014 (2)0.025 (3)
C10.031 (2)0.041 (2)0.042 (2)0.003 (2)0.006 (2)0.001 (2)
C20.044 (3)0.045 (3)0.045 (3)0.002 (2)0.012 (2)0.007 (2)
C30.038 (2)0.047 (3)0.054 (3)0.005 (2)0.006 (2)0.013 (2)
C40.039 (2)0.041 (2)0.045 (3)0.004 (2)0.001 (2)0.004 (2)
C50.046 (3)0.047 (3)0.057 (3)0.005 (3)0.002 (3)0.007 (2)
C60.059 (3)0.042 (3)0.080 (4)0.002 (3)0.003 (3)0.011 (3)
C70.049 (3)0.043 (3)0.081 (4)0.013 (3)0.004 (3)0.010 (3)
C80.039 (3)0.041 (3)0.065 (3)0.001 (2)0.002 (3)0.004 (2)
C90.032 (2)0.042 (2)0.047 (3)0.001 (2)0.003 (2)0.001 (2)
C100.035 (2)0.036 (2)0.041 (3)0.002 (2)0.001 (2)0.002 (2)
C110.034 (2)0.048 (3)0.054 (3)0.004 (2)0.006 (2)0.003 (2)
C120.040 (3)0.047 (3)0.046 (3)0.008 (2)0.009 (2)0.002 (2)
C130.040 (3)0.037 (2)0.060 (3)0.001 (2)0.003 (3)0.004 (2)
C140.037 (2)0.041 (2)0.042 (3)0.003 (2)0.003 (2)0.002 (2)
C150.033 (2)0.038 (2)0.048 (3)0.005 (2)0.006 (2)0.001 (2)
C160.051 (3)0.042 (3)0.046 (3)0.001 (3)0.009 (2)0.003 (2)
C170.093 (3)0.094 (3)0.065 (3)0.007 (3)0.025 (3)0.023 (3)
C180.145 (7)0.065 (4)0.071 (4)0.015 (5)0.018 (5)0.027 (3)
C190.093 (3)0.094 (3)0.065 (3)0.007 (3)0.025 (3)0.023 (3)
C200.056 (3)0.059 (4)0.085 (4)0.014 (3)0.014 (3)0.001 (3)
C210.073 (4)0.050 (3)0.074 (4)0.002 (3)0.009 (4)0.015 (3)
C220.049 (3)0.051 (3)0.050 (3)0.004 (3)0.008 (3)0.001 (2)
C230.039 (3)0.051 (3)0.042 (3)0.008 (3)0.004 (2)0.008 (2)
C240.041 (3)0.043 (3)0.056 (3)0.002 (3)0.003 (3)0.002 (2)
N10.162 (7)0.141 (6)0.057 (4)0.015 (6)0.022 (5)0.017 (4)
O70.226 (10)0.244 (9)0.091 (5)0.046 (9)0.020 (6)0.070 (5)
C250.176 (13)0.296 (19)0.114 (9)0.005 (14)0.001 (10)0.042 (12)
C260.197 (14)0.228 (15)0.192 (13)0.035 (14)0.023 (13)0.053 (11)
C270.31 (2)0.160 (11)0.183 (12)0.016 (15)0.052 (14)0.039 (9)
O80.101 (4)0.105 (4)0.061 (3)0.035 (3)0.016 (3)0.008 (2)
N20.085 (4)0.087 (4)0.081 (4)0.016 (4)0.010 (4)0.025 (3)
C280.075 (4)0.063 (4)0.056 (4)0.002 (4)0.004 (3)0.004 (3)
C290.144 (10)0.231 (12)0.168 (10)0.063 (10)0.086 (8)0.114 (9)
C300.104 (6)0.121 (6)0.143 (7)0.025 (6)0.018 (6)0.043 (6)
Geometric parameters (Å, º) top
O1—C211.174 (7)C13—C141.543 (7)
O2—C211.343 (8)C13—H13A0.9800
O2—H2A0.8200C14—C231.511 (7)
O3—C231.209 (6)C14—H14A0.9800
O4—C231.317 (6)C15—C161.321 (7)
O4—H4B0.8200C15—H15A0.9300
O5—C241.317 (6)C16—C171.511 (7)
O5—H5A0.8200C17—C191.529 (9)
O6—C241.213 (6)C17—C181.536 (9)
C1—C151.496 (6)C17—H17A0.9800
C1—C21.537 (6)C18—H18A0.9600
C1—C141.568 (6)C18—H18B0.9600
C1—C101.581 (6)C18—H18C0.9600
C2—C31.486 (7)C19—H19A0.9600
C2—H2B0.9700C19—H19B0.9600
C2—H2C0.9700C19—H19C0.9600
C3—C41.531 (6)C20—H20A0.9600
C3—H3A0.9700C20—H20B0.9600
C3—H3B0.9700C20—H20C0.9600
C4—C91.547 (6)C22—H22A0.9600
C4—C51.562 (6)C22—H22B0.9600
C4—H4A0.9800C22—H22C0.9600
C5—C201.520 (7)N1—C251.284 (13)
C5—C211.527 (8)N1—C261.385 (13)
C5—C61.549 (7)N1—C271.399 (12)
C6—C71.501 (8)O7—C251.085 (14)
C6—H6A0.9700C25—H25A0.9300
C6—H6B0.9700C26—H26A0.9600
C7—C81.527 (7)C26—H26B0.9600
C7—H7A0.9700C26—H26C0.9600
C7—H7B0.9700C27—H27A0.9600
C8—C91.533 (6)C27—H27B0.9600
C8—H8A0.9700C27—H27C0.9600
C8—H8B0.9700O8—C281.215 (7)
C9—C221.569 (6)N2—C281.331 (9)
C9—C101.570 (6)N2—C301.404 (9)
C10—C111.535 (6)N2—C291.436 (9)
C10—H10A0.9800C28—H28A0.9300
C11—C121.537 (7)C29—H29A0.9600
C11—H11A0.9700C29—H29B0.9600
C11—H11B0.9700C29—H29C0.9600
C12—C161.498 (7)C30—H30A0.9600
C12—C131.542 (7)C30—H30B0.9600
C12—H12A0.9800C30—H30C0.9600
C13—C241.496 (7)
C21—O2—H2A109.5C23—C14—H14A107.4
C23—O4—H4B109.5C13—C14—H14A107.4
C24—O5—H5A109.5C1—C14—H14A107.4
C15—C1—C2114.9 (4)C16—C15—C1117.3 (4)
C15—C1—C14107.4 (3)C16—C15—H15A121.4
C2—C1—C14110.6 (4)C1—C15—H15A121.4
C15—C1—C10108.0 (4)C15—C16—C12112.5 (4)
C2—C1—C10111.7 (4)C15—C16—C17127.5 (5)
C14—C1—C10103.5 (4)C12—C16—C17120.0 (5)
C3—C2—C1112.7 (4)C16—C17—C19112.2 (6)
C3—C2—H2B109.0C16—C17—C18109.1 (5)
C1—C2—H2B109.0C19—C17—C18110.9 (7)
C3—C2—H2C109.0C16—C17—H17A108.2
C1—C2—H2C109.0C19—C17—H17A108.2
H2B—C2—H2C107.8C18—C17—H17A108.2
C2—C3—C4110.3 (4)C17—C18—H18A109.5
C2—C3—H3A109.6C17—C18—H18B109.5
C4—C3—H3A109.6H18A—C18—H18B109.5
C2—C3—H3B109.6C17—C18—H18C109.5
C4—C3—H3B109.6H18A—C18—H18C109.5
H3A—C3—H3B108.1H18B—C18—H18C109.5
C3—C4—C9111.0 (4)C17—C19—H19A109.5
C3—C4—C5114.5 (4)C17—C19—H19B109.5
C9—C4—C5117.1 (4)H19A—C19—H19B109.5
C3—C4—H4A104.2C17—C19—H19C109.5
C9—C4—H4A104.2H19A—C19—H19C109.5
C5—C4—H4A104.2H19B—C19—H19C109.5
C20—C5—C21107.0 (5)C5—C20—H20A109.5
C20—C5—C6111.1 (5)C5—C20—H20B109.5
C21—C5—C6110.5 (4)H20A—C20—H20B109.5
C20—C5—C4114.8 (4)C5—C20—H20C109.5
C21—C5—C4105.7 (4)H20A—C20—H20C109.5
C6—C5—C4107.7 (4)H20B—C20—H20C109.5
C7—C6—C5113.2 (4)O1—C21—O2122.3 (7)
C7—C6—H6A108.9O1—C21—C5126.7 (7)
C5—C6—H6A108.9O2—C21—C5111.1 (5)
C7—C6—H6B108.9C9—C22—H22A109.5
C5—C6—H6B108.9C9—C22—H22B109.5
H6A—C6—H6B107.8H22A—C22—H22B109.5
C6—C7—C8111.1 (5)C9—C22—H22C109.5
C6—C7—H7A109.4H22A—C22—H22C109.5
C8—C7—H7A109.4H22B—C22—H22C109.5
C6—C7—H7B109.4O3—C23—O4123.9 (5)
C8—C7—H7B109.4O3—C23—C14125.1 (4)
H7A—C7—H7B108.0O4—C23—C14111.0 (5)
C7—C8—C9113.6 (4)O6—C24—O5121.7 (5)
C7—C8—H8A108.8O6—C24—C13124.7 (5)
C9—C8—H8A108.8O5—C24—C13113.6 (5)
C7—C8—H8B108.8C25—N1—C26123.9 (12)
C9—C8—H8B108.8C25—N1—C27124.7 (12)
H8A—C8—H8B107.7C26—N1—C27109.8 (9)
C8—C9—C4109.3 (4)O7—C25—N1145.5 (18)
C8—C9—C22108.5 (4)O7—C25—H25A107.2
C4—C9—C22112.0 (4)N1—C25—H25A107.2
C8—C9—C10108.2 (4)N1—C26—H26A109.5
C4—C9—C10106.6 (4)N1—C26—H26B109.5
C22—C9—C10112.1 (4)H26A—C26—H26B109.5
C11—C10—C9115.6 (4)N1—C26—H26C109.5
C11—C10—C1108.9 (3)H26A—C26—H26C109.5
C9—C10—C1114.1 (4)H26B—C26—H26C109.5
C11—C10—H10A105.8N1—C27—H27A109.5
C9—C10—H10A105.8N1—C27—H27B109.5
C1—C10—H10A105.8H27A—C27—H27B109.5
C10—C11—C12110.2 (4)N1—C27—H27C109.5
C10—C11—H11A109.6H27A—C27—H27C109.5
C12—C11—H11A109.6H27B—C27—H27C109.5
C10—C11—H11B109.6C28—N2—C30120.5 (7)
C12—C11—H11B109.6C28—N2—C29121.0 (7)
H11A—C11—H11B108.1C30—N2—C29118.0 (7)
C16—C12—C11108.8 (4)O8—C28—N2124.9 (6)
C16—C12—C13107.8 (4)O8—C28—H28A117.6
C11—C12—C13109.0 (4)N2—C28—H28A117.6
C16—C12—H12A110.4N2—C29—H29A109.5
C11—C12—H12A110.4N2—C29—H29B109.5
C13—C12—H12A110.4H29A—C29—H29B109.5
C24—C13—C12112.9 (4)N2—C29—H29C109.5
C24—C13—C14111.8 (4)H29A—C29—H29C109.5
C12—C13—C14108.3 (4)H29B—C29—H29C109.5
C24—C13—H13A107.9N2—C30—H30A109.5
C12—C13—H13A107.9N2—C30—H30B109.5
C14—C13—H13A107.9H30A—C30—H30B109.5
C23—C14—C13111.9 (4)N2—C30—H30C109.5
C23—C14—C1111.8 (4)H30A—C30—H30C109.5
C13—C14—C1110.6 (4)H30B—C30—H30C109.5
C15—C1—C2—C374.5 (5)C16—C12—C13—C1459.5 (5)
C14—C1—C2—C3163.6 (4)C11—C12—C13—C1458.5 (5)
C10—C1—C2—C349.0 (5)C24—C13—C14—C23104.6 (5)
C1—C2—C3—C457.9 (5)C12—C13—C14—C23130.4 (4)
C2—C3—C4—C965.1 (5)C24—C13—C14—C1130.0 (4)
C2—C3—C4—C5159.6 (4)C12—C13—C14—C15.0 (5)
C3—C4—C5—C2058.3 (6)C15—C1—C14—C2376.2 (5)
C9—C4—C5—C2074.1 (6)C2—C1—C14—C2349.9 (5)
C3—C4—C5—C2159.3 (6)C10—C1—C14—C23169.6 (4)
C9—C4—C5—C21168.3 (4)C15—C1—C14—C1349.2 (5)
C3—C4—C5—C6177.4 (4)C2—C1—C14—C13175.3 (4)
C9—C4—C5—C650.2 (6)C10—C1—C14—C1365.0 (4)
C20—C5—C6—C772.7 (6)C2—C1—C15—C16178.8 (4)
C21—C5—C6—C7168.8 (5)C14—C1—C15—C1655.3 (5)
C4—C5—C6—C753.8 (6)C10—C1—C15—C1655.8 (5)
C5—C6—C7—C858.7 (6)C1—C15—C16—C120.1 (6)
C6—C7—C8—C956.7 (6)C1—C15—C16—C17178.0 (5)
C7—C8—C9—C450.2 (6)C11—C12—C16—C1558.1 (5)
C7—C8—C9—C2272.2 (5)C13—C12—C16—C1559.9 (6)
C7—C8—C9—C10165.9 (4)C11—C12—C16—C17123.6 (5)
C3—C4—C9—C8177.1 (4)C13—C12—C16—C17118.4 (5)
C5—C4—C9—C848.9 (5)C15—C16—C17—C1912.9 (9)
C3—C4—C9—C2262.6 (5)C12—C16—C17—C19169.1 (6)
C5—C4—C9—C2271.4 (5)C15—C16—C17—C18110.4 (7)
C3—C4—C9—C1060.3 (5)C12—C16—C17—C1867.6 (8)
C5—C4—C9—C10165.6 (4)C20—C5—C21—O14.4 (8)
C8—C9—C10—C1163.0 (5)C6—C5—C21—O1125.5 (7)
C4—C9—C10—C11179.6 (4)C4—C5—C21—O1118.3 (7)
C22—C9—C10—C1156.7 (5)C20—C5—C21—O2176.4 (5)
C8—C9—C10—C1169.6 (4)C6—C5—C21—O255.3 (6)
C4—C9—C10—C152.1 (5)C4—C5—C21—O260.9 (6)
C22—C9—C10—C170.8 (5)C13—C14—C23—O343.9 (6)
C15—C1—C10—C1150.7 (5)C1—C14—C23—O380.8 (6)
C2—C1—C10—C11178.0 (4)C13—C14—C23—O4137.1 (4)
C14—C1—C10—C1163.1 (5)C1—C14—C23—O498.2 (5)
C15—C1—C10—C980.1 (5)C12—C13—C24—O6110.1 (6)
C2—C1—C10—C947.2 (5)C14—C13—C24—O612.2 (7)
C14—C1—C10—C9166.1 (4)C12—C13—C24—O568.2 (6)
C9—C10—C11—C12132.6 (4)C14—C13—C24—O5169.5 (4)
C1—C10—C11—C122.6 (5)C26—N1—C25—O784 (3)
C10—C11—C12—C1657.0 (5)C27—N1—C25—O7112 (3)
C10—C11—C12—C1360.4 (5)C30—N2—C28—O8175.9 (7)
C16—C12—C13—C24176.1 (4)C29—N2—C28—O84.6 (12)
C11—C12—C13—C2465.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O7i0.821.852.653 (8)168
O4—H4B···O8ii0.821.742.549 (6)168
O5—H5A···O3iii0.821.962.781 (5)176
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H34O6·2C3H7NO
Mr564.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.1260 (14), 11.342 (2), 39.610 (8)
V3)3201.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5821, 3355, 2039
Rint0.056
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.182, 0.99
No. of reflections3355
No. of parameters355
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O7i0.821.852.653 (8)167.5
O4—H4B···O8ii0.821.742.549 (6)167.7
O5—H5A···O3iii0.821.962.781 (5)175.6
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the `948' program granted by the State Forestry Administration under grant No. 2006-4-C03.

References

First citationAldrich, P. H. (1971). US Patent No. 3 562 243.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHalbrook, N. J. & Lawrence, R. V. (1958). J. Am. Chem. Soc. 80, 368–370.  CrossRef CAS Web of Science Google Scholar
First citationHalbrook, N. J. & Lawrence, R. V. (1959). US Patent No. 2 889 362.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Z. Q., Xu, X., Shang, S. B., Wang, H. X. & Rao, X. P (2009). Chinese Patent CN 101591239.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds