organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Nitro­phen­yl)-1-(2-oxoindolin-3-yl­­idene)thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cDepartment of Physics, University of Sargodh, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 May 2010; accepted 14 May 2010; online 22 May 2010)

In the title compound, C15H11N5O3S, intra­molecular N—H⋯N hydrogen bonding forms an S(5) ring motif, whereas N—H⋯O and C—H⋯S inter­actions type complete S(6) ring motifs. The 2-oxoindoline and 3-methoxy­phenyl rings are almost planar, with r.m.s. deviations of 0.0178 and 0.0149 Å, respectively, and form a dihedral angle of 33.59 (3)°. In the crystal, mol­ecules are inter­linked through the nitro groups in an end-to-end fashion via N—H⋯O and C—H⋯O inter­actions.

Related literature

For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thio­semicarbazones, see: Pervez et al. (2007[Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178-1186.]). For related structures, see: (Pervez et al. 2010a[Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010a). Acta Cryst. E66, o1404.],b[Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N5O3S

  • Mr = 341.35

  • Orthorhombic, P n a 21

  • a = 18.5545 (10) Å

  • b = 15.3852 (8) Å

  • c = 5.3367 (4) Å

  • V = 1523.44 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 7285 measured reflections

  • 2751 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.00

  • 2751 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 992 Friedel pairs

  • Flack parameter: −0.05 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.21 3.058 (3) 170
N3—H3⋯O1 0.86 2.13 2.797 (3) 134
N4—H4A⋯N2 0.86 2.12 2.580 (3) 113
C7—H7⋯O2i 0.93 2.55 3.358 (4) 145
C11—H11⋯S1 0.93 2.56 3.204 (3) 127
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As a part of our work on the synthesis of certain biologically important isatin derivatives (Pervez et al., 2007), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010b) and (III) i.e. 4-(3-methoxyphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010a) have been reported. The title compound (I) differs from (II) due to the attachment of nitro group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. Similarly (I) differs from (III) due to the presence of nitro instead of methoxy function at position-3 of the phenyl ring. In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are interlinked through nitro groups (Fig. 2) in end to end fashion due to N—H···O and C–H···O interactions completing R22(8) ring motifs. The N=O···π and C=S···π interaction play role in stabilizing the molecules.

Related literature top

For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thiosemicarbazones, see: Pervez et al. (2007). For related structures, see: (Pervez et al. 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(3-nitrophenyl)thiosemicarbazide (1.06 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The orange crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether provided the desired compound (I) in pure form (1.08 g, 63%), m.p. 539 K. The single crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Structure description top

As a part of our work on the synthesis of certain biologically important isatin derivatives (Pervez et al., 2007), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010b) and (III) i.e. 4-(3-methoxyphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010a) have been reported. The title compound (I) differs from (II) due to the attachment of nitro group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. Similarly (I) differs from (III) due to the presence of nitro instead of methoxy function at position-3 of the phenyl ring. In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are interlinked through nitro groups (Fig. 2) in end to end fashion due to N—H···O and C–H···O interactions completing R22(8) ring motifs. The N=O···π and C=S···π interaction play role in stabilizing the molecules.

For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thiosemicarbazones, see: Pervez et al. (2007). For related structures, see: (Pervez et al. 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted lines indicate the intra-molecular H-bondings.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked.
4-(3-Nitrophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide top
Crystal data top
C15H11N5O3SF(000) = 704
Mr = 341.35Dx = 1.488 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2751 reflections
a = 18.5545 (10) Åθ = 2.6–26.5°
b = 15.3852 (8) ŵ = 0.24 mm1
c = 5.3367 (4) ÅT = 296 K
V = 1523.44 (16) Å3Prism, light yellow
Z = 40.24 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2751 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.80 pixels mm-1θmax = 26.5°, θmin = 2.6°
ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1918
Tmin = 0.957, Tmax = 0.966l = 65
7285 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2751 reflectionsΔρmax = 0.16 e Å3
217 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 992 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (11)
Crystal data top
C15H11N5O3SV = 1523.44 (16) Å3
Mr = 341.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.5545 (10) ŵ = 0.24 mm1
b = 15.3852 (8) ÅT = 296 K
c = 5.3367 (4) Å0.24 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1957 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.036
7285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.16 e Å3
S = 1.00Δρmin = 0.27 e Å3
2751 reflectionsAbsolute structure: Flack (1983), 992 Friedel pairs
217 parametersAbsolute structure parameter: 0.05 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22195 (4)0.31899 (4)0.2161 (2)0.0691 (3)
O10.38865 (11)0.31688 (13)0.4271 (5)0.0693 (6)
O20.04767 (14)0.25693 (14)0.7833 (6)0.0987 (11)
O30.01628 (11)0.14340 (14)0.9884 (5)0.0691 (6)
N10.42883 (11)0.21951 (15)0.7293 (5)0.0584 (7)
H10.45770.25290.81090.070*
N20.29869 (10)0.15983 (12)0.2774 (5)0.0462 (5)
N30.28351 (11)0.23206 (14)0.1419 (5)0.0511 (6)
H30.30360.28060.18080.061*
N40.21013 (11)0.14865 (14)0.0938 (5)0.0485 (6)
H4A0.22230.11110.01790.058*
N50.04756 (12)0.17858 (16)0.8135 (5)0.0573 (7)
C10.38904 (15)0.24541 (19)0.5275 (6)0.0526 (8)
C20.34565 (13)0.16630 (16)0.4526 (6)0.0443 (6)
C30.36668 (12)0.09693 (16)0.6207 (6)0.0440 (6)
C40.34648 (14)0.01067 (17)0.6375 (6)0.0529 (7)
H40.31370.01310.52470.063*
C50.37617 (16)0.03939 (19)0.8262 (7)0.0627 (9)
H50.36320.09750.84150.075*
C60.42479 (16)0.0037 (2)0.9915 (7)0.0666 (9)
H60.44350.03851.11820.080*
C70.44684 (14)0.0822 (2)0.9761 (6)0.0596 (8)
H70.48020.10541.08760.072*
C80.41680 (12)0.13180 (17)0.7871 (7)0.0483 (6)
C90.23686 (13)0.22885 (16)0.0549 (6)0.0463 (7)
C100.16580 (12)0.11539 (16)0.2849 (5)0.0448 (7)
C110.12759 (13)0.16537 (16)0.4543 (6)0.0475 (7)
H110.12940.22570.44760.057*
C120.08673 (13)0.12370 (18)0.6333 (6)0.0467 (7)
C130.08131 (14)0.03494 (18)0.6548 (7)0.0594 (9)
H130.05380.00900.77990.071*
C140.11867 (17)0.01353 (19)0.4821 (8)0.0669 (10)
H140.11580.07380.48840.080*
C150.16025 (13)0.02508 (17)0.3002 (7)0.0564 (8)
H150.18500.00940.18590.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0952 (5)0.0440 (4)0.0682 (6)0.0028 (4)0.0217 (6)0.0061 (4)
O10.0843 (14)0.0538 (12)0.0697 (17)0.0173 (10)0.0095 (13)0.0108 (11)
O20.1169 (18)0.0549 (14)0.124 (3)0.0056 (12)0.060 (2)0.0259 (15)
O30.0610 (12)0.0922 (16)0.0540 (15)0.0020 (11)0.0169 (12)0.0025 (12)
N10.0572 (13)0.0627 (15)0.055 (2)0.0116 (10)0.0129 (13)0.0018 (13)
N20.0479 (11)0.0467 (13)0.0439 (15)0.0030 (8)0.0014 (13)0.0011 (13)
N30.0608 (14)0.0423 (13)0.0501 (17)0.0004 (9)0.0107 (13)0.0009 (11)
N40.0552 (12)0.0424 (12)0.0478 (16)0.0017 (10)0.0072 (11)0.0080 (10)
N50.0487 (12)0.0632 (17)0.060 (2)0.0013 (11)0.0065 (13)0.0151 (14)
C10.0522 (15)0.0573 (18)0.048 (2)0.0067 (13)0.0022 (15)0.0028 (15)
C20.0422 (13)0.0482 (16)0.0425 (18)0.0008 (10)0.0003 (13)0.0025 (12)
C30.0435 (13)0.0491 (16)0.0396 (18)0.0049 (11)0.0015 (13)0.0005 (13)
C40.0522 (15)0.0536 (18)0.053 (2)0.0024 (12)0.0011 (14)0.0009 (14)
C50.0688 (17)0.0548 (17)0.064 (3)0.0099 (13)0.0049 (19)0.0084 (16)
C60.0682 (19)0.079 (2)0.053 (2)0.0252 (16)0.0012 (17)0.0140 (17)
C70.0555 (16)0.080 (2)0.043 (2)0.0080 (15)0.0047 (15)0.0012 (15)
C80.0467 (12)0.0569 (17)0.0414 (18)0.0025 (11)0.0002 (16)0.0004 (15)
C90.0505 (13)0.0425 (15)0.0458 (19)0.0059 (12)0.0039 (15)0.0024 (13)
C100.0415 (12)0.0475 (16)0.045 (2)0.0023 (10)0.0007 (12)0.0028 (12)
C110.0471 (14)0.0470 (15)0.0482 (19)0.0040 (11)0.0006 (13)0.0067 (13)
C120.0391 (11)0.0543 (16)0.047 (2)0.0007 (12)0.0016 (12)0.0111 (13)
C130.0543 (15)0.0562 (18)0.068 (3)0.0087 (13)0.0116 (17)0.0010 (15)
C140.0692 (18)0.0454 (16)0.086 (3)0.0022 (14)0.0198 (19)0.0051 (17)
C150.0495 (14)0.0459 (16)0.074 (2)0.0006 (12)0.0134 (16)0.0120 (14)
Geometric parameters (Å, º) top
S1—C91.655 (3)C4—C51.382 (4)
O1—C11.223 (3)C4—H40.9300
O2—N51.216 (3)C5—C61.376 (5)
O3—N51.225 (3)C5—H50.9300
N1—C11.365 (4)C6—C71.386 (4)
N1—C81.402 (3)C6—H60.9300
N1—H10.8600C7—C81.382 (4)
N2—C21.282 (4)C7—H70.9300
N2—N31.355 (3)C10—C111.382 (4)
N3—C91.362 (4)C10—C151.396 (3)
N3—H30.8600C11—C121.378 (4)
N4—C91.346 (3)C11—H110.9300
N4—C101.407 (3)C12—C131.374 (4)
N4—H4A0.8600C13—C141.373 (4)
N5—C121.472 (4)C13—H130.9300
C1—C21.513 (4)C14—C151.375 (4)
C2—C31.448 (4)C14—H140.9300
C3—C41.382 (3)C15—H150.9300
C3—C81.393 (4)
C1—N1—C8111.6 (2)C5—C6—H6118.8
C1—N1—H1124.2C7—C6—H6118.8
C8—N1—H1124.2C8—C7—C6116.8 (3)
C2—N2—N3117.8 (2)C8—C7—H7121.6
N2—N3—C9120.9 (2)C6—C7—H7121.6
N2—N3—H3119.5C7—C8—C3121.4 (2)
C9—N3—H3119.5C7—C8—N1128.9 (3)
C9—N4—C10131.3 (2)C3—C8—N1109.7 (3)
C9—N4—H4A114.3N4—C9—N3112.7 (2)
C10—N4—H4A114.3N4—C9—S1128.8 (2)
O2—N5—O3122.7 (3)N3—C9—S1118.5 (2)
O2—N5—C12118.7 (3)C11—C10—C15118.5 (3)
O3—N5—C12118.6 (2)C11—C10—N4124.9 (2)
O1—C1—N1127.7 (3)C15—C10—N4116.6 (2)
O1—C1—C2127.2 (3)C12—C11—C10118.5 (2)
N1—C1—C2105.2 (2)C12—C11—H11120.8
N2—C2—C3125.3 (2)C10—C11—H11120.8
N2—C2—C1128.1 (2)C13—C12—C11124.1 (3)
C3—C2—C1106.6 (2)C13—C12—N5118.6 (3)
C4—C3—C8120.6 (3)C11—C12—N5117.3 (2)
C4—C3—C2132.5 (3)C14—C13—C12116.5 (3)
C8—C3—C2106.9 (2)C14—C13—H13121.7
C3—C4—C5118.3 (3)C12—C13—H13121.7
C3—C4—H4120.8C13—C14—C15121.5 (3)
C5—C4—H4120.8C13—C14—H14119.2
C6—C5—C4120.4 (3)C15—C14—H14119.2
C6—C5—H5119.8C14—C15—C10120.8 (3)
C4—C5—H5119.8C14—C15—H15119.6
C5—C6—C7122.4 (3)C10—C15—H15119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.213.058 (3)170
N3—H3···O10.862.132.797 (3)134
N4—H4A···N20.862.122.580 (3)113
C7—H7···O2i0.932.553.358 (4)145
C11—H11···S10.932.563.204 (3)127
Symmetry code: (i) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H11N5O3S
Mr341.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)18.5545 (10), 15.3852 (8), 5.3367 (4)
V3)1523.44 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
7285, 2751, 1957
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.00
No. of reflections2751
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.27
Absolute structureFlack (1983), 992 Friedel pairs
Absolute structure parameter0.05 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.86002.21003.058 (3)170.00
N3—H3···O10.86002.13002.797 (3)134.00
N4—H4A···N20.86002.12002.580 (3)113.00
C7—H7···O2i0.93002.55003.358 (4)145.00
C11—H11···S10.93002.56003.204 (3)127.00
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Acknowledgements

HP, MSI and NS thank the Higher Education Commission (HEC), Pakistan, for financial assistance under the National Research Program for Universities (project No. 20-873/R&D/07/452).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010a). Acta Cryst. E66, o1404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds