organic compounds
4-(3-Nitrophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide
aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cDepartment of Physics, University of Sargodh, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the title compound, C15H11N5O3S, intramolecular N—H⋯N hydrogen bonding forms an S(5) ring motif, whereas N—H⋯O and C—H⋯S interactions type complete S(6) ring motifs. The 2-oxoindoline and 3-methoxyphenyl rings are almost planar, with r.m.s. deviations of 0.0178 and 0.0149 Å, respectively, and form a dihedral angle of 33.59 (3)°. In the crystal, molecules are interlinked through the nitro groups in an end-to-end fashion via N—H⋯O and C—H⋯O interactions.
Related literature
For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thiosemicarbazones, see: Pervez et al. (2007). For related structures, see: (Pervez et al. 2010a,b). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
https://doi.org/10.1107/S1600536810017964/bq2210sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017964/bq2210Isup2.hkl
To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(3-nitrophenyl)thiosemicarbazide (1.06 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The orange crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether provided the desired compound (I) in pure form (1.08 g, 63%), m.p. 539 K. The single crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.
The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.
As a part of our work on the synthesis of certain biologically important isatin derivatives (Pervez et al., 2007), we report herein the structure and synthesis of the title compound (I, Fig. 1).
The π and C=S···π interaction play role in stabilizing the molecules.
of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010b) and (III) i.e. 4-(3-methoxyphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010a) have been reported. The title compound (I) differs from (II) due to the attachment of nitro group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. Similarly (I) differs from (III) due to the presence of nitro instead of methoxy function at position-3 of the phenyl ring. In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are interlinked through nitro groups (Fig. 2) in end to end fashion due to N—H···O and C–H···O interactions completing R22(8) ring motifs. The N=O···For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thiosemicarbazones, see: Pervez et al. (2007). For related structures, see: (Pervez et al. 2010a,b). For graph-set notation, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C15H11N5O3S | F(000) = 704 |
Mr = 341.35 | Dx = 1.488 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2751 reflections |
a = 18.5545 (10) Å | θ = 2.6–26.5° |
b = 15.3852 (8) Å | µ = 0.24 mm−1 |
c = 5.3367 (4) Å | T = 296 K |
V = 1523.44 (16) Å3 | Prism, light yellow |
Z = 4 | 0.24 × 0.16 × 0.14 mm |
Bruker Kappa APEXII CCD diffractometer | 2751 independent reflections |
Radiation source: fine-focus sealed tube | 1957 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 7.80 pixels mm-1 | θmax = 26.5°, θmin = 2.6° |
ω scans | h = −23→23 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −19→18 |
Tmin = 0.957, Tmax = 0.966 | l = −6→5 |
7285 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2751 reflections | Δρmax = 0.16 e Å−3 |
217 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 992 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (11) |
C15H11N5O3S | V = 1523.44 (16) Å3 |
Mr = 341.35 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 18.5545 (10) Å | µ = 0.24 mm−1 |
b = 15.3852 (8) Å | T = 296 K |
c = 5.3367 (4) Å | 0.24 × 0.16 × 0.14 mm |
Bruker Kappa APEXII CCD diffractometer | 2751 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1957 reflections with I > 2σ(I) |
Tmin = 0.957, Tmax = 0.966 | Rint = 0.036 |
7285 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.096 | Δρmax = 0.16 e Å−3 |
S = 1.00 | Δρmin = −0.27 e Å−3 |
2751 reflections | Absolute structure: Flack (1983), 992 Friedel pairs |
217 parameters | Absolute structure parameter: −0.05 (11) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22195 (4) | 0.31899 (4) | −0.2161 (2) | 0.0691 (3) | |
O1 | 0.38865 (11) | 0.31688 (13) | 0.4271 (5) | 0.0693 (6) | |
O2 | 0.04767 (14) | 0.25693 (14) | −0.7833 (6) | 0.0987 (11) | |
O3 | 0.01628 (11) | 0.14340 (14) | −0.9884 (5) | 0.0691 (6) | |
N1 | 0.42883 (11) | 0.21951 (15) | 0.7293 (5) | 0.0584 (7) | |
H1 | 0.4577 | 0.2529 | 0.8109 | 0.070* | |
N2 | 0.29869 (10) | 0.15983 (12) | 0.2774 (5) | 0.0462 (5) | |
N3 | 0.28351 (11) | 0.23206 (14) | 0.1419 (5) | 0.0511 (6) | |
H3 | 0.3036 | 0.2806 | 0.1808 | 0.061* | |
N4 | 0.21013 (11) | 0.14865 (14) | −0.0938 (5) | 0.0485 (6) | |
H4A | 0.2223 | 0.1111 | 0.0179 | 0.058* | |
N5 | 0.04756 (12) | 0.17858 (16) | −0.8135 (5) | 0.0573 (7) | |
C1 | 0.38904 (15) | 0.24541 (19) | 0.5275 (6) | 0.0526 (8) | |
C2 | 0.34565 (13) | 0.16630 (16) | 0.4526 (6) | 0.0443 (6) | |
C3 | 0.36668 (12) | 0.09693 (16) | 0.6207 (6) | 0.0440 (6) | |
C4 | 0.34648 (14) | 0.01067 (17) | 0.6375 (6) | 0.0529 (7) | |
H4 | 0.3137 | −0.0131 | 0.5247 | 0.063* | |
C5 | 0.37617 (16) | −0.03939 (19) | 0.8262 (7) | 0.0627 (9) | |
H5 | 0.3632 | −0.0975 | 0.8415 | 0.075* | |
C6 | 0.42479 (16) | −0.0037 (2) | 0.9915 (7) | 0.0666 (9) | |
H6 | 0.4435 | −0.0385 | 1.1182 | 0.080* | |
C7 | 0.44684 (14) | 0.0822 (2) | 0.9761 (6) | 0.0596 (8) | |
H7 | 0.4802 | 0.1054 | 1.0876 | 0.072* | |
C8 | 0.41680 (12) | 0.13180 (17) | 0.7871 (7) | 0.0483 (6) | |
C9 | 0.23686 (13) | 0.22885 (16) | −0.0549 (6) | 0.0463 (7) | |
C10 | 0.16580 (12) | 0.11539 (16) | −0.2849 (5) | 0.0448 (7) | |
C11 | 0.12759 (13) | 0.16537 (16) | −0.4543 (6) | 0.0475 (7) | |
H11 | 0.1294 | 0.2257 | −0.4476 | 0.057* | |
C12 | 0.08673 (13) | 0.12370 (18) | −0.6333 (6) | 0.0467 (7) | |
C13 | 0.08131 (14) | 0.03494 (18) | −0.6548 (7) | 0.0594 (9) | |
H13 | 0.0538 | 0.0090 | −0.7799 | 0.071* | |
C14 | 0.11867 (17) | −0.01353 (19) | −0.4821 (8) | 0.0669 (10) | |
H14 | 0.1158 | −0.0738 | −0.4884 | 0.080* | |
C15 | 0.16025 (13) | 0.02508 (17) | −0.3002 (7) | 0.0564 (8) | |
H15 | 0.1850 | −0.0094 | −0.1859 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0952 (5) | 0.0440 (4) | 0.0682 (6) | 0.0028 (4) | −0.0217 (6) | 0.0061 (4) |
O1 | 0.0843 (14) | 0.0538 (12) | 0.0697 (17) | −0.0173 (10) | −0.0095 (13) | 0.0108 (11) |
O2 | 0.1169 (18) | 0.0549 (14) | 0.124 (3) | −0.0056 (12) | −0.060 (2) | 0.0259 (15) |
O3 | 0.0610 (12) | 0.0922 (16) | 0.0540 (15) | 0.0020 (11) | −0.0169 (12) | 0.0025 (12) |
N1 | 0.0572 (13) | 0.0627 (15) | 0.055 (2) | −0.0116 (10) | −0.0129 (13) | −0.0018 (13) |
N2 | 0.0479 (11) | 0.0467 (13) | 0.0439 (15) | 0.0030 (8) | −0.0014 (13) | −0.0011 (13) |
N3 | 0.0608 (14) | 0.0423 (13) | 0.0501 (17) | −0.0004 (9) | −0.0107 (13) | 0.0009 (11) |
N4 | 0.0552 (12) | 0.0424 (12) | 0.0478 (16) | 0.0017 (10) | −0.0072 (11) | 0.0080 (10) |
N5 | 0.0487 (12) | 0.0632 (17) | 0.060 (2) | −0.0013 (11) | −0.0065 (13) | 0.0151 (14) |
C1 | 0.0522 (15) | 0.0573 (18) | 0.048 (2) | −0.0067 (13) | 0.0022 (15) | −0.0028 (15) |
C2 | 0.0422 (13) | 0.0482 (16) | 0.0425 (18) | −0.0008 (10) | −0.0003 (13) | −0.0025 (12) |
C3 | 0.0435 (13) | 0.0491 (16) | 0.0396 (18) | 0.0049 (11) | 0.0015 (13) | −0.0005 (13) |
C4 | 0.0522 (15) | 0.0536 (18) | 0.053 (2) | 0.0024 (12) | 0.0011 (14) | 0.0009 (14) |
C5 | 0.0688 (17) | 0.0548 (17) | 0.064 (3) | 0.0099 (13) | 0.0049 (19) | 0.0084 (16) |
C6 | 0.0682 (19) | 0.079 (2) | 0.053 (2) | 0.0252 (16) | 0.0012 (17) | 0.0140 (17) |
C7 | 0.0555 (16) | 0.080 (2) | 0.043 (2) | 0.0080 (15) | −0.0047 (15) | −0.0012 (15) |
C8 | 0.0467 (12) | 0.0569 (17) | 0.0414 (18) | 0.0025 (11) | 0.0002 (16) | −0.0004 (15) |
C9 | 0.0505 (13) | 0.0425 (15) | 0.0458 (19) | 0.0059 (12) | 0.0039 (15) | −0.0024 (13) |
C10 | 0.0415 (12) | 0.0475 (16) | 0.045 (2) | 0.0023 (10) | 0.0007 (12) | 0.0028 (12) |
C11 | 0.0471 (14) | 0.0470 (15) | 0.0482 (19) | 0.0040 (11) | −0.0006 (13) | 0.0067 (13) |
C12 | 0.0391 (11) | 0.0543 (16) | 0.047 (2) | 0.0007 (12) | −0.0016 (12) | 0.0111 (13) |
C13 | 0.0543 (15) | 0.0562 (18) | 0.068 (3) | −0.0087 (13) | −0.0116 (17) | 0.0010 (15) |
C14 | 0.0692 (18) | 0.0454 (16) | 0.086 (3) | −0.0022 (14) | −0.0198 (19) | 0.0051 (17) |
C15 | 0.0495 (14) | 0.0459 (16) | 0.074 (2) | −0.0006 (12) | −0.0134 (16) | 0.0120 (14) |
S1—C9 | 1.655 (3) | C4—C5 | 1.382 (4) |
O1—C1 | 1.223 (3) | C4—H4 | 0.9300 |
O2—N5 | 1.216 (3) | C5—C6 | 1.376 (5) |
O3—N5 | 1.225 (3) | C5—H5 | 0.9300 |
N1—C1 | 1.365 (4) | C6—C7 | 1.386 (4) |
N1—C8 | 1.402 (3) | C6—H6 | 0.9300 |
N1—H1 | 0.8600 | C7—C8 | 1.382 (4) |
N2—C2 | 1.282 (4) | C7—H7 | 0.9300 |
N2—N3 | 1.355 (3) | C10—C11 | 1.382 (4) |
N3—C9 | 1.362 (4) | C10—C15 | 1.396 (3) |
N3—H3 | 0.8600 | C11—C12 | 1.378 (4) |
N4—C9 | 1.346 (3) | C11—H11 | 0.9300 |
N4—C10 | 1.407 (3) | C12—C13 | 1.374 (4) |
N4—H4A | 0.8600 | C13—C14 | 1.373 (4) |
N5—C12 | 1.472 (4) | C13—H13 | 0.9300 |
C1—C2 | 1.513 (4) | C14—C15 | 1.375 (4) |
C2—C3 | 1.448 (4) | C14—H14 | 0.9300 |
C3—C4 | 1.382 (3) | C15—H15 | 0.9300 |
C3—C8 | 1.393 (4) | ||
C1—N1—C8 | 111.6 (2) | C5—C6—H6 | 118.8 |
C1—N1—H1 | 124.2 | C7—C6—H6 | 118.8 |
C8—N1—H1 | 124.2 | C8—C7—C6 | 116.8 (3) |
C2—N2—N3 | 117.8 (2) | C8—C7—H7 | 121.6 |
N2—N3—C9 | 120.9 (2) | C6—C7—H7 | 121.6 |
N2—N3—H3 | 119.5 | C7—C8—C3 | 121.4 (2) |
C9—N3—H3 | 119.5 | C7—C8—N1 | 128.9 (3) |
C9—N4—C10 | 131.3 (2) | C3—C8—N1 | 109.7 (3) |
C9—N4—H4A | 114.3 | N4—C9—N3 | 112.7 (2) |
C10—N4—H4A | 114.3 | N4—C9—S1 | 128.8 (2) |
O2—N5—O3 | 122.7 (3) | N3—C9—S1 | 118.5 (2) |
O2—N5—C12 | 118.7 (3) | C11—C10—C15 | 118.5 (3) |
O3—N5—C12 | 118.6 (2) | C11—C10—N4 | 124.9 (2) |
O1—C1—N1 | 127.7 (3) | C15—C10—N4 | 116.6 (2) |
O1—C1—C2 | 127.2 (3) | C12—C11—C10 | 118.5 (2) |
N1—C1—C2 | 105.2 (2) | C12—C11—H11 | 120.8 |
N2—C2—C3 | 125.3 (2) | C10—C11—H11 | 120.8 |
N2—C2—C1 | 128.1 (2) | C13—C12—C11 | 124.1 (3) |
C3—C2—C1 | 106.6 (2) | C13—C12—N5 | 118.6 (3) |
C4—C3—C8 | 120.6 (3) | C11—C12—N5 | 117.3 (2) |
C4—C3—C2 | 132.5 (3) | C14—C13—C12 | 116.5 (3) |
C8—C3—C2 | 106.9 (2) | C14—C13—H13 | 121.7 |
C3—C4—C5 | 118.3 (3) | C12—C13—H13 | 121.7 |
C3—C4—H4 | 120.8 | C13—C14—C15 | 121.5 (3) |
C5—C4—H4 | 120.8 | C13—C14—H14 | 119.2 |
C6—C5—C4 | 120.4 (3) | C15—C14—H14 | 119.2 |
C6—C5—H5 | 119.8 | C14—C15—C10 | 120.8 (3) |
C4—C5—H5 | 119.8 | C14—C15—H15 | 119.6 |
C5—C6—C7 | 122.4 (3) | C10—C15—H15 | 119.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.21 | 3.058 (3) | 170 |
N3—H3···O1 | 0.86 | 2.13 | 2.797 (3) | 134 |
N4—H4A···N2 | 0.86 | 2.12 | 2.580 (3) | 113 |
C7—H7···O2i | 0.93 | 2.55 | 3.358 (4) | 145 |
C11—H11···S1 | 0.93 | 2.56 | 3.204 (3) | 127 |
Symmetry code: (i) x+1/2, −y+1/2, z+2. |
Experimental details
Crystal data | |
Chemical formula | C15H11N5O3S |
Mr | 341.35 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 18.5545 (10), 15.3852 (8), 5.3367 (4) |
V (Å3) | 1523.44 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.24 × 0.16 × 0.14 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.957, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7285, 2751, 1957 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.096, 1.00 |
No. of reflections | 2751 |
No. of parameters | 217 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.27 |
Absolute structure | Flack (1983), 992 Friedel pairs |
Absolute structure parameter | −0.05 (11) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.8600 | 2.2100 | 3.058 (3) | 170.00 |
N3—H3···O1 | 0.8600 | 2.1300 | 2.797 (3) | 134.00 |
N4—H4A···N2 | 0.8600 | 2.1200 | 2.580 (3) | 113.00 |
C7—H7···O2i | 0.9300 | 2.5500 | 3.358 (4) | 145.00 |
C11—H11···S1 | 0.9300 | 2.5600 | 3.204 (3) | 127.00 |
Symmetry code: (i) x+1/2, −y+1/2, z+2. |
Acknowledgements
HP, MSI and NS thank the Higher Education Commission (HEC), Pakistan, for financial assistance under the National Research Program for Universities (project No. 20-873/R&D/07/452).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010a). Acta Cryst. E66, o1404. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178–1186. Web of Science CrossRef PubMed CAS Google Scholar
Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our work on the synthesis of certain biologically important isatin derivatives (Pervez et al., 2007), we report herein the structure and synthesis of the title compound (I, Fig. 1).
The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010b) and (III) i.e. 4-(3-methoxyphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010a) have been reported. The title compound (I) differs from (II) due to the attachment of nitro group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. Similarly (I) differs from (III) due to the presence of nitro instead of methoxy function at position-3 of the phenyl ring. In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are interlinked through nitro groups (Fig. 2) in end to end fashion due to N—H···O and C–H···O interactions completing R22(8) ring motifs. The N=O···π and C=S···π interaction play role in stabilizing the molecules.