organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-chloro-2-(4-methyl­benzene­sulfonamido)­benzoate

aCollege of Light Industry and Food Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 15 May 2010; accepted 21 May 2010; online 26 May 2010)

In the title compound, C15H14ClNO4S, the benzene rings are oriented at a dihedral angle of 85.42 (1)°. An intra­molecular N—H⋯O hydrogen bond results in the formation of a five-membered ring and an intramolecular C—H⋯O inter­action also occurs.

Related literature

For general background to the use of the title compound as an inter­mediate in the synthesis of quinoline, see: Theeraladanon et al. (2004[Theeraladanon, C., Arisawa, M., Nishida, A. & Nakagawa, M. (2004). Tetrahedron, 60, 3017-3035.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO4S

  • Mr = 339.78

  • Monoclinic, P 21 /c

  • a = 18.549 (4) Å

  • b = 9.935 (2) Å

  • c = 8.5190 (17) Å

  • β = 97.34 (3)°

  • V = 1557.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.891, Tmax = 0.981

  • 2914 measured reflections

  • 2825 independent reflections

  • 1259 reflections with I > 2σ(I)

  • Rint = 0.093

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.141

  • S = 1.00

  • 2825 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O4 0.86 2.07 2.615 (6) 120
C9—H9A⋯O2 0.93 2.35 3.022 (6) 129

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines are a major class of alkaloids and play an important role in the fields of natural products and medicinal chemistry. The title compound, (I), is a useful intermediate. (Theeraladanon et al., 2004) and we report here in the crystal structure of it. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A(C2-C7) and B(C8-C13) are planar with a dihedral angle of 85.42 (1) ° between them. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring C (C8/C13/C14/O4/N). In the crystal structure, intermolecular C-H···O hydrogen bonds link the molecules into chains along the b axis (Fig. 2).

Related literature top

For general background to the use of the title compound as an intermediate in the synthesis of quinoline, see: Theeraladanon et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by the literature method (Theeraladanon et al., 2004). Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Quinolines are a major class of alkaloids and play an important role in the fields of natural products and medicinal chemistry. The title compound, (I), is a useful intermediate. (Theeraladanon et al., 2004) and we report here in the crystal structure of it. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A(C2-C7) and B(C8-C13) are planar with a dihedral angle of 85.42 (1) ° between them. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring C (C8/C13/C14/O4/N). In the crystal structure, intermolecular C-H···O hydrogen bonds link the molecules into chains along the b axis (Fig. 2).

For general background to the use of the title compound as an intermediate in the synthesis of quinoline, see: Theeraladanon et al. (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
Methyl 5-chloro-2-(4-methylbenzenesulfonamido)benzoate top
Crystal data top
C15H14ClNO4SF(000) = 704
Mr = 339.78Dx = 1.449 Mg m3
Monoclinic, P21/cMelting point: 388 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 18.549 (4) ÅCell parameters from 25 reflections
b = 9.935 (2) Åθ = 8–12°
c = 8.5190 (17) ŵ = 0.40 mm1
β = 97.34 (3)°T = 293 K
V = 1557.1 (5) Å3Needle, colourless
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1259 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 25.3°, θmin = 1.1°
ω/2θ scansh = 022
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.891, Tmax = 0.981l = 1010
2914 measured reflections3 standard reflections every 200 reflections
2825 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
2825 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H14ClNO4SV = 1557.1 (5) Å3
Mr = 339.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.549 (4) ŵ = 0.40 mm1
b = 9.935 (2) ÅT = 293 K
c = 8.5190 (17) Å0.30 × 0.10 × 0.05 mm
β = 97.34 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1259 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.093
Tmin = 0.891, Tmax = 0.9813 standard reflections every 200 reflections
2914 measured reflections intensity decay: 1%
2825 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
2825 reflectionsΔρmin = 0.29 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.29259 (8)0.49679 (16)1.24335 (16)0.0564 (4)
Cl0.02197 (9)0.34294 (17)0.71715 (19)0.0780 (6)
O10.3413 (2)0.4520 (4)1.3779 (4)0.0819 (14)
O20.2559 (2)0.6236 (4)1.2478 (5)0.0722 (12)
O40.2340 (2)0.1125 (4)1.2061 (5)0.0770 (13)
O50.1500 (2)0.0066 (4)1.0409 (4)0.0642 (11)
N0.2329 (2)0.3752 (4)1.2181 (5)0.0583 (13)
H10.23740.31001.28500.070*
C10.4669 (4)0.4931 (9)0.6934 (7)0.114 (3)
H1B0.47000.40280.65430.170*
H1C0.51490.52520.73090.170*
H1D0.44520.55030.60960.170*
C20.4210 (3)0.4943 (9)0.8276 (7)0.0697 (18)
C30.3884 (4)0.6094 (7)0.8730 (8)0.081 (2)
H3A0.39450.68850.81780.098*
C40.3475 (3)0.6136 (6)0.9950 (7)0.0662 (17)
H4A0.32640.69381.02240.079*
C50.3382 (3)0.4966 (6)1.0771 (6)0.0503 (13)
C60.3695 (3)0.3769 (6)1.0334 (7)0.0634 (17)
H6A0.36300.29721.08710.076*
C70.4102 (3)0.3791 (7)0.9098 (8)0.0754 (19)
H7A0.43120.29940.88070.090*
C80.1733 (3)0.3692 (5)1.0920 (6)0.0510 (14)
C90.1384 (3)0.4848 (5)1.0265 (7)0.0630 (16)
H9A0.15560.56901.06130.076*
C100.0799 (3)0.4767 (5)0.9126 (7)0.0547 (15)
H10A0.05730.55480.87100.066*
C110.0539 (3)0.3519 (6)0.8589 (6)0.0531 (14)
C120.0869 (3)0.2351 (6)0.9199 (6)0.0543 (14)
H12A0.06900.15180.88320.065*
C130.1475 (3)0.2419 (5)1.0376 (6)0.0449 (12)
C140.1818 (3)0.1175 (5)1.1044 (7)0.0533 (14)
C150.1805 (4)0.1223 (5)1.0982 (8)0.088 (2)
H15A0.15290.19421.04450.132*
H15B0.17860.12941.21000.132*
H15C0.23010.12831.07780.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0692 (9)0.0539 (9)0.0446 (8)0.0107 (9)0.0018 (7)0.0062 (8)
Cl0.0678 (10)0.0855 (12)0.0761 (11)0.0157 (9)0.0087 (8)0.0023 (9)
O10.101 (3)0.097 (3)0.041 (2)0.019 (3)0.020 (2)0.006 (2)
O20.083 (3)0.052 (3)0.084 (3)0.002 (2)0.021 (2)0.017 (2)
O40.087 (3)0.059 (3)0.076 (3)0.005 (2)0.023 (3)0.005 (2)
O50.075 (3)0.036 (2)0.077 (3)0.004 (2)0.006 (2)0.004 (2)
N0.069 (3)0.057 (3)0.049 (3)0.013 (3)0.005 (2)0.009 (2)
C10.091 (5)0.192 (9)0.058 (4)0.041 (6)0.012 (4)0.015 (5)
C20.053 (4)0.107 (6)0.045 (3)0.020 (4)0.010 (3)0.001 (4)
C30.089 (5)0.080 (5)0.074 (5)0.023 (4)0.005 (4)0.029 (4)
C40.075 (5)0.049 (4)0.073 (4)0.002 (3)0.002 (4)0.013 (3)
C50.053 (3)0.052 (3)0.043 (3)0.006 (3)0.006 (2)0.005 (3)
C60.080 (4)0.056 (4)0.053 (4)0.003 (3)0.006 (3)0.001 (3)
C70.070 (4)0.089 (5)0.064 (4)0.008 (4)0.001 (4)0.019 (4)
C80.055 (4)0.051 (3)0.047 (3)0.002 (3)0.007 (3)0.008 (3)
C90.079 (4)0.035 (3)0.075 (4)0.010 (3)0.010 (4)0.008 (3)
C100.058 (4)0.037 (3)0.068 (4)0.008 (3)0.003 (3)0.007 (3)
C110.052 (3)0.058 (4)0.049 (3)0.007 (3)0.002 (3)0.008 (3)
C120.052 (3)0.055 (4)0.058 (3)0.005 (3)0.012 (3)0.002 (3)
C130.054 (3)0.037 (3)0.044 (3)0.001 (3)0.008 (3)0.004 (2)
C140.068 (4)0.040 (3)0.053 (4)0.001 (3)0.011 (3)0.003 (3)
C150.132 (6)0.032 (4)0.100 (5)0.023 (4)0.019 (5)0.020 (3)
Geometric parameters (Å, º) top
S—O21.434 (4)C4—H4A0.9300
S—O11.436 (4)C5—C61.395 (7)
S—N1.634 (4)C6—C71.372 (8)
S—C51.740 (5)C6—H6A0.9300
Cl—C111.736 (5)C7—H7A0.9300
O4—C141.215 (6)C8—C91.398 (7)
O5—C141.331 (6)C8—C131.409 (7)
O5—C151.459 (6)C9—C101.363 (7)
N—C81.442 (6)C9—H9A0.9300
N—H10.8600C10—C111.386 (7)
C1—C21.511 (8)C10—H10A0.9300
C1—H1B0.9600C11—C121.382 (6)
C1—H1C0.9600C12—C131.410 (6)
C1—H1D0.9600C12—H12A0.9300
C2—C71.370 (8)C13—C141.470 (7)
C2—C31.372 (8)C15—H15A0.9600
C3—C41.363 (9)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.379 (7)
O2—S—O1120.2 (3)C2—C7—C6122.4 (6)
O2—S—N109.7 (2)C2—C7—H7A118.8
O1—S—N102.9 (2)C6—C7—H7A118.8
O2—S—C5107.7 (3)C9—C8—C13119.1 (5)
O1—S—C5109.1 (3)C9—C8—N122.3 (5)
N—S—C5106.5 (2)C13—C8—N118.5 (5)
C14—O5—C15117.3 (4)C10—C9—C8121.4 (5)
C8—N—S124.8 (4)C10—C9—H9A119.3
C8—N—H1117.6C8—C9—H9A119.3
S—N—H1117.6C9—C10—C11120.0 (5)
C2—C1—H1B109.5C9—C10—H10A120.0
C2—C1—H1C109.5C11—C10—H10A120.0
H1B—C1—H1C109.5C12—C11—C10120.6 (5)
C2—C1—H1D109.5C12—C11—Cl119.9 (4)
H1B—C1—H1D109.5C10—C11—Cl119.5 (4)
H1C—C1—H1D109.5C11—C12—C13120.1 (5)
C7—C2—C3117.0 (6)C11—C12—H12A120.0
C7—C2—C1120.9 (8)C13—C12—H12A120.0
C3—C2—C1122.1 (7)C12—C13—C8118.9 (5)
C4—C3—C2123.2 (6)C12—C13—C14120.0 (5)
C4—C3—H3A118.4C8—C13—C14121.1 (5)
C2—C3—H3A118.4O4—C14—O5121.8 (5)
C3—C4—C5118.6 (6)O4—C14—C13125.2 (5)
C3—C4—H4A120.7O5—C14—C13113.0 (5)
C5—C4—H4A120.7O5—C15—H15A109.5
C4—C5—C6120.0 (5)O5—C15—H15B109.5
C4—C5—S121.2 (5)H15A—C15—H15B109.5
C6—C5—S118.7 (4)O5—C15—H15C109.5
C7—C6—C5118.7 (6)H15A—C15—H15C109.5
C7—C6—H6A120.7H15B—C15—H15C109.5
C5—C6—H6A120.7
O2—S—N—C853.5 (5)S—N—C8—C13151.2 (4)
O1—S—N—C8177.4 (4)C13—C8—C9—C100.2 (8)
C5—S—N—C862.7 (5)N—C8—C9—C10176.8 (5)
C7—C2—C3—C40.8 (9)C8—C9—C10—C110.1 (8)
C1—C2—C3—C4179.1 (5)C9—C10—C11—C120.1 (8)
C2—C3—C4—C50.1 (9)C9—C10—C11—Cl178.5 (4)
C3—C4—C5—C60.5 (8)C10—C11—C12—C130.2 (8)
C3—C4—C5—S175.0 (4)Cl—C11—C12—C13178.4 (4)
O2—S—C5—C413.7 (5)C11—C12—C13—C80.1 (7)
O1—S—C5—C4118.4 (4)C11—C12—C13—C14179.0 (5)
N—S—C5—C4131.2 (4)C9—C8—C13—C120.1 (7)
O2—S—C5—C6170.7 (4)N—C8—C13—C12177.0 (4)
O1—S—C5—C657.2 (5)C9—C8—C13—C14179.2 (5)
N—S—C5—C653.2 (5)N—C8—C13—C142.1 (7)
C4—C5—C6—C70.5 (8)C15—O5—C14—O40.4 (8)
S—C5—C6—C7175.1 (4)C15—O5—C14—C13179.4 (5)
C3—C2—C7—C60.8 (8)C12—C13—C14—O4180.0 (5)
C1—C2—C7—C6179.1 (5)C8—C13—C14—O40.9 (8)
C5—C6—C7—C20.2 (8)C12—C13—C14—O50.2 (7)
S—N—C8—C931.8 (7)C8—C13—C14—O5179.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O40.862.072.615 (6)120
C9—H9A···O20.932.353.022 (6)129

Experimental details

Crystal data
Chemical formulaC15H14ClNO4S
Mr339.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.549 (4), 9.935 (2), 8.5190 (17)
β (°) 97.34 (3)
V3)1557.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.891, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2914, 2825, 1259
Rint0.093
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.141, 1.00
No. of reflections2825
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O40.862.072.615 (6)120
C9—H9A···O20.932.353.022 (6)129
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTheeraladanon, C., Arisawa, M., Nishida, A. & Nakagawa, M. (2004). Tetrahedron, 60, 3017–3035.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds