organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(4-methyl­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 May 2010; accepted 20 May 2010; online 26 May 2010)

In the title compound, C14H12ClNO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 89.4 (1)° and that between the sulfonyl and benzoyl benzene rings is 89.1 (2)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794.]); Suchetan et al. (2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1281.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1292.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO3S

  • Mr = 309.76

  • Monoclinic, P 21 /n

  • a = 8.0554 (8) Å

  • b = 23.209 (2) Å

  • c = 8.1199 (9) Å

  • β = 103.52 (1)°

  • V = 1476.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 299 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.855, Tmax = 0.906

  • 6106 measured reflections

  • 3012 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.153

  • S = 1.07

  • 3012 reflections

  • 184 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.14 (2) 2.970 (4) 169 (4)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010a,b), the structure of 2-chloro-N-(4-methylbenzoyl)benzenesulfonamide (I) has been determined (Fig.1). The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond, similar to that observed in 2-methyl-N-(4-methylbenzoyl)-benzenesulfonamide (II) (Gowda et al., 2010a), 2-chloro-N-(3-methylbenzoyl)-benzenesulfonamide (III) (Suchetan et al., 2010b), 2-chloro-N-(2-methylbenzoyl)- benzenesulfonamide (IV) (Suchetan et al., 2010a) and 2-chloro-N-(benzoyl)-benzenesulfonamide (V) (Gowda et al., 2010b).

The molecules are twisted at the S atom with the torsional angle of 60.4 (3)°, compared to those of -53.1 (2)° and 61.2 (2)°, in the two molecules of (II), -66.5 (2)° in (III), -64.0 (2)° in (IV) and 66.7 (2)° in (V). The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 89.4 (1)°, compared to the values of 86.0 (1)° and 87.9 (1)° in the 2 molecules of (II), 88.4 (1)° in (III), 84.8 (1)° in (IV) and 87.3 (1)° in (V).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene ring is 89.1 (2)°, compared to the values of 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) of (II), 74.7 (1)° in (III), 78.7 (1)° in (IV) and 73.3 (1)° in (V).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010a,b).

Experimental top

The title compound was prepared by refluxing a mixture of 4-methylbenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, 2-chloro-N-(4-methylbenzoyl)benzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C4, C9 and C10 atoms were restrained to approximate isotropic behavior.

Structure description top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010a,b), the structure of 2-chloro-N-(4-methylbenzoyl)benzenesulfonamide (I) has been determined (Fig.1). The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond, similar to that observed in 2-methyl-N-(4-methylbenzoyl)-benzenesulfonamide (II) (Gowda et al., 2010a), 2-chloro-N-(3-methylbenzoyl)-benzenesulfonamide (III) (Suchetan et al., 2010b), 2-chloro-N-(2-methylbenzoyl)- benzenesulfonamide (IV) (Suchetan et al., 2010a) and 2-chloro-N-(benzoyl)-benzenesulfonamide (V) (Gowda et al., 2010b).

The molecules are twisted at the S atom with the torsional angle of 60.4 (3)°, compared to those of -53.1 (2)° and 61.2 (2)°, in the two molecules of (II), -66.5 (2)° in (III), -64.0 (2)° in (IV) and 66.7 (2)° in (V). The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 89.4 (1)°, compared to the values of 86.0 (1)° and 87.9 (1)° in the 2 molecules of (II), 88.4 (1)° in (III), 84.8 (1)° in (IV) and 87.3 (1)° in (V).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene ring is 89.1 (2)°, compared to the values of 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) of (II), 74.7 (1)° in (III), 78.7 (1)° in (IV) and 73.3 (1)° in (V).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010a,b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Chloro-N-(4-methylbenzoyl)benzenesulfonamide top
Crystal data top
C14H12ClNO3SF(000) = 640
Mr = 309.76Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2713 reflections
a = 8.0554 (8) Åθ = 2.6–27.7°
b = 23.209 (2) ŵ = 0.41 mm1
c = 8.1199 (9) ÅT = 299 K
β = 103.52 (1)°Prism, colourless
V = 1476.0 (3) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3012 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 107
Tmin = 0.855, Tmax = 0.906k = 2920
6106 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 1.5332P]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max = 0.009
184 parametersΔρmax = 0.43 e Å3
19 restraintsΔρmin = 0.54 e Å3
Crystal data top
C14H12ClNO3SV = 1476.0 (3) Å3
Mr = 309.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0554 (8) ŵ = 0.41 mm1
b = 23.209 (2) ÅT = 299 K
c = 8.1199 (9) Å0.40 × 0.30 × 0.25 mm
β = 103.52 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3012 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2396 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.906Rint = 0.012
6106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05819 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
3012 reflectionsΔρmin = 0.54 e Å3
184 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8834 (4)0.06157 (12)0.7360 (4)0.0399 (6)
C20.8115 (5)0.05804 (15)0.8744 (5)0.0609 (9)
C30.9088 (9)0.0714 (2)1.0333 (6)0.1017 (18)
H30.86100.06931.12680.122*
C41.0737 (10)0.0875 (3)1.0534 (7)0.112 (2)
H41.13890.09571.16140.135*
C51.1463 (6)0.0921 (2)0.9173 (7)0.0901 (15)
H51.25890.10420.93250.108*
C61.0509 (4)0.07867 (14)0.7569 (5)0.0564 (8)
H61.09950.08120.66390.068*
C70.6201 (4)0.14562 (15)0.4825 (5)0.0553 (8)
C80.4601 (4)0.17935 (14)0.4640 (5)0.0525 (8)
C90.4691 (6)0.23742 (19)0.4380 (8)0.1039 (18)
H90.57120.25380.42660.125*
C100.3274 (6)0.27170 (19)0.4289 (9)0.113 (2)
H100.33590.31100.41080.136*
C110.1739 (5)0.24948 (16)0.4456 (6)0.0738 (12)
C120.1647 (4)0.19155 (15)0.4642 (6)0.0667 (10)
H120.06150.17500.47140.080*
C130.3054 (4)0.15666 (14)0.4729 (5)0.0581 (9)
H130.29500.11710.48490.070*
C140.0207 (6)0.2878 (2)0.4412 (8)0.1062 (18)
H14A0.01050.30710.33380.127*
H14B0.04890.31590.53020.127*
H14C0.07330.26480.45700.127*
N10.6050 (3)0.08618 (12)0.4850 (4)0.0524 (7)
H1N0.511 (3)0.0699 (15)0.482 (5)0.063*
O10.8805 (3)0.05469 (13)0.4188 (3)0.0701 (7)
O20.7012 (3)0.01317 (10)0.5312 (4)0.0727 (8)
O30.7585 (3)0.16727 (12)0.4989 (5)0.0902 (10)
Cl10.60112 (17)0.03731 (6)0.85557 (19)0.1056 (5)
S10.77166 (9)0.04311 (3)0.52941 (10)0.0470 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0441 (15)0.0354 (14)0.0400 (15)0.0042 (12)0.0098 (12)0.0020 (12)
C20.083 (2)0.0542 (19)0.053 (2)0.0150 (18)0.0314 (18)0.0112 (16)
C30.165 (6)0.097 (4)0.047 (2)0.046 (4)0.034 (3)0.008 (2)
C40.140 (5)0.105 (4)0.067 (3)0.035 (4)0.027 (3)0.023 (3)
C50.072 (3)0.077 (3)0.098 (4)0.001 (2)0.027 (3)0.013 (3)
C60.0454 (17)0.0522 (19)0.067 (2)0.0015 (14)0.0028 (15)0.0024 (16)
C70.0408 (17)0.0527 (19)0.072 (2)0.0017 (14)0.0127 (15)0.0123 (16)
C80.0416 (16)0.0453 (17)0.070 (2)0.0008 (13)0.0113 (15)0.0130 (15)
C90.062 (2)0.058 (2)0.194 (5)0.0004 (19)0.035 (3)0.035 (3)
C100.079 (3)0.049 (2)0.214 (6)0.010 (2)0.040 (3)0.038 (3)
C110.056 (2)0.048 (2)0.117 (4)0.0122 (16)0.019 (2)0.020 (2)
C120.0449 (17)0.050 (2)0.107 (3)0.0012 (15)0.0212 (19)0.007 (2)
C130.0466 (17)0.0397 (17)0.089 (3)0.0005 (14)0.0184 (17)0.0054 (16)
C140.079 (3)0.070 (3)0.174 (6)0.030 (2)0.037 (3)0.027 (3)
N10.0356 (13)0.0464 (15)0.0708 (18)0.0023 (11)0.0038 (12)0.0026 (13)
O10.0647 (15)0.106 (2)0.0433 (13)0.0244 (14)0.0207 (11)0.0014 (13)
O20.0460 (13)0.0452 (14)0.118 (2)0.0032 (10)0.0014 (13)0.0245 (14)
O30.0441 (14)0.0663 (17)0.163 (3)0.0014 (12)0.0291 (16)0.0272 (18)
Cl10.1019 (9)0.1066 (9)0.1379 (12)0.0130 (7)0.0877 (9)0.0378 (8)
S10.0388 (4)0.0499 (4)0.0500 (4)0.0057 (3)0.0059 (3)0.0087 (3)
Geometric parameters (Å, º) top
C1—C61.378 (4)C9—C101.379 (6)
C1—C21.381 (4)C9—H90.9300
C1—S11.761 (3)C10—C111.376 (6)
C2—C31.379 (7)C10—H100.9300
C2—Cl11.734 (4)C11—C121.357 (5)
C3—C41.353 (8)C11—C141.515 (5)
C3—H30.9300C12—C131.382 (5)
C4—C51.370 (8)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.384 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O31.201 (4)N1—S11.645 (3)
C7—N11.385 (4)N1—H1N0.840 (19)
C7—C81.485 (4)O1—S11.420 (3)
C8—C91.369 (5)O2—S11.426 (3)
C8—C131.370 (4)
C6—C1—C2120.1 (3)C11—C10—C9122.0 (4)
C6—C1—S1117.1 (2)C11—C10—H10119.0
C2—C1—S1122.8 (3)C9—C10—H10119.0
C3—C2—C1119.5 (4)C12—C11—C10117.1 (4)
C3—C2—Cl1118.3 (4)C12—C11—C14121.3 (4)
C1—C2—Cl1122.1 (3)C10—C11—C14121.6 (4)
C4—C3—C2120.2 (5)C11—C12—C13121.4 (3)
C4—C3—H3119.9C11—C12—H12119.3
C2—C3—H3119.9C13—C12—H12119.3
C3—C4—C5121.1 (5)C8—C13—C12121.2 (3)
C3—C4—H4119.5C8—C13—H13119.4
C5—C4—H4119.5C12—C13—H13119.4
C4—C5—C6119.6 (5)C11—C14—H14A109.5
C4—C5—H5120.2C11—C14—H14B109.5
C6—C5—H5120.2H14A—C14—H14B109.5
C1—C6—C5119.5 (4)C11—C14—H14C109.5
C1—C6—H6120.2H14A—C14—H14C109.5
C5—C6—H6120.2H14B—C14—H14C109.5
O3—C7—N1119.8 (3)C7—N1—S1122.6 (2)
O3—C7—C8123.5 (3)C7—N1—H1N122 (3)
N1—C7—C8116.7 (3)S1—N1—H1N115 (3)
C9—C8—C13117.9 (3)O1—S1—O2119.06 (17)
C9—C8—C7117.3 (3)O1—S1—N1109.85 (16)
C13—C8—C7124.8 (3)O2—S1—N1104.63 (14)
C8—C9—C10120.2 (4)O1—S1—C1107.63 (15)
C8—C9—H9119.9O2—S1—C1109.23 (16)
C10—C9—H9119.9N1—S1—C1105.67 (14)
C6—C1—C2—C30.4 (5)C9—C10—C11—C122.8 (9)
S1—C1—C2—C3177.8 (3)C9—C10—C11—C14177.9 (6)
C6—C1—C2—Cl1179.5 (3)C10—C11—C12—C132.5 (7)
S1—C1—C2—Cl12.3 (4)C14—C11—C12—C13178.2 (5)
C1—C2—C3—C40.3 (7)C9—C8—C13—C123.1 (6)
Cl1—C2—C3—C4179.8 (4)C7—C8—C13—C12176.1 (4)
C2—C3—C4—C51.3 (8)C11—C12—C13—C80.4 (7)
C3—C4—C5—C61.6 (8)O3—C7—N1—S16.5 (5)
C2—C1—C6—C50.1 (5)C8—C7—N1—S1171.8 (3)
S1—C1—C6—C5178.2 (3)C7—N1—S1—O155.4 (3)
C4—C5—C6—C10.9 (6)C7—N1—S1—O2175.7 (3)
O3—C7—C8—C910.5 (6)C7—N1—S1—C160.4 (3)
N1—C7—C8—C9171.3 (4)C6—C1—S1—O14.7 (3)
O3—C7—C8—C13168.8 (4)C2—C1—S1—O1177.0 (3)
N1—C7—C8—C139.5 (5)C6—C1—S1—O2125.9 (2)
C13—C8—C9—C102.8 (8)C2—C1—S1—O252.4 (3)
C7—C8—C9—C10176.5 (5)C6—C1—S1—N1122.0 (2)
C8—C9—C10—C110.2 (10)C2—C1—S1—N159.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.14 (2)2.970 (4)169 (4)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H12ClNO3S
Mr309.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)8.0554 (8), 23.209 (2), 8.1199 (9)
β (°) 103.52 (1)
V3)1476.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.855, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
6106, 3012, 2396
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.153, 1.07
No. of reflections3012
No. of parameters184
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.840 (19)2.14 (2)2.970 (4)169 (4)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1292.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds