organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(2-methyl­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 May 2010; accepted 24 May 2010; online 29 May 2010)

In the title compound, C15H15NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. Further, the conformation of the C=O bond is syn to the ortho-methyl group in the benzoyl ring. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 87.1 (1)° and that between the sulfonyl and the benzoyl benzene rings is 58.2 (1)°. In the crystal structure, mol­ecules are linked by pairs of N—H⋯O(S) hydrogen bonds, forming inversion dimers.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o1476.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3S

  • Mr = 289.34

  • Triclinic, [P \overline 1]

  • a = 6.4097 (8) Å

  • b = 10.433 (1) Å

  • c = 11.258 (1) Å

  • α = 79.17 (1)°

  • β = 74.34 (1)°

  • γ = 85.15 (2)°

  • V = 711.54 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 299 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, ngland.]) Tmin = 0.933, Tmax = 0.959

  • 4725 measured reflections

  • 2872 independent reflections

  • 2387 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.06

  • 2872 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.08 (1) 2.917 (2) 167 (2)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, ngland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, ngland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010), the structure of N-(2-methylbenzoyl)-4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig. 1), similar to those observed in N-(2-chlorobenzoyl)-4-chlorobenzenesulfonamide (II) (Gowda et al., 2010b), N-(4-methylbenzoyl)-2-methylbenzenesulfonamide (III) (Gowda et al., 2010a) and N-(benzoyl)-4-methylbenzenesulfonamide (IV) (Suchetan et al., 2010).

Further, the conformation of the C=O bond in the C—SO2—NH—C(O) segment of (I) is syn to the ortho-methyl group in the benzoyl ring, similar to that observed between the C=O bond and the ortho-Cl in (II). The molecules are twisted at the S atom with the torsional angle of 67.7 (2)°, compared to those of 65.7 (2)° in (II), -53.1 (2)° and 61.2 (2)°, in the two independent molecules of (III) and 73.2 (2)° in (IV). The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 87.1 (1)°, compared to the values of 88.5 (1)° in (II), 86.0 (1)° and 87.9 (1)° in the two molecules of (III) and 76.5 (1)° in (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 58.0 (1)°, compared to the values of 58.2 (1)° in (II), 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (III) and 79.4 (1)° in (IV). The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of 2-methylbenzoic acid, 4-methylbenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Rod like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010), the structure of N-(2-methylbenzoyl)-4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig. 1), similar to those observed in N-(2-chlorobenzoyl)-4-chlorobenzenesulfonamide (II) (Gowda et al., 2010b), N-(4-methylbenzoyl)-2-methylbenzenesulfonamide (III) (Gowda et al., 2010a) and N-(benzoyl)-4-methylbenzenesulfonamide (IV) (Suchetan et al., 2010).

Further, the conformation of the C=O bond in the C—SO2—NH—C(O) segment of (I) is syn to the ortho-methyl group in the benzoyl ring, similar to that observed between the C=O bond and the ortho-Cl in (II). The molecules are twisted at the S atom with the torsional angle of 67.7 (2)°, compared to those of 65.7 (2)° in (II), -53.1 (2)° and 61.2 (2)°, in the two independent molecules of (III) and 73.2 (2)° in (IV). The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 87.1 (1)°, compared to the values of 88.5 (1)° in (II), 86.0 (1)° and 87.9 (1)° in the two molecules of (III) and 76.5 (1)° in (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 58.0 (1)°, compared to the values of 58.2 (1)° in (II), 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (III) and 79.4 (1)° in (IV). The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
4-Methyl-N-(2-methylbenzoyl)benzenesulfonamide top
Crystal data top
C15H15NO3SZ = 2
Mr = 289.34F(000) = 304
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4097 (8) ÅCell parameters from 2355 reflections
b = 10.433 (1) Åθ = 2.5–27.8°
c = 11.258 (1) ŵ = 0.23 mm1
α = 79.17 (1)°T = 299 K
β = 74.34 (1)°Rod, colorless
γ = 85.15 (2)°0.30 × 0.20 × 0.18 mm
V = 711.54 (13) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2872 independent reflections
Radiation source: fine-focus sealed tube2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 87
Tmin = 0.933, Tmax = 0.959k = 913
4725 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C15H15NO3Sγ = 85.15 (2)°
Mr = 289.34V = 711.54 (13) Å3
Triclinic, P1Z = 2
a = 6.4097 (8) ÅMo Kα radiation
b = 10.433 (1) ŵ = 0.23 mm1
c = 11.258 (1) ÅT = 299 K
α = 79.17 (1)°0.30 × 0.20 × 0.18 mm
β = 74.34 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2872 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2387 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.959Rint = 0.013
4725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
2872 reflectionsΔρmin = 0.35 e Å3
186 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72322 (8)0.15911 (5)0.01004 (4)0.04175 (15)
O10.9097 (2)0.12090 (14)0.08160 (13)0.0543 (4)
O20.5303 (2)0.20184 (15)0.02716 (14)0.0562 (4)
O30.3654 (2)0.09970 (16)0.24228 (16)0.0646 (5)
N10.6788 (3)0.02815 (15)0.12042 (15)0.0412 (4)
H1N0.786 (2)0.0260 (17)0.113 (2)0.049*
C10.7964 (3)0.27802 (18)0.08116 (17)0.0394 (4)
C20.6662 (3)0.38915 (19)0.0973 (2)0.0487 (5)
H20.53890.40120.07140.058*
C30.7279 (4)0.4821 (2)0.1526 (2)0.0589 (6)
H30.64340.55840.16120.071*
C40.9127 (4)0.4638 (2)0.1953 (2)0.0548 (6)
C51.0396 (4)0.3503 (2)0.1788 (2)0.0570 (6)
H51.16420.33650.20740.068*
C60.9848 (3)0.2584 (2)0.1211 (2)0.0508 (5)
H61.07280.18400.10890.061*
C70.5092 (3)0.01727 (19)0.22766 (18)0.0402 (4)
C80.5191 (3)0.10252 (19)0.32282 (18)0.0415 (4)
C90.6634 (3)0.1125 (2)0.39775 (19)0.0473 (5)
C100.6505 (4)0.2220 (3)0.4924 (2)0.0663 (7)
H100.74420.23130.54400.080*
C110.5017 (5)0.3158 (3)0.5106 (2)0.0767 (8)
H110.49600.38780.57410.092*
C120.3617 (5)0.3045 (3)0.4360 (3)0.0758 (8)
H120.26200.36870.44860.091*
C130.3690 (4)0.1980 (2)0.3425 (2)0.0575 (6)
H130.27320.18980.29230.069*
C140.9773 (5)0.5629 (3)0.2596 (3)0.0849 (9)
H14A0.89550.64320.24580.102*
H14B1.12920.57820.22620.102*
H14C0.94820.53020.34790.102*
C150.8194 (4)0.0075 (3)0.3825 (2)0.0658 (7)
H15A0.94290.01690.31360.079*
H15B0.86590.01500.45780.079*
H15C0.74920.07650.36630.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0464 (3)0.0408 (3)0.0362 (3)0.00360 (19)0.0112 (2)0.00359 (19)
O10.0642 (9)0.0521 (8)0.0364 (7)0.0070 (7)0.0004 (7)0.0051 (6)
O20.0581 (9)0.0609 (9)0.0542 (9)0.0045 (7)0.0287 (7)0.0036 (7)
O30.0505 (9)0.0703 (11)0.0600 (10)0.0194 (8)0.0056 (8)0.0015 (8)
N10.0450 (9)0.0362 (8)0.0394 (9)0.0031 (7)0.0082 (7)0.0052 (7)
C10.0388 (9)0.0361 (9)0.0386 (10)0.0007 (7)0.0070 (8)0.0005 (8)
C20.0494 (11)0.0409 (11)0.0511 (12)0.0089 (9)0.0124 (9)0.0017 (9)
C30.0708 (15)0.0391 (11)0.0573 (14)0.0089 (10)0.0047 (12)0.0073 (10)
C40.0679 (14)0.0458 (11)0.0440 (12)0.0166 (10)0.0018 (10)0.0031 (9)
C50.0492 (12)0.0588 (13)0.0636 (14)0.0106 (10)0.0162 (11)0.0059 (11)
C60.0417 (11)0.0451 (11)0.0648 (14)0.0037 (9)0.0139 (10)0.0101 (10)
C70.0387 (10)0.0450 (10)0.0393 (10)0.0024 (8)0.0130 (8)0.0083 (8)
C80.0446 (10)0.0440 (10)0.0345 (9)0.0009 (8)0.0067 (8)0.0094 (8)
C90.0470 (11)0.0563 (12)0.0385 (10)0.0101 (9)0.0110 (9)0.0129 (9)
C100.0794 (17)0.0770 (17)0.0417 (12)0.0211 (14)0.0220 (12)0.0096 (11)
C110.111 (2)0.0579 (15)0.0474 (14)0.0018 (15)0.0091 (15)0.0068 (11)
C120.100 (2)0.0588 (15)0.0610 (16)0.0226 (14)0.0091 (15)0.0003 (12)
C130.0670 (14)0.0553 (13)0.0506 (13)0.0135 (11)0.0145 (11)0.0060 (10)
C140.115 (2)0.0692 (17)0.0694 (18)0.0326 (16)0.0078 (17)0.0204 (14)
C150.0528 (13)0.0923 (19)0.0612 (15)0.0041 (12)0.0248 (12)0.0202 (13)
Geometric parameters (Å, º) top
S1—O21.4210 (15)C7—C81.495 (3)
S1—O11.4351 (15)C8—C131.390 (3)
S1—N11.6519 (17)C8—C91.396 (3)
S1—C11.754 (2)C9—C101.400 (3)
O3—C71.206 (2)C9—C151.500 (3)
N1—C71.383 (2)C10—C111.374 (4)
N1—H1N0.849 (9)C10—H100.9300
C1—C21.381 (3)C11—C121.369 (4)
C1—C61.385 (3)C11—H110.9300
C2—C31.381 (3)C12—C131.374 (3)
C2—H20.9300C12—H120.9300
C3—C41.381 (3)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.392 (3)C14—H14B0.9600
C4—C141.509 (3)C14—H14C0.9600
C5—C61.371 (3)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
O2—S1—O1118.80 (9)C13—C8—C9120.8 (2)
O2—S1—N1110.35 (9)C13—C8—C7118.47 (18)
O1—S1—N1103.52 (8)C9—C8—C7120.44 (18)
O2—S1—C1109.33 (9)C8—C9—C10117.4 (2)
O1—S1—C1109.09 (9)C8—C9—C15121.8 (2)
N1—S1—C1104.75 (9)C10—C9—C15120.7 (2)
C7—N1—S1124.66 (14)C11—C10—C9121.2 (2)
C7—N1—H1N121.5 (15)C11—C10—H10119.4
S1—N1—H1N112.5 (15)C9—C10—H10119.4
C2—C1—C6120.86 (19)C12—C11—C10120.6 (2)
C2—C1—S1119.99 (16)C12—C11—H11119.7
C6—C1—S1119.15 (15)C10—C11—H11119.7
C3—C2—C1119.0 (2)C11—C12—C13119.8 (3)
C3—C2—H2120.5C11—C12—H12120.1
C1—C2—H2120.5C13—C12—H12120.1
C4—C3—C2121.3 (2)C12—C13—C8120.2 (2)
C4—C3—H3119.4C12—C13—H13119.9
C2—C3—H3119.4C8—C13—H13119.9
C3—C4—C5118.4 (2)C4—C14—H14A109.5
C3—C4—C14121.6 (2)C4—C14—H14B109.5
C5—C4—C14120.0 (2)H14A—C14—H14B109.5
C6—C5—C4121.4 (2)C4—C14—H14C109.5
C6—C5—H5119.3H14A—C14—H14C109.5
C4—C5—H5119.3H14B—C14—H14C109.5
C5—C6—C1119.06 (19)C9—C15—H15A109.5
C5—C6—H6120.5C9—C15—H15B109.5
C1—C6—H6120.5H15A—C15—H15B109.5
O3—C7—N1121.68 (18)C9—C15—H15C109.5
O3—C7—C8123.12 (18)H15A—C15—H15C109.5
N1—C7—C8115.21 (16)H15B—C15—H15C109.5
O2—S1—N1—C749.84 (18)S1—C1—C6—C5178.79 (17)
O1—S1—N1—C7177.98 (16)S1—N1—C7—O38.0 (3)
C1—S1—N1—C767.73 (17)S1—N1—C7—C8171.57 (13)
O2—S1—C1—C22.47 (19)O3—C7—C8—C1370.2 (3)
O1—S1—C1—C2133.91 (16)N1—C7—C8—C13110.2 (2)
N1—S1—C1—C2115.79 (17)O3—C7—C8—C9104.1 (2)
O2—S1—C1—C6177.85 (16)N1—C7—C8—C975.4 (2)
O1—S1—C1—C646.42 (18)C13—C8—C9—C100.1 (3)
N1—S1—C1—C663.89 (18)C7—C8—C9—C10174.35 (18)
C6—C1—C2—C30.9 (3)C13—C8—C9—C15176.9 (2)
S1—C1—C2—C3179.44 (16)C7—C8—C9—C152.7 (3)
C1—C2—C3—C42.1 (3)C8—C9—C10—C110.1 (3)
C2—C3—C4—C51.5 (3)C15—C9—C10—C11177.2 (2)
C2—C3—C4—C14177.9 (2)C9—C10—C11—C120.0 (4)
C3—C4—C5—C60.3 (3)C10—C11—C12—C130.3 (4)
C14—C4—C5—C6179.8 (2)C11—C12—C13—C80.6 (4)
C4—C5—C6—C11.5 (3)C9—C8—C13—C120.5 (3)
C2—C1—C6—C50.9 (3)C7—C8—C13—C12174.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.08 (1)2.917 (2)167 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO3S
Mr289.34
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)6.4097 (8), 10.433 (1), 11.258 (1)
α, β, γ (°)79.17 (1), 74.34 (1), 85.15 (2)
V3)711.54 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.933, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
4725, 2872, 2387
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.06
No. of reflections2872
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.849 (9)2.083 (11)2.917 (2)167 (2)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o1476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, ngland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds