organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Phenyl­sulfon­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 April 2010; accepted 29 April 2010; online 8 May 2010)

In the title compound, C8H9NO3S, the N—H bond is in an anti­periplanar conformation with respect to the C=O bond. The crystal packing is stabilized by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [001].

Related literature

Sulfonamide drugs contain the sulfanilamide moiety, see: Maren (1976[Maren, T. H. (1976). Ann. Rev. Pharmacol Toxicol. 16, 309-327.]). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism, see: Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]). For the hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1522.],b[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2680.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO3S

  • Mr = 199.22

  • Tetragonal, P 43

  • a = 7.9400 (5) Å

  • c = 15.288 (2) Å

  • V = 963.81 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 299 K

  • 0.30 × 0.24 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.913, Tmax = 0.964

  • 2706 measured reflections

  • 1401 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.100

  • S = 1.30

  • 1401 reflections

  • 121 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 378 Friedel pairs

  • Flack parameter: 0.11 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.02 (3) 2.823 (5) 156 (5)
Symmetry code: (i) [y, -x+1, z+{\script{1\over 4}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors can give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008a,b, 2009). As a part of studying the substituent effects on the structures of this class of compounds, the structure of N-(phenylsulfonyl)-acetamide (I) has been determined. The conformations of the N—H and C=O bonds of the SO2—NH—CO—C segment in the structure are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)-2,2-dimethylacetamide (II)(Gowda et al., 2009), N-(phenylsulfonyl)-2,2,2- trimethylacetamide (III)(Gowda et al., 2008b) and N-(phenylsulfonyl)-2,2-dichloroacetamide (IV) (Gowda et al., 2008a).

The C7—N1 bond in the C—SO2—NH—C segment of (I) is gauche [C7—N1—S1—O2 = 58.3 (5)°] with respect to the S1O1 bond and anti with respect to the S1O2 bond [C7—N1—S1—O1 = -172.6 (4)°]. The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of -58.8 (4)°, compared to the value of 67.1 (3)° in (II) and -66.3 (3)° in (IV),

The packing of molecules linked by N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

Sulfonamide drugs contain the sulfanilamide moiety, see: Maren (1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism, see: Yang & Guillory (1972). For the hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For related structures, see: Gowda et al. (2008a,b, 2009).

Experimental top

The title compound was prepared by refluxing benzenesulfonamide (0.10 mole) with an excess of acetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared spectra.

Rod like colorless single crystals were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atom of the NH group was located in a difference map. Its coordinates were refined with a distance restraint of N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Structure description top

Sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors can give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008a,b, 2009). As a part of studying the substituent effects on the structures of this class of compounds, the structure of N-(phenylsulfonyl)-acetamide (I) has been determined. The conformations of the N—H and C=O bonds of the SO2—NH—CO—C segment in the structure are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)-2,2-dimethylacetamide (II)(Gowda et al., 2009), N-(phenylsulfonyl)-2,2,2- trimethylacetamide (III)(Gowda et al., 2008b) and N-(phenylsulfonyl)-2,2-dichloroacetamide (IV) (Gowda et al., 2008a).

The C7—N1 bond in the C—SO2—NH—C segment of (I) is gauche [C7—N1—S1—O2 = 58.3 (5)°] with respect to the S1O1 bond and anti with respect to the S1O2 bond [C7—N1—S1—O1 = -172.6 (4)°]. The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of -58.8 (4)°, compared to the value of 67.1 (3)° in (II) and -66.3 (3)° in (IV),

The packing of molecules linked by N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Sulfonamide drugs contain the sulfanilamide moiety, see: Maren (1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism, see: Yang & Guillory (1972). For the hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For related structures, see: Gowda et al. (2008a,b, 2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(Phenylsulfonyl)acetamide top
Crystal data top
C8H9NO3SDx = 1.373 Mg m3
Mr = 199.22Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 1337 reflections
Hall symbol: P 4cwθ = 2.6–27.9°
a = 7.9400 (5) ŵ = 0.31 mm1
c = 15.288 (2) ÅT = 299 K
V = 963.81 (15) Å3Rod, colourless
Z = 40.30 × 0.24 × 0.12 mm
F(000) = 416
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1401 independent reflections
Radiation source: fine-focus sealed tube1214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 59
Tmin = 0.913, Tmax = 0.964k = 95
2706 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0165P)2 + 0.6175P]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max = 0.022
1401 reflectionsΔρmax = 0.21 e Å3
121 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 378 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (16)
Crystal data top
C8H9NO3SZ = 4
Mr = 199.22Mo Kα radiation
Tetragonal, P43µ = 0.31 mm1
a = 7.9400 (5) ÅT = 299 K
c = 15.288 (2) Å0.30 × 0.24 × 0.12 mm
V = 963.81 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1401 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1214 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.964Rint = 0.014
2706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.21 e Å3
S = 1.30Δρmin = 0.24 e Å3
1401 reflectionsAbsolute structure: Flack (1983), 378 Friedel pairs
121 parametersAbsolute structure parameter: 0.11 (16)
2 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1027 (6)0.4526 (6)0.0895 (3)0.0558 (12)
C20.1149 (6)0.4033 (7)0.1756 (3)0.0646 (14)
H20.12040.28950.18960.078*
C30.1188 (7)0.5227 (9)0.2413 (4)0.0866 (18)
H30.12380.48990.29960.104*
C40.1154 (8)0.6897 (9)0.2194 (5)0.099 (2)
H40.12020.77040.26350.119*
C50.1051 (9)0.7400 (8)0.1344 (7)0.108 (3)
H50.10170.85420.12090.129*
C60.0996 (7)0.6210 (9)0.0676 (5)0.0869 (19)
H60.09390.65430.00930.104*
C70.4226 (6)0.3105 (6)0.0165 (3)0.0550 (12)
C80.5621 (6)0.3530 (7)0.0779 (4)0.0792 (17)
H8A0.55550.28160.12850.095*
H8B0.55230.46860.09560.095*
H8C0.66840.33610.04920.095*
N10.2655 (5)0.3259 (5)0.0517 (2)0.0543 (10)
H1N0.250 (6)0.373 (6)0.1013 (19)0.065*
O10.0383 (4)0.3502 (6)0.0542 (3)0.0969 (14)
O20.0878 (5)0.1384 (5)0.0435 (2)0.0849 (13)
O30.4421 (5)0.2652 (5)0.0584 (2)0.0725 (11)
S10.08988 (14)0.30118 (19)0.00585 (8)0.0633 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.059 (3)0.060 (3)0.004 (2)0.007 (2)0.015 (3)
C20.066 (3)0.070 (3)0.057 (3)0.004 (3)0.008 (3)0.014 (3)
C30.089 (5)0.098 (5)0.073 (4)0.002 (3)0.017 (3)0.007 (4)
C40.088 (5)0.088 (5)0.122 (6)0.005 (4)0.026 (4)0.023 (5)
C50.115 (6)0.059 (4)0.149 (7)0.003 (4)0.028 (5)0.020 (5)
C60.084 (4)0.084 (5)0.093 (4)0.002 (3)0.017 (4)0.028 (4)
C70.046 (3)0.057 (3)0.062 (3)0.004 (2)0.005 (2)0.004 (2)
C80.043 (3)0.105 (4)0.089 (4)0.003 (3)0.005 (3)0.001 (4)
N10.041 (2)0.079 (3)0.043 (2)0.0046 (18)0.0041 (18)0.017 (2)
O10.0412 (19)0.173 (4)0.077 (2)0.004 (2)0.009 (2)0.017 (3)
O20.109 (3)0.073 (3)0.074 (2)0.029 (2)0.019 (2)0.012 (2)
O30.069 (2)0.090 (3)0.059 (2)0.019 (2)0.0191 (18)0.0000 (19)
S10.0454 (6)0.0888 (10)0.0557 (6)0.0127 (6)0.0023 (7)0.0144 (7)
Geometric parameters (Å, º) top
C1—C61.378 (7)C6—H60.9300
C1—C21.377 (6)C7—O31.210 (5)
C1—S11.758 (5)C7—N11.365 (6)
C2—C31.380 (7)C7—C81.491 (6)
C2—H20.9300C8—H8A0.9600
C3—C41.367 (9)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
C4—C51.363 (9)N1—S11.660 (4)
C4—H40.9300N1—H1N0.854 (19)
C5—C61.393 (10)O1—S11.425 (4)
C5—H50.9300O2—S11.415 (4)
C6—C1—C2120.7 (5)O3—C7—N1121.1 (5)
C6—C1—S1119.0 (5)O3—C7—C8124.7 (5)
C2—C1—S1120.3 (4)N1—C7—C8114.2 (4)
C3—C2—C1120.1 (5)C7—C8—H8A109.5
C3—C2—H2120.0C7—C8—H8B109.5
C1—C2—H2120.0H8A—C8—H8B109.5
C4—C3—C2119.2 (6)C7—C8—H8C109.5
C4—C3—H3120.4H8A—C8—H8C109.5
C2—C3—H3120.4H8B—C8—H8C109.5
C5—C4—C3121.2 (7)C7—N1—S1123.2 (3)
C5—C4—H4119.4C7—N1—H1N122 (3)
C3—C4—H4119.4S1—N1—H1N113 (3)
C4—C5—C6120.2 (6)O2—S1—O1120.2 (2)
C4—C5—H5119.9O2—S1—N1109.5 (2)
C6—C5—H5119.9O1—S1—N1103.1 (2)
C1—C6—C5118.6 (6)O2—S1—C1109.2 (2)
C1—C6—H6120.7O1—S1—C1108.8 (3)
C5—C6—H6120.7N1—S1—C1104.8 (2)
C6—C1—C2—C32.0 (8)C7—N1—S1—O258.3 (5)
S1—C1—C2—C3177.7 (4)C7—N1—S1—O1172.6 (4)
C1—C2—C3—C41.9 (8)C7—N1—S1—C158.8 (4)
C2—C3—C4—C51.2 (11)C6—C1—S1—O2177.4 (4)
C3—C4—C5—C60.7 (12)C2—C1—S1—O22.3 (5)
C2—C1—C6—C51.5 (8)C6—C1—S1—O144.4 (5)
S1—C1—C6—C5178.3 (5)C2—C1—S1—O1135.3 (4)
C4—C5—C6—C10.8 (10)C6—C1—S1—N165.3 (4)
O3—C7—N1—S15.6 (7)C2—C1—S1—N1114.9 (4)
C8—C7—N1—S1174.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.02 (3)2.823 (5)156 (5)
Symmetry code: (i) y, x+1, z+1/4.

Experimental details

Crystal data
Chemical formulaC8H9NO3S
Mr199.22
Crystal system, space groupTetragonal, P43
Temperature (K)299
a, c (Å)7.9400 (5), 15.288 (2)
V3)963.81 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.24 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.913, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
2706, 1401, 1214
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.100, 1.30
No. of reflections1401
No. of parameters121
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), 378 Friedel pairs
Absolute structure parameter0.11 (16)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.854 (19)2.02 (3)2.823 (5)156 (5)
Symmetry code: (i) y, x+1, z+1/4.
 

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2680.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1976). Ann. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds