organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(3-ethyl-5-oxo-4,5-di­hydro-1H-1,2,4-triazol-4-yl)benzoate

aDepartment of Chemistry, Karadeniz Technical University, TR-61080 Trabzon, Turkey, bSamsun Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and cDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
*Correspondence e-mail: yavuzk@omu.edu.tr

(Received 29 April 2010; accepted 30 April 2010; online 8 May 2010)

In the title compound, C13H15N3O3, the dihedral angle between the two aromatic ring is 51.06 (1)°. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into centrosymmetric dimers.

Related literature

For the pharmacological activity of 1,2,4-triazole compounds, see: Chiu & Huskey (1998[Chiu, S. H. L. & Huskey, S. E. W. (1998). Drug. Metab. Dispos. 26, 838-847.]); Eliott et al. (1986[Eliott, R., Sunley, R. L. & Griffin, D. A. (1986). UK Patent Appl. GB 2, 175-301.], 1987[Eliott, R., Sunley, R. L. & Griffin, D. A. (1987). Chem. Abstr. 107, 134310n.]); Griffin & Mannion (1986[Griffin, D. A. & Mannion, S. K. (1986). Eur. Patent Appl. EP 199 474.], 1987, 1987[Griffin, D. A. & Mannion, S. K. (1987). Chem. Abstr. 106, 98120u.]); Heubach et al. (1975[Heubach, G., Sachse, B. & Buerstell, H. (1975). Chem. Abstr. 92, 181200h.], 1979[Heubach, G., Sachse, B. & Buerstell, H. (1979). Ger. Off. 2, 826-760]); Husain & Amir (1986[Husain, M. I. & Amir, M. J. (1986). Indian Chem. Soc. 63, 317-319.], 1987[Husain, M. I. & Amir, M. J. (1987). Chem. Abstr. 106, 176272h.],); Tanaka (1974[Tanaka, G. (1974). Japan Kokai, 973, 7495.], 1975[Tanaka, G. (1975). Chem. Abstr. 82, 156320h.]); Tsukuda et al. (1998[Tsukuda, T., Shiratori, Y., Watanabe, M., Ontsuka, H., Hattori, K., Shirai, M. & Shimma, N. (1998). Bioorg. Med. Chem. Lett. 8, 1819-1824.]); Witkoaski et al. (1972[Witkoaski, J. T., Robins, R. K., Sidwell, R. W. & Simon, L. N. (1972). J. Med. Chem. 15, 1150-1154.]). For the biological activity of the triazole family, see: Unver et al. (2008[Unver, Y., Dugdu, E., Sancak, K., Er, M. & Karaoglu, Ş. A. (2008). Turk. J. Chem. 32, 441-455.], 2009[Unver, Y., Dugdu, E., Sancak, K., Er, M. & Karaoglu, Ş. A. (2009). Turk. J. Chem. 33, 135-147.]). For a related structure, see: Tanak et al. (2010[Tanak, H., Köysal, Y., Yavuz, M., Büyükgüngőr, O. & Sancak, K. (2010). J. Mol. Model. 16, 447-457.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O3

  • Mr = 261.28

  • Monoclinic, P 21 /n

  • a = 13.6111 (11) Å

  • b = 4.0970 (2) Å

  • c = 24.172 (2) Å

  • β = 100.063 (7)°

  • V = 1327.20 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.80 × 0.41 × 0.13 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 8189 measured reflections

  • 2581 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 0.93

  • 2581 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.883 (19) 1.94 (2) 2.808 (2) 169.5 (18)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,2,4-triazole compounds posses important pharmacology activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4- triazole residues are fluconazole (Tsukuda et al., 1998), the powerful azole antifungal agent as well as the potent antiviral N- nucleoside ribavirin (Witkoaski et al., 1972). Furthermore, various 1,2,4-triazole derivatives have been reported as fungicidal (Heubach et al., 1975, 1979), insecticidal (Tanaka, 1974, 1975), antimicrobial, (Griffin & Mannion, 1986, 1987) as well as anticonvulsants (Husain & Amir, 1986, 1987), antidepressants (Chiu & Huskey, 1998), and plant growth regulator anticoagulants (Eliott et al., 1986, 1987). Our laboratories reported the some biological activity of the triazole family (Unver et al., 2008; Unver et al., 2009). It is known that 1,2,4-triazol moieties interact strongly with heme iron, and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, It was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors very useful for preventing breast cancer.

In the title compound, the plane of the -C(=O)—O- group is inclined at the angle of 4.23 (1)° with respect to the benzoate ring. The dihedral angle between the two aromatic ring is 51.06 (1)°. The 1,2,4-triazole ring is strictly planar and the maximum deviation of -0.0016 (2)Å for atom C1. The double bond distance in the triazol group is good agreement with our previous report,5-benzyl-4- (3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one (Tanak et al., 2010).

The molecules are connected by intermolecular N—H···O hydrogen bonds to centrosymmetric dimers. generating eight-membered ring, producing a R22(8) motif (Bernstein et al., 1995).

Related literature top

For the pharmacological activity of 1,2,4-triazole compounds, see: Chiu & Huskey (1998); Eliott et al. (1986, 1987); Griffin & Mannion (1986, 1987, 1987); Heubach et al. (1975, 1979); Husain & Amir (1986, 1987,); Tanaka (1974, 1975); Tsukuda et al. (1998); Witkoaski et al. (1972). For the biological activity of the triazole family, see: Unver et al. (2008, 2009). For a related structure, see: Tanak et al. (2010).

Experimental top

Ethyl 2-(1-ethoxypropylidene)hydrazinecarboxylate (10 mmol) and ethyl 4-amino benzoate (10 mmol) was mixed without solvent and heated at 433-443°K for 2 h. The formed solid products were separated by filtration, purified by crystallization twice from ethanol, washed with Et2O ether and dried in a vacuum. m p: 446°K.

Refinement top

The H atoms of the phenyl ring were positioned geometrically and refined using a riding model with C—H = 0.93 Å and U(H)=1.2Ueq(C). The remaining H atoms were freely refined.

Structure description top

1,2,4-triazole compounds posses important pharmacology activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4- triazole residues are fluconazole (Tsukuda et al., 1998), the powerful azole antifungal agent as well as the potent antiviral N- nucleoside ribavirin (Witkoaski et al., 1972). Furthermore, various 1,2,4-triazole derivatives have been reported as fungicidal (Heubach et al., 1975, 1979), insecticidal (Tanaka, 1974, 1975), antimicrobial, (Griffin & Mannion, 1986, 1987) as well as anticonvulsants (Husain & Amir, 1986, 1987), antidepressants (Chiu & Huskey, 1998), and plant growth regulator anticoagulants (Eliott et al., 1986, 1987). Our laboratories reported the some biological activity of the triazole family (Unver et al., 2008; Unver et al., 2009). It is known that 1,2,4-triazol moieties interact strongly with heme iron, and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, It was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors very useful for preventing breast cancer.

In the title compound, the plane of the -C(=O)—O- group is inclined at the angle of 4.23 (1)° with respect to the benzoate ring. The dihedral angle between the two aromatic ring is 51.06 (1)°. The 1,2,4-triazole ring is strictly planar and the maximum deviation of -0.0016 (2)Å for atom C1. The double bond distance in the triazol group is good agreement with our previous report,5-benzyl-4- (3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one (Tanak et al., 2010).

The molecules are connected by intermolecular N—H···O hydrogen bonds to centrosymmetric dimers. generating eight-membered ring, producing a R22(8) motif (Bernstein et al., 1995).

For the pharmacological activity of 1,2,4-triazole compounds, see: Chiu & Huskey (1998); Eliott et al. (1986, 1987); Griffin & Mannion (1986, 1987, 1987); Heubach et al. (1975, 1979); Husain & Amir (1986, 1987,); Tanaka (1974, 1975); Tsukuda et al. (1998); Witkoaski et al. (1972). For the biological activity of the triazole family, see: Unver et al. (2008, 2009). For a related structure, see: Tanak et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
Ethyl 4-(3-ethyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)benzoate top
Crystal data top
C13H15N3O3F(000) = 552
Mr = 261.28Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.6111 (11) ÅCell parameters from 10833 reflections
b = 4.0970 (2) Åθ = 1.5–27.2°
c = 24.172 (2) ŵ = 0.10 mm1
β = 100.063 (7)°T = 293 K
V = 1327.20 (17) Å3Prism, colourless
Z = 40.80 × 0.41 × 0.13 mm
Data collection top
Stoe IPDS 2
diffractometer
1606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
Detector resolution: 6.67 pixels mm-1h = 1615
rotation method scansk = 45
8189 measured reflectionsl = 2929
2581 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H15N3O3V = 1327.20 (17) Å3
Mr = 261.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6111 (11) ŵ = 0.10 mm1
b = 4.0970 (2) ÅT = 293 K
c = 24.172 (2) Å0.80 × 0.41 × 0.13 mm
β = 100.063 (7)°
Data collection top
Stoe IPDS 2
diffractometer
1606 reflections with I > 2σ(I)
8189 measured reflectionsRint = 0.042
2581 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.13 e Å3
2581 reflectionsΔρmin = 0.14 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44143 (13)0.7739 (5)0.05726 (6)0.0485 (5)
C20.51671 (12)0.5332 (4)0.13682 (6)0.0440 (4)
C30.53173 (14)0.3581 (6)0.19150 (8)0.0525 (5)
C40.63819 (16)0.2621 (7)0.21203 (9)0.0631 (6)
C50.32736 (11)0.5585 (5)0.11912 (6)0.0432 (4)
C60.30553 (12)0.6504 (5)0.17095 (6)0.0466 (5)
H60.35340.75420.19730.056*
C70.21229 (12)0.5858 (5)0.18282 (6)0.0473 (4)
H70.19750.64370.21770.057*
C80.14040 (12)0.4365 (5)0.14379 (6)0.0450 (4)
C90.16301 (13)0.3535 (5)0.09164 (7)0.0533 (5)
H90.11460.25590.06480.064*
C100.25609 (12)0.4141 (5)0.07938 (6)0.0515 (5)
H100.27080.35790.04450.062*
C110.04218 (13)0.3608 (5)0.15961 (7)0.0512 (5)
C120.11800 (16)0.1271 (8)0.13044 (10)0.0724 (7)
C130.1753 (2)0.0096 (12)0.07756 (15)0.1015 (11)
N10.54074 (11)0.7686 (5)0.06243 (6)0.0562 (5)
N20.58809 (10)0.6223 (4)0.11107 (5)0.0519 (4)
N30.42458 (9)0.6181 (4)0.10615 (5)0.0447 (4)
O10.37870 (9)0.8859 (4)0.01948 (5)0.0624 (4)
O20.02253 (9)0.4134 (4)0.20563 (5)0.0726 (5)
O30.02131 (9)0.2283 (4)0.11801 (5)0.0660 (4)
H10.5731 (14)0.864 (5)0.0382 (8)0.062 (6)*
H3A0.4910 (15)0.170 (5)0.1871 (8)0.069 (6)*
H3B0.5059 (14)0.489 (5)0.2178 (8)0.065 (6)*
H4A0.6436 (14)0.140 (5)0.2481 (9)0.074 (6)*
H4B0.6795 (18)0.443 (6)0.2188 (9)0.090 (8)*
H4C0.6648 (16)0.115 (6)0.1853 (10)0.086 (7)*
H12A0.1044 (16)0.029 (6)0.1621 (9)0.085 (7)*
H12B0.1459 (17)0.324 (6)0.1422 (9)0.083 (8)*
H13A0.234 (2)0.096 (8)0.0840 (12)0.126 (10)*
H13B0.138 (3)0.175 (9)0.0604 (14)0.153 (16)*
H13C0.189 (2)0.174 (8)0.0528 (12)0.120 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (10)0.0675 (13)0.0373 (8)0.0030 (9)0.0133 (7)0.0024 (9)
C20.0395 (9)0.0531 (12)0.0399 (8)0.0052 (8)0.0087 (7)0.0039 (8)
C30.0470 (11)0.0639 (15)0.0468 (10)0.0000 (11)0.0083 (8)0.0064 (10)
C40.0521 (12)0.0768 (17)0.0572 (12)0.0002 (13)0.0006 (10)0.0093 (12)
C50.0374 (9)0.0534 (12)0.0404 (8)0.0005 (8)0.0111 (7)0.0043 (8)
C60.0433 (9)0.0591 (13)0.0377 (8)0.0077 (9)0.0083 (7)0.0033 (8)
C70.0462 (9)0.0612 (12)0.0364 (8)0.0028 (9)0.0127 (7)0.0011 (8)
C80.0377 (9)0.0572 (12)0.0409 (8)0.0010 (8)0.0095 (7)0.0033 (8)
C90.0431 (10)0.0739 (14)0.0428 (9)0.0079 (9)0.0074 (7)0.0078 (9)
C100.0449 (10)0.0743 (13)0.0370 (8)0.0026 (10)0.0118 (7)0.0052 (9)
C110.0417 (10)0.0646 (14)0.0481 (9)0.0004 (9)0.0095 (8)0.0047 (9)
C120.0435 (12)0.096 (2)0.0784 (15)0.0156 (13)0.0131 (11)0.0078 (15)
C130.0636 (17)0.135 (3)0.098 (2)0.039 (2)0.0063 (16)0.010 (2)
N10.0414 (9)0.0862 (13)0.0438 (8)0.0034 (8)0.0151 (6)0.0120 (8)
N20.0424 (8)0.0710 (11)0.0430 (7)0.0024 (8)0.0095 (6)0.0047 (7)
N30.0375 (8)0.0609 (10)0.0370 (7)0.0037 (7)0.0102 (6)0.0038 (7)
O10.0463 (7)0.0976 (11)0.0452 (6)0.0052 (7)0.0137 (6)0.0196 (7)
O20.0552 (8)0.1122 (13)0.0562 (7)0.0142 (8)0.0256 (6)0.0088 (8)
O30.0414 (7)0.1015 (12)0.0556 (7)0.0182 (7)0.0100 (6)0.0041 (7)
Geometric parameters (Å, º) top
C1—O11.2251 (19)C7—H70.9300
C1—N11.336 (2)C8—C91.391 (2)
C1—N31.397 (2)C8—C111.486 (2)
C2—N21.295 (2)C9—C101.373 (2)
C2—N31.385 (2)C9—H90.9300
C2—C31.486 (2)C10—H100.9300
C3—C41.500 (3)C11—O21.2080 (19)
C3—H3A0.94 (2)C11—O31.322 (2)
C3—H3B0.95 (2)C12—O31.460 (2)
C4—H4A1.00 (2)C12—C131.486 (4)
C4—H4B0.93 (3)C12—H12A0.99 (2)
C4—H4C1.00 (2)C12—H12B0.96 (2)
C5—C101.374 (2)C13—H13A0.92 (3)
C5—C61.389 (2)C13—H13B0.98 (4)
C5—N31.433 (2)C13—H13C0.96 (3)
C6—C71.375 (2)N1—N21.376 (2)
C6—H60.9300N1—H10.883 (19)
C7—C81.378 (2)
O1—C1—N1129.64 (15)C10—C9—C8120.66 (16)
O1—C1—N3127.27 (15)C10—C9—H9119.7
N1—C1—N3103.09 (14)C8—C9—H9119.7
N2—C2—N3110.93 (14)C9—C10—C5119.49 (15)
N2—C2—C3124.44 (15)C9—C10—H10120.3
N3—C2—C3124.63 (14)C5—C10—H10120.3
C2—C3—C4113.30 (17)O2—C11—O3123.57 (16)
C2—C3—H3A107.9 (12)O2—C11—C8123.62 (16)
C4—C3—H3A109.7 (12)O3—C11—C8112.81 (14)
C2—C3—H3B108.3 (12)O3—C12—C13106.6 (2)
C4—C3—H3B112.2 (11)O3—C12—H12A106.8 (13)
H3A—C3—H3B105.0 (17)C13—C12—H12A114.8 (13)
C3—C4—H4A109.9 (12)O3—C12—H12B103.8 (14)
C3—C4—H4B111.7 (15)C13—C12—H12B113.4 (14)
H4A—C4—H4B107.3 (17)H12A—C12—H12B110 (2)
C3—C4—H4C112.6 (13)C12—C13—H13A110.1 (18)
H4A—C4—H4C106.5 (18)C12—C13—H13B113 (2)
H4B—C4—H4C109 (2)H13A—C13—H13B110 (3)
C10—C5—C6120.72 (15)C12—C13—H13C104.8 (18)
C10—C5—N3119.11 (14)H13A—C13—H13C109 (2)
C6—C5—N3120.16 (14)H13B—C13—H13C110 (3)
C7—C6—C5119.14 (15)C1—N1—N2113.73 (14)
C7—C6—H6120.4C1—N1—H1123.0 (12)
C5—C6—H6120.4N2—N1—H1123.1 (12)
C6—C7—C8120.88 (15)C2—N2—N1104.77 (13)
C6—C7—H7119.6C2—N3—C1107.48 (13)
C8—C7—H7119.6C2—N3—C5128.63 (13)
C7—C8—C9119.07 (15)C1—N3—C5123.87 (13)
C7—C8—C11118.65 (14)C11—O3—C12116.92 (15)
C9—C8—C11122.26 (15)
N2—C2—C3—C45.8 (3)N3—C2—N2—N10.0 (2)
N3—C2—C3—C4173.1 (2)C3—C2—N2—N1178.99 (19)
C10—C5—C6—C72.0 (3)C1—N1—N2—C20.2 (2)
N3—C5—C6—C7178.93 (17)N2—C2—N3—C10.1 (2)
C5—C6—C7—C81.0 (3)C3—C2—N3—C1179.15 (19)
C6—C7—C8—C90.6 (3)N2—C2—N3—C5178.63 (17)
C6—C7—C8—C11177.66 (18)C3—C2—N3—C50.4 (3)
C7—C8—C9—C101.1 (3)O1—C1—N3—C2179.77 (19)
C11—C8—C9—C10177.07 (19)N1—C1—N3—C20.23 (19)
C8—C9—C10—C50.1 (3)O1—C1—N3—C51.4 (3)
C6—C5—C10—C91.5 (3)N1—C1—N3—C5178.60 (16)
N3—C5—C10—C9179.42 (17)C10—C5—N3—C2128.50 (19)
C7—C8—C11—O22.5 (3)C6—C5—N3—C252.4 (3)
C9—C8—C11—O2175.7 (2)C10—C5—N3—C150.1 (3)
C7—C8—C11—O3177.81 (17)C6—C5—N3—C1129.01 (19)
C9—C8—C11—O34.0 (3)O2—C11—O3—C123.3 (3)
O1—C1—N1—N2179.7 (2)C8—C11—O3—C12176.4 (2)
N3—C1—N1—N20.3 (2)C13—C12—O3—C11179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.883 (19)1.94 (2)2.808 (2)169.5 (18)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H15N3O3
Mr261.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.6111 (11), 4.0970 (2), 24.172 (2)
β (°) 100.063 (7)
V3)1327.20 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.80 × 0.41 × 0.13
Data collection
DiffractometerStoe IPDS 2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8189, 2581, 1606
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 0.93
No. of reflections2581
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.883 (19)1.94 (2)2.808 (2)169.5 (18)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer.

References

First citationChiu, S. H. L. & Huskey, S. E. W. (1998). Drug. Metab. Dispos. 26, 838–847.  Web of Science CAS PubMed Google Scholar
First citationEliott, R., Sunley, R. L. & Griffin, D. A. (1986). UK Patent Appl. GB 2, 175-301.  Google Scholar
First citationEliott, R., Sunley, R. L. & Griffin, D. A. (1987). Chem. Abstr. 107, 134310n.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGriffin, D. A. & Mannion, S. K. (1986). Eur. Patent Appl. EP 199 474.  Google Scholar
First citationGriffin, D. A. & Mannion, S. K. (1987). Chem. Abstr. 106, 98120u.  Google Scholar
First citationHeubach, G., Sachse, B. & Buerstell, H. (1975). Chem. Abstr. 92, 181200h.  Google Scholar
First citationHeubach, G., Sachse, B. & Buerstell, H. (1979). Ger. Off. 2, 826–760  Google Scholar
First citationHusain, M. I. & Amir, M. J. (1986). Indian Chem. Soc. 63, 317–319.  CAS Google Scholar
First citationHusain, M. I. & Amir, M. J. (1987). Chem. Abstr. 106, 176272h.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanaka, G. (1974). Japan Kokai, 973, 7495.  Google Scholar
First citationTanaka, G. (1975). Chem. Abstr. 82, 156320h.  Google Scholar
First citationTanak, H., Köysal, Y., Yavuz, M., Büyükgüngőr, O. & Sancak, K. (2010). J. Mol. Model. 16, 447–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTsukuda, T., Shiratori, Y., Watanabe, M., Ontsuka, H., Hattori, K., Shirai, M. & Shimma, N. (1998). Bioorg. Med. Chem. Lett. 8, 1819–1824.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUnver, Y., Dugdu, E., Sancak, K., Er, M. & Karaoglu, Ş. A. (2008). Turk. J. Chem. 32, 441–455.  CAS Google Scholar
First citationUnver, Y., Dugdu, E., Sancak, K., Er, M. & Karaoglu, Ş. A. (2009). Turk. J. Chem. 33, 135–147.  CAS Google Scholar
First citationWitkoaski, J. T., Robins, R. K., Sidwell, R. W. & Simon, L. N. (1972). J. Med. Chem. 15, 1150–1154.  CrossRef PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds