metal-organic compounds
{3,3′,5,5′-Tetramethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title square-planar nickel complex, [Ni(C20H22N2O6)], has Ni—N and Ni—O bond lengths of 1.8448 (14)/1.8478 (14) and 1.8536 (12)/1.8520 (12) Å. There is a slight twist in the two benzene rings at each end of the complex [dihedral angle = 11.11 (5)°]. All the atoms of the methoxy substitutents are in the plane of the ring to which they are attached except for one which deviates slightly [0.365 (3) Å]. In the crystal, weak C—H⋯O intermolecular interactions connect the molecules.
Related literature
For nickel–salen complexes with aromatic substituents, see: Bal & Ülküseven (2004). For their activation of O2, see: Soto-Garrodo & Salas-Reyes (2000); For their Silva et al. (2002); Santos et al. (2000); Yoon & Burrows (1988). For the mesogenic properties of substituted complexes, see: Blake et al. (1995). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810016041/bt5260sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016041/bt5260Isup2.hkl
The ligand synthesis was accomplished by adding a solution of (2 g, 33.3 mmol) ethylenediamine in 25 mls of methanol to a solution of (12.13 g, 66.6 mmol) 4,6-dimethoxysalicylaldehyde in 40 ml of methanol. The mixture was refluxed overnight while stirring. Then the mixture was evaporated under reduced pressure to afford yellow solids.
The complex was synthesized by mixing a solution of (0.38 g, 1 mmol) N,N-ethylenebis(4,6-dimethoxysalicylaldimine) in 5 ml of CH2Cl2 with a solution of (0.29 g, 1 mmol) nickel nitrate hexahydrate in 5 ml methanol. The solution mixture was stirred for 1 hour then filtered and layered with diethyl ether for crystallization. Single crystals of X-ray quality were obtained.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].
Complexes of Ni(II) with N2O2
derived from salicylaldehyde have been studied for a long time as homogeneous catalysts due to their high activity and selectivity (Silva et al. 2002, Santos et al. 2000). These types of complexes have been described in the literature as catalytically active in oxidation and reduction reactions both as homogeneous and heterogeneous catalysts (Yoon & Burrows, 1988). Other areas where coordination chemistry has found application are in the areas of molecular adsorption, ion exchange and metalloenzymes. They have been designed as potential transition metal host systems in host-guest chemistry in the similar way to that of enzyme substrate.The importance of nickel salen complexes with aromatic substituents range from biological (Bal and Ülküseven, 2004), activation of O2 under very mild conditions (Soto-Garrodo, & Salas-Reyes, 2000) and mesogenic properties of substituted complexes. (Blake et al. 1995) reported metallomesogens based on nickel alkyl and alkoxy substituted salen.
The central Ni is in a square planar coordination environment of O1 O2, N1 and N2 with rms deviation of 0.0461 (6) Å (deviation from plane for Ni of 0.0034 (7) Å). The Ni—N and Ni—O bond distances are in the normal range for Ni-salen type complexes (Allen et al., 1987) at 1.8448 (14), and 1.8478 (14) Å for Ni—N and 1.8536 (12) Å and 1.8520 (12) Å for Ni—O. There is a slight twist in the two phenyl rings at each end of the complex (dihedral angle of 11.11 (5)°. All the atoms of the methoxy substitutents are in the plane of the ring to which they are attached except C19 which deviates slightly (0.365 (3) °). There are weak C—H···O intermolecular interactions connecting the molecules in the solid state.
For nickel–salen complexes with aromatic substituents, see: Bal & Ülküseven (2004). For their activation of O2, see: Soto-Garrodo & Salas-Reyes (2000); For their
Silva et al. (2002); Santos et al. (2000); Yoon & Burrows (1988). For the mesogenic properties of substituted complexes, see: Blake et al. (1995). For bond-length data, see: Allen et al. (1987).Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Diagram of the square planar nickel complex C20H22N2NiO6 showing atom labeling. | |
Fig. 2. The molecular packing for C20H22N2NiO6 viewed down the a axis. |
[Ni(C20H22N2O6)] | F(000) = 928 |
Mr = 445.11 | Dx = 1.617 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 5663 reflections |
a = 7.41599 (12) Å | θ = 5.6–74.0° |
b = 15.6945 (2) Å | µ = 1.91 mm−1 |
c = 15.7203 (2) Å | T = 110 K |
β = 91.9153 (13)° | Needle, red |
V = 1828.67 (5) Å3 | 0.53 × 0.15 × 0.12 mm |
Z = 4 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3603 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3370 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 74.2°, θmin = 5.6° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −11→19 |
Tmin = 0.602, Tmax = 1.000 | l = −18→19 |
6746 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0641P)2 + 1.0294P] where P = (Fo2 + 2Fc2)/3 |
3603 reflections | (Δ/σ)max < 0.001 |
266 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Ni(C20H22N2O6)] | V = 1828.67 (5) Å3 |
Mr = 445.11 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.41599 (12) Å | µ = 1.91 mm−1 |
b = 15.6945 (2) Å | T = 110 K |
c = 15.7203 (2) Å | 0.53 × 0.15 × 0.12 mm |
β = 91.9153 (13)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3603 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 3370 reflections with I > 2σ(I) |
Tmin = 0.602, Tmax = 1.000 | Rint = 0.022 |
6746 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.42 e Å−3 |
3603 reflections | Δρmin = −0.47 e Å−3 |
266 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.25525 (4) | 0.522587 (16) | 0.436449 (16) | 0.01249 (11) | |
O1 | 0.25637 (17) | 0.49637 (8) | 0.32150 (7) | 0.0166 (2) | |
O2 | 0.25493 (17) | 0.63580 (7) | 0.40321 (7) | 0.0168 (2) | |
O3 | 0.36236 (18) | 0.33461 (8) | 0.07279 (8) | 0.0209 (3) | |
O4 | 0.45100 (16) | 0.20821 (7) | 0.34353 (7) | 0.0183 (3) | |
O5 | 0.10218 (18) | 0.76296 (8) | 0.66590 (7) | 0.0192 (3) | |
O6 | 0.13141 (19) | 0.93215 (8) | 0.41651 (8) | 0.0230 (3) | |
N1 | 0.26710 (19) | 0.41000 (9) | 0.46989 (8) | 0.0143 (3) | |
N2 | 0.24084 (18) | 0.54755 (10) | 0.55089 (9) | 0.0145 (3) | |
C1 | 0.3028 (2) | 0.42368 (10) | 0.28756 (10) | 0.0142 (3) | |
C2 | 0.3067 (2) | 0.41965 (10) | 0.19756 (10) | 0.0158 (3) | |
H2A | 0.2743 | 0.4682 | 0.1643 | 0.019* | |
C3 | 0.3576 (2) | 0.34513 (11) | 0.15833 (10) | 0.0163 (3) | |
C4 | 0.4124 (2) | 0.27279 (11) | 0.20515 (11) | 0.0171 (3) | |
H4A | 0.4539 | 0.2233 | 0.1771 | 0.020* | |
C5 | 0.4047 (2) | 0.27513 (10) | 0.29228 (11) | 0.0150 (3) | |
C6 | 0.3462 (2) | 0.34938 (10) | 0.33579 (11) | 0.0152 (3) | |
C7 | 0.3154 (2) | 0.34535 (10) | 0.42475 (11) | 0.0145 (3) | |
H7A | 0.3313 | 0.2920 | 0.4526 | 0.017* | |
C8 | 0.2141 (2) | 0.39623 (11) | 0.55814 (10) | 0.0164 (3) | |
H8A | 0.2732 | 0.3445 | 0.5820 | 0.020* | |
H8B | 0.0818 | 0.3891 | 0.5605 | 0.020* | |
C9 | 0.2745 (2) | 0.47426 (10) | 0.60768 (11) | 0.0171 (3) | |
H9A | 0.2051 | 0.4801 | 0.6601 | 0.020* | |
H9B | 0.4044 | 0.4702 | 0.6239 | 0.020* | |
C10 | 0.2071 (2) | 0.62123 (11) | 0.58443 (10) | 0.0155 (3) | |
H10A | 0.1973 | 0.6239 | 0.6445 | 0.019* | |
C11 | 0.1837 (2) | 0.69804 (11) | 0.53782 (10) | 0.0155 (3) | |
C12 | 0.1328 (2) | 0.77404 (11) | 0.58121 (10) | 0.0165 (3) | |
C13 | 0.1162 (2) | 0.85044 (11) | 0.53987 (11) | 0.0188 (3) | |
H13A | 0.0831 | 0.9005 | 0.5695 | 0.023* | |
C14 | 0.1498 (2) | 0.85285 (11) | 0.45184 (11) | 0.0171 (3) | |
C15 | 0.1950 (2) | 0.78148 (11) | 0.40677 (10) | 0.0165 (3) | |
H15A | 0.2138 | 0.7853 | 0.3474 | 0.020* | |
C16 | 0.2134 (2) | 0.70230 (10) | 0.44895 (10) | 0.0144 (3) | |
C17 | 0.3271 (3) | 0.40816 (12) | 0.02106 (11) | 0.0264 (4) | |
H17A | 0.3333 | 0.3925 | −0.0391 | 0.040* | |
H17B | 0.4174 | 0.4521 | 0.0347 | 0.040* | |
H17C | 0.2065 | 0.4302 | 0.0322 | 0.040* | |
C18 | 0.5069 (3) | 0.13184 (11) | 0.30218 (12) | 0.0213 (4) | |
H18A | 0.5485 | 0.0903 | 0.3451 | 0.032* | |
H18B | 0.6056 | 0.1450 | 0.2643 | 0.032* | |
H18C | 0.4050 | 0.1080 | 0.2688 | 0.032* | |
C19 | 0.0109 (2) | 0.83006 (11) | 0.70858 (11) | 0.0203 (4) | |
H19A | −0.0207 | 0.8109 | 0.7655 | 0.030* | |
H19B | −0.0992 | 0.8453 | 0.6759 | 0.030* | |
H19C | 0.0901 | 0.8799 | 0.7136 | 0.030* | |
C20 | 0.1620 (3) | 0.93901 (11) | 0.32755 (12) | 0.0232 (4) | |
H20A | 0.1452 | 0.9983 | 0.3094 | 0.035* | |
H20B | 0.0763 | 0.9025 | 0.2958 | 0.035* | |
H20C | 0.2855 | 0.9209 | 0.3164 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.01826 (18) | 0.00876 (17) | 0.01067 (17) | 0.00064 (10) | 0.00377 (11) | −0.00065 (9) |
O1 | 0.0266 (6) | 0.0109 (5) | 0.0127 (5) | 0.0024 (5) | 0.0038 (4) | −0.0009 (4) |
O2 | 0.0253 (6) | 0.0111 (5) | 0.0144 (6) | 0.0006 (5) | 0.0071 (4) | −0.0013 (4) |
O3 | 0.0311 (7) | 0.0181 (6) | 0.0139 (6) | 0.0004 (5) | 0.0046 (5) | −0.0034 (5) |
O4 | 0.0253 (6) | 0.0112 (5) | 0.0185 (6) | 0.0045 (5) | 0.0019 (5) | −0.0026 (4) |
O5 | 0.0298 (7) | 0.0148 (6) | 0.0135 (6) | 0.0034 (5) | 0.0054 (5) | −0.0033 (4) |
O6 | 0.0381 (8) | 0.0110 (6) | 0.0205 (6) | 0.0021 (5) | 0.0089 (5) | 0.0003 (5) |
N1 | 0.0170 (7) | 0.0130 (6) | 0.0130 (6) | 0.0002 (5) | 0.0033 (5) | 0.0006 (5) |
N2 | 0.0174 (7) | 0.0133 (7) | 0.0129 (6) | 0.0001 (5) | 0.0024 (5) | 0.0007 (5) |
C1 | 0.0143 (7) | 0.0117 (7) | 0.0167 (8) | −0.0022 (6) | 0.0027 (6) | −0.0022 (6) |
C2 | 0.0188 (8) | 0.0128 (8) | 0.0158 (8) | −0.0016 (6) | 0.0029 (6) | −0.0002 (6) |
C3 | 0.0162 (8) | 0.0180 (8) | 0.0149 (8) | −0.0035 (6) | 0.0045 (6) | −0.0033 (6) |
C4 | 0.0178 (8) | 0.0137 (8) | 0.0200 (8) | −0.0006 (6) | 0.0042 (6) | −0.0061 (6) |
C5 | 0.0138 (7) | 0.0118 (7) | 0.0195 (8) | −0.0010 (6) | 0.0020 (6) | −0.0022 (6) |
C6 | 0.0156 (7) | 0.0127 (8) | 0.0175 (8) | −0.0012 (6) | 0.0023 (6) | −0.0025 (6) |
C7 | 0.0154 (8) | 0.0103 (7) | 0.0178 (8) | 0.0005 (6) | 0.0012 (6) | −0.0004 (6) |
C8 | 0.0229 (8) | 0.0131 (8) | 0.0134 (8) | 0.0023 (6) | 0.0046 (6) | 0.0025 (6) |
C9 | 0.0229 (9) | 0.0161 (8) | 0.0122 (7) | 0.0024 (6) | 0.0023 (6) | 0.0011 (6) |
C10 | 0.0176 (8) | 0.0164 (8) | 0.0128 (7) | −0.0002 (6) | 0.0031 (6) | −0.0025 (6) |
C11 | 0.0173 (8) | 0.0127 (8) | 0.0166 (8) | −0.0009 (6) | 0.0022 (6) | −0.0030 (6) |
C12 | 0.0192 (8) | 0.0159 (8) | 0.0145 (7) | −0.0010 (6) | 0.0028 (6) | −0.0039 (6) |
C13 | 0.0244 (9) | 0.0127 (8) | 0.0196 (8) | 0.0001 (6) | 0.0044 (6) | −0.0051 (6) |
C14 | 0.0202 (8) | 0.0109 (7) | 0.0204 (8) | −0.0006 (6) | 0.0027 (6) | 0.0006 (6) |
C15 | 0.0213 (8) | 0.0131 (8) | 0.0154 (7) | −0.0019 (6) | 0.0050 (6) | −0.0012 (6) |
C16 | 0.0148 (7) | 0.0118 (7) | 0.0169 (8) | −0.0026 (6) | 0.0037 (6) | −0.0023 (6) |
C17 | 0.0445 (12) | 0.0206 (9) | 0.0144 (8) | −0.0075 (8) | 0.0067 (7) | 0.0003 (7) |
C18 | 0.0266 (9) | 0.0127 (8) | 0.0249 (9) | 0.0053 (7) | 0.0051 (7) | −0.0042 (6) |
C19 | 0.0239 (9) | 0.0187 (8) | 0.0186 (8) | 0.0024 (7) | 0.0061 (6) | −0.0051 (6) |
C20 | 0.0318 (10) | 0.0153 (8) | 0.0231 (9) | 0.0041 (7) | 0.0105 (7) | 0.0053 (7) |
Ni—N1 | 1.8448 (14) | C8—C9 | 1.511 (2) |
Ni—N2 | 1.8478 (14) | C8—H8A | 0.9900 |
Ni—O2 | 1.8520 (12) | C8—H8B | 0.9900 |
Ni—O1 | 1.8536 (12) | C9—H9A | 0.9900 |
O1—C1 | 1.310 (2) | C9—H9B | 0.9900 |
O2—C16 | 1.310 (2) | C10—C11 | 1.418 (2) |
O3—C3 | 1.356 (2) | C10—H10A | 0.9500 |
O3—C17 | 1.431 (2) | C11—C16 | 1.423 (2) |
O4—C5 | 1.361 (2) | C11—C12 | 1.431 (2) |
O4—C18 | 1.4316 (19) | C12—C13 | 1.368 (2) |
O5—C12 | 1.369 (2) | C13—C14 | 1.415 (2) |
O5—C19 | 1.4311 (19) | C13—H13A | 0.9500 |
O6—C14 | 1.368 (2) | C14—C15 | 1.373 (2) |
O6—C20 | 1.428 (2) | C15—C16 | 1.413 (2) |
N1—C7 | 1.295 (2) | C15—H15A | 0.9500 |
N1—C8 | 1.4705 (19) | C17—H17A | 0.9800 |
N2—C10 | 1.299 (2) | C17—H17B | 0.9800 |
N2—C9 | 1.472 (2) | C17—H17C | 0.9800 |
C1—C2 | 1.418 (2) | C18—H18A | 0.9800 |
C1—C6 | 1.422 (2) | C18—H18B | 0.9800 |
C2—C3 | 1.381 (2) | C18—H18C | 0.9800 |
C2—H2A | 0.9500 | C19—H19A | 0.9800 |
C3—C4 | 1.406 (2) | C19—H19B | 0.9800 |
C4—C5 | 1.373 (2) | C19—H19C | 0.9800 |
C4—H4A | 0.9500 | C20—H20A | 0.9800 |
C5—C6 | 1.426 (2) | C20—H20B | 0.9800 |
C6—C7 | 1.426 (2) | C20—H20C | 0.9800 |
C7—H7A | 0.9500 | ||
N1—Ni—N2 | 85.95 (6) | N2—C9—H9B | 110.5 |
N1—Ni—O2 | 177.34 (6) | C8—C9—H9B | 110.5 |
N2—Ni—O2 | 94.11 (6) | H9A—C9—H9B | 108.7 |
N1—Ni—O1 | 93.64 (6) | N2—C10—C11 | 124.68 (15) |
N2—Ni—O1 | 176.89 (6) | N2—C10—H10A | 117.7 |
O2—Ni—O1 | 86.44 (5) | C11—C10—H10A | 117.7 |
C1—O1—Ni | 126.87 (11) | C10—C11—C16 | 121.80 (15) |
C16—O2—Ni | 127.42 (10) | C10—C11—C12 | 119.46 (15) |
C3—O3—C17 | 117.05 (13) | C16—C11—C12 | 118.73 (15) |
C5—O4—C18 | 116.65 (13) | C13—C12—O5 | 123.95 (15) |
C12—O5—C19 | 117.32 (13) | C13—C12—C11 | 121.68 (15) |
C14—O6—C20 | 116.69 (13) | O5—C12—C11 | 114.37 (14) |
C7—N1—C8 | 119.28 (14) | C12—C13—C14 | 118.19 (15) |
C7—N1—Ni | 127.27 (12) | C12—C13—H13A | 120.9 |
C8—N1—Ni | 113.45 (10) | C14—C13—H13A | 120.9 |
C10—N2—C9 | 118.73 (13) | O6—C14—C15 | 123.75 (15) |
C10—N2—Ni | 127.03 (12) | O6—C14—C13 | 113.77 (15) |
C9—N2—Ni | 114.24 (11) | C15—C14—C13 | 122.48 (15) |
O1—C1—C2 | 117.36 (14) | C14—C15—C16 | 119.78 (15) |
O1—C1—C6 | 123.69 (15) | C14—C15—H15A | 120.1 |
C2—C1—C6 | 118.94 (14) | C16—C15—H15A | 120.1 |
C3—C2—C1 | 119.91 (15) | O2—C16—C15 | 117.64 (14) |
C3—C2—H2A | 120.0 | O2—C16—C11 | 123.25 (15) |
C1—C2—H2A | 120.0 | C15—C16—C11 | 119.11 (15) |
O3—C3—C2 | 124.24 (16) | O3—C17—H17A | 109.5 |
O3—C3—C4 | 113.82 (15) | O3—C17—H17B | 109.5 |
C2—C3—C4 | 121.94 (15) | H17A—C17—H17B | 109.5 |
C5—C4—C3 | 118.66 (15) | O3—C17—H17C | 109.5 |
C5—C4—H4A | 120.7 | H17A—C17—H17C | 109.5 |
C3—C4—H4A | 120.7 | H17B—C17—H17C | 109.5 |
O4—C5—C4 | 123.50 (15) | O4—C18—H18A | 109.5 |
O4—C5—C6 | 114.92 (14) | O4—C18—H18B | 109.5 |
C4—C5—C6 | 121.58 (15) | H18A—C18—H18B | 109.5 |
C1—C6—C7 | 121.24 (15) | O4—C18—H18C | 109.5 |
C1—C6—C5 | 118.77 (15) | H18A—C18—H18C | 109.5 |
C7—C6—C5 | 119.70 (15) | H18B—C18—H18C | 109.5 |
N1—C7—C6 | 123.96 (15) | O5—C19—H19A | 109.5 |
N1—C7—H7A | 118.0 | O5—C19—H19B | 109.5 |
C6—C7—H7A | 118.0 | H19A—C19—H19B | 109.5 |
N1—C8—C9 | 106.45 (13) | O5—C19—H19C | 109.5 |
N1—C8—H8A | 110.4 | H19A—C19—H19C | 109.5 |
C9—C8—H8A | 110.4 | H19B—C19—H19C | 109.5 |
N1—C8—H8B | 110.4 | O6—C20—H20A | 109.5 |
C9—C8—H8B | 110.4 | O6—C20—H20B | 109.5 |
H8A—C8—H8B | 108.6 | H20A—C20—H20B | 109.5 |
N2—C9—C8 | 106.22 (13) | O6—C20—H20C | 109.5 |
N2—C9—H9A | 110.5 | H20A—C20—H20C | 109.5 |
C8—C9—H9A | 110.5 | H20B—C20—H20C | 109.5 |
N1—Ni—O1—C1 | −16.22 (14) | O4—C5—C6—C7 | −8.9 (2) |
N2—Ni—O1—C1 | −98.5 (11) | C4—C5—C6—C7 | 171.01 (15) |
O2—Ni—O1—C1 | 161.12 (14) | C8—N1—C7—C6 | 171.34 (15) |
N1—Ni—O2—C16 | −105.1 (12) | Ni—N1—C7—C6 | −8.6 (2) |
N2—Ni—O2—C16 | −13.82 (14) | C1—C6—C7—N1 | −8.2 (3) |
O1—Ni—O2—C16 | 163.11 (14) | C5—C6—C7—N1 | 177.99 (16) |
N2—Ni—N1—C7 | −165.37 (15) | C7—N1—C8—C9 | 146.29 (15) |
O2—Ni—N1—C7 | −73.9 (12) | Ni—N1—C8—C9 | −33.74 (16) |
O1—Ni—N1—C7 | 17.72 (15) | C10—N2—C9—C8 | 151.31 (15) |
N2—Ni—N1—C8 | 14.66 (12) | Ni—N2—C9—C8 | −29.43 (16) |
O2—Ni—N1—C8 | 106.1 (12) | N1—C8—C9—N2 | 38.49 (17) |
O1—Ni—N1—C8 | −162.25 (11) | C9—N2—C10—C11 | 175.76 (15) |
N1—Ni—N2—C10 | −171.54 (15) | Ni—N2—C10—C11 | −3.4 (3) |
O2—Ni—N2—C10 | 11.12 (15) | N2—C10—C11—C16 | −6.4 (3) |
O1—Ni—N2—C10 | −89.0 (11) | N2—C10—C11—C12 | 175.06 (16) |
N1—Ni—N2—C9 | 9.28 (12) | C19—O5—C12—C13 | 14.1 (2) |
O2—Ni—N2—C9 | −168.06 (11) | C19—O5—C12—C11 | −165.63 (15) |
O1—Ni—N2—C9 | 91.8 (11) | C10—C11—C12—C13 | 177.11 (16) |
Ni—O1—C1—C2 | −175.30 (11) | C16—C11—C12—C13 | −1.5 (3) |
Ni—O1—C1—C6 | 5.7 (2) | C10—C11—C12—O5 | −3.2 (2) |
O1—C1—C2—C3 | 178.92 (15) | C16—C11—C12—O5 | 178.18 (14) |
C6—C1—C2—C3 | −2.0 (2) | O5—C12—C13—C14 | −179.25 (16) |
C17—O3—C3—C2 | 5.6 (2) | C11—C12—C13—C14 | 0.4 (3) |
C17—O3—C3—C4 | −173.47 (16) | C20—O6—C14—C15 | −0.1 (3) |
C1—C2—C3—O3 | 178.78 (15) | C20—O6—C14—C13 | −179.51 (15) |
C1—C2—C3—C4 | −2.2 (3) | C12—C13—C14—O6 | −179.43 (16) |
O3—C3—C4—C5 | −177.02 (15) | C12—C13—C14—C15 | 1.1 (3) |
C2—C3—C4—C5 | 3.9 (2) | O6—C14—C15—C16 | 179.13 (16) |
C18—O4—C5—C4 | −1.1 (2) | C13—C14—C15—C16 | −1.5 (3) |
C18—O4—C5—C6 | 178.73 (14) | Ni—O2—C16—C15 | −170.27 (11) |
C3—C4—C5—O4 | 178.62 (15) | Ni—O2—C16—C11 | 8.7 (2) |
C3—C4—C5—C6 | −1.2 (2) | C14—C15—C16—O2 | 179.34 (15) |
O1—C1—C6—C7 | 9.7 (3) | C14—C15—C16—C11 | 0.3 (2) |
C2—C1—C6—C7 | −169.32 (15) | C10—C11—C16—O2 | 3.6 (3) |
O1—C1—C6—C5 | −176.52 (15) | C12—C11—C16—O2 | −177.85 (15) |
C2—C1—C6—C5 | 4.5 (2) | C10—C11—C16—C15 | −177.45 (15) |
O4—C5—C6—C1 | 177.22 (14) | C12—C11—C16—C15 | 1.1 (2) |
C4—C5—C6—C1 | −2.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O2i | 0.99 | 2.61 | 3.587 (2) | 169 |
C17—H17A···O4ii | 0.98 | 2.60 | 3.484 (2) | 150 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C20H22N2O6)] |
Mr | 445.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 7.41599 (12), 15.6945 (2), 15.7203 (2) |
β (°) | 91.9153 (13) |
V (Å3) | 1828.67 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.91 |
Crystal size (mm) | 0.53 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.602, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6746, 3603, 3370 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.098, 1.04 |
No. of reflections | 3603 |
No. of parameters | 266 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.47 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O2i | 0.99 | 2.61 | 3.587 (2) | 169.3 |
C17—H17A···O4ii | 0.98 | 2.60 | 3.484 (2) | 149.8 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bal, T. & Ülküseven, B. (2004). Transition Met. Chem. 29, 880–884. Web of Science CrossRef CAS Google Scholar
Blake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125–1129. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Santos, I. C., Vilas-Boas, M., Piedade, M. F. M., Freire, C., Duarte, M. T. & De Castro, B. (2000). Polyhedron, 19, 655–664. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, A. R., Martins, M., Freitas, M. M. A., Valente, A., Castro de, B. & Figueirodo, J. L. (2002). Micropor. Mesopor. Mater. 55, 275–284. Web of Science CrossRef CAS Google Scholar
Soto-Garrodo, G. & Salas-Reyes, V. (2000). Transition Met. Chem. 25, 192–195. Google Scholar
Yoon, H. & Burrows, C. J. (1988). J. Am. Chem. Soc. 110, 4087–4089. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of Ni(II) with N2O2 Schiff bases derived from salicylaldehyde have been studied for a long time as homogeneous catalysts due to their high activity and selectivity (Silva et al. 2002, Santos et al. 2000). These types of complexes have been described in the literature as catalytically active in oxidation and reduction reactions both as homogeneous and heterogeneous catalysts (Yoon & Burrows, 1988). Other areas where coordination chemistry has found application are in the areas of molecular adsorption, liquid-liquid extraction, ion exchange and metalloenzymes. They have been designed as potential transition metal host systems in host-guest chemistry in the similar way to that of enzyme substrate.
The importance of nickel salen complexes with aromatic substituents range from biological (Bal and Ülküseven, 2004), activation of O2 under very mild conditions (Soto-Garrodo, & Salas-Reyes, 2000) and mesogenic properties of substituted complexes. (Blake et al. 1995) reported metallomesogens based on nickel alkyl and alkoxy substituted salen.
The central Ni is in a square planar coordination environment of O1 O2, N1 and N2 with rms deviation of 0.0461 (6) Å (deviation from plane for Ni of 0.0034 (7) Å). The Ni—N and Ni—O bond distances are in the normal range for Ni-salen type complexes (Allen et al., 1987) at 1.8448 (14), and 1.8478 (14) Å for Ni—N and 1.8536 (12) Å and 1.8520 (12) Å for Ni—O. There is a slight twist in the two phenyl rings at each end of the complex (dihedral angle of 11.11 (5)°. All the atoms of the methoxy substitutents are in the plane of the ring to which they are attached except C19 which deviates slightly (0.365 (3) °). There are weak C—H···O intermolecular interactions connecting the molecules in the solid state.