organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Nonyl-2-oxoindolin-3-yl­­idene)thio­semicarbazide

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bLaboratoire de Chimie Organique et Etudes Physicochimiques, ENS Rabat, Morocco, cCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, 0000 Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 May 2010; accepted 5 May 2010; online 15 May 2010)

In the title compound, C18H26N4OS, the imine C=N bond has a Z configuration, whereas the N—N—C=S unit has an E conformation. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds, forming zigzag chains running along the b axis. The nonyl chain adopts an extended zigzag conformation.

Related literature

For background to N-substituted isatins and their derivatives, see: Bouhfid et al. (2008[Bouhfid, R., Joly, N., Ohmani, F., Essassi, E. M., Massoui, M. & Martin, P. (2008). Lett. Org. Chem. pp. 3-7.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26N4OS

  • Mr = 346.49

  • Monoclinic, P 21 /n

  • a = 11.5343 (2) Å

  • b = 10.5921 (2) Å

  • c = 15.6262 (3) Å

  • β = 95.922 (1)°

  • V = 1898.90 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 180 K

  • 0.17 × 0.15 × 0.09 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.984

  • 26603 measured reflections

  • 5510 independent reflections

  • 4006 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.134

  • S = 1.09

  • 5510 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O1i 0.86 (1) 2.22 (1) 3.002 (2) 152 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

N-Substituted isatins (Bouhfid et al., 2008) represent a large family of heterocyclic compounds reported to show a wide range of useful medicinal properties. These condense readily with thiosemicarbazides to form crystalline thiosemicarbazones. The title 1-nonylisatin derivative has a Z configuration around the imine C=N bond and E conformation about the C(=S)–NH2 bond (Scheme I, Fig. 1). The molecules are connected to zigzag chains though N–H···O hydrogen bonds along the b-axis of the monoclinic unit cell (Fig. 2). The nonyl chain adopts a nearly regular zigzag conformation; however, the rigid nature gives rises to voids in the crystal.

Related literature top

For background to N-substituted isatins and their derivatives, see: Bouhfid et al. (2008).

Experimental top

1-Nonyl-isatin (1 g ,3 mmol) and thiosemicarbazide (0.27 g ,3 mmol) were dissolved in aqueous ethanol (50 ml); a few drops of glacial acetic acid were added. The mixture was heated for 4 hours. Yellow crystals separated from the cool solution in 80% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The amino-H atoms were located in a difference Fourier map, and they were refined isotropically with a distance restraint of N–H 0.86±0.01 Å.

Structure description top

N-Substituted isatins (Bouhfid et al., 2008) represent a large family of heterocyclic compounds reported to show a wide range of useful medicinal properties. These condense readily with thiosemicarbazides to form crystalline thiosemicarbazones. The title 1-nonylisatin derivative has a Z configuration around the imine C=N bond and E conformation about the C(=S)–NH2 bond (Scheme I, Fig. 1). The molecules are connected to zigzag chains though N–H···O hydrogen bonds along the b-axis of the monoclinic unit cell (Fig. 2). The nonyl chain adopts a nearly regular zigzag conformation; however, the rigid nature gives rises to voids in the crystal.

For background to N-substituted isatins and their derivatives, see: Bouhfid et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of C18H26N4OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded helical chain motif.
1-(1-Nonyl-2-oxoindolin-3-ylidene)thiosemicarbazide top
Crystal data top
C18H26N4OSF(000) = 744
Mr = 346.49Dx = 1.212 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6721 reflections
a = 11.5343 (2) Åθ = 2.6–29.8°
b = 10.5921 (2) ŵ = 0.18 mm1
c = 15.6262 (3) ÅT = 180 K
β = 95.922 (1)°Prism, yellow
V = 1898.90 (6) Å30.17 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
5510 independent reflections
Radiation source: fine-focus sealed tube4006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.970, Tmax = 0.984k = 1414
26603 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.1904P]
where P = (Fo2 + 2Fc2)/3
5510 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
C18H26N4OSV = 1898.90 (6) Å3
Mr = 346.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5343 (2) ŵ = 0.18 mm1
b = 10.5921 (2) ÅT = 180 K
c = 15.6262 (3) Å0.17 × 0.15 × 0.09 mm
β = 95.922 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
5510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4006 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.984Rint = 0.041
26603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.48 e Å3
5510 reflectionsΔρmin = 0.51 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76947 (4)0.88269 (3)0.65446 (2)0.02943 (12)
O10.86020 (10)0.77068 (9)0.93146 (7)0.0283 (2)
N10.73497 (14)1.11116 (12)0.71834 (9)0.0314 (3)
N20.78603 (11)0.95357 (11)0.81532 (8)0.0230 (3)
N30.79185 (10)1.03853 (11)0.88032 (7)0.0213 (2)
N40.90309 (11)0.86435 (11)1.06470 (8)0.0240 (3)
C10.76202 (13)0.99075 (13)0.73160 (9)0.0221 (3)
C20.82742 (12)0.99591 (12)0.95604 (9)0.0205 (3)
C30.84765 (12)1.07018 (14)1.03435 (9)0.0224 (3)
C40.83255 (13)1.19707 (14)1.05261 (10)0.0276 (3)
H40.80051.25391.00950.033*
C50.86590 (15)1.23851 (16)1.13619 (11)0.0350 (4)
H50.85621.32481.15030.042*
C60.91290 (15)1.15564 (17)1.19886 (11)0.0360 (4)
H60.93521.18651.25530.043*
C70.92842 (14)1.02816 (16)1.18136 (10)0.0304 (3)
H70.96050.97161.22470.037*
C80.89532 (12)0.98741 (14)1.09875 (9)0.0237 (3)
C90.86411 (12)0.86286 (13)0.97964 (9)0.0221 (3)
C100.95911 (14)0.75743 (14)1.11096 (10)0.0283 (3)
H10A1.03260.78681.14320.034*
H10B0.97970.69391.06860.034*
C110.88473 (13)0.69389 (14)1.17376 (10)0.0275 (3)
H11A0.81860.64931.14150.033*
H11B0.85270.75851.21060.033*
C120.95880 (13)0.60010 (14)1.22971 (10)0.0281 (3)
H12A0.99060.53681.19180.034*
H12B1.02560.64591.26010.034*
C130.89450 (13)0.53100 (14)1.29607 (9)0.0260 (3)
H13A0.85860.59361.33230.031*
H13B0.83120.47951.26610.031*
C140.97559 (13)0.44591 (14)1.35311 (10)0.0265 (3)
H14A1.03720.49861.38410.032*
H14B1.01400.38651.31610.032*
C150.91596 (13)0.36994 (14)1.41887 (10)0.0273 (3)
H15A0.87890.42901.45700.033*
H15B0.85360.31791.38830.033*
C160.99913 (14)0.28424 (14)1.47370 (10)0.0289 (3)
H16A1.06060.33681.50500.035*
H16B1.03740.22681.43530.035*
C170.94113 (16)0.20532 (16)1.53871 (11)0.0360 (4)
H17A0.87910.15311.50780.043*
H17B0.90400.26241.57800.043*
C181.0270 (2)0.11952 (18)1.59148 (13)0.0487 (5)
H18A0.98570.07091.63220.073*
H18B1.08770.17091.62320.073*
H18C1.06280.06161.55300.073*
H110.7307 (17)1.1607 (16)0.7620 (9)0.043 (5)*
H120.7173 (18)1.1345 (19)0.6657 (7)0.050 (6)*
H20.8141 (15)0.8786 (11)0.8267 (12)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0426 (2)0.02504 (19)0.02068 (19)0.00110 (15)0.00317 (16)0.00439 (13)
O10.0369 (6)0.0213 (5)0.0260 (6)0.0001 (4)0.0002 (5)0.0006 (4)
N10.0521 (9)0.0226 (6)0.0189 (6)0.0049 (6)0.0001 (6)0.0012 (5)
N20.0315 (7)0.0189 (6)0.0177 (6)0.0004 (5)0.0013 (5)0.0006 (4)
N30.0246 (6)0.0207 (5)0.0183 (6)0.0014 (4)0.0014 (5)0.0005 (4)
N40.0269 (6)0.0258 (6)0.0189 (6)0.0009 (5)0.0005 (5)0.0040 (4)
C10.0254 (7)0.0213 (6)0.0192 (7)0.0022 (5)0.0011 (5)0.0009 (5)
C20.0221 (7)0.0205 (6)0.0190 (7)0.0012 (5)0.0023 (5)0.0006 (5)
C30.0232 (7)0.0263 (7)0.0177 (6)0.0021 (5)0.0022 (5)0.0004 (5)
C40.0314 (8)0.0264 (7)0.0252 (7)0.0015 (6)0.0031 (6)0.0029 (6)
C50.0416 (9)0.0334 (8)0.0304 (9)0.0051 (7)0.0060 (7)0.0108 (6)
C60.0385 (9)0.0475 (10)0.0217 (8)0.0080 (7)0.0020 (7)0.0104 (7)
C70.0301 (8)0.0400 (9)0.0207 (7)0.0038 (6)0.0001 (6)0.0011 (6)
C80.0224 (7)0.0283 (7)0.0205 (7)0.0033 (5)0.0026 (5)0.0005 (5)
C90.0228 (7)0.0232 (6)0.0202 (7)0.0022 (5)0.0013 (5)0.0033 (5)
C100.0287 (8)0.0303 (7)0.0256 (8)0.0039 (6)0.0019 (6)0.0090 (6)
C110.0277 (8)0.0293 (7)0.0253 (7)0.0007 (6)0.0016 (6)0.0084 (6)
C120.0280 (8)0.0306 (7)0.0255 (8)0.0026 (6)0.0025 (6)0.0086 (6)
C130.0273 (7)0.0275 (7)0.0234 (7)0.0012 (6)0.0030 (6)0.0037 (5)
C140.0273 (7)0.0276 (7)0.0248 (7)0.0014 (6)0.0040 (6)0.0055 (6)
C150.0288 (8)0.0276 (7)0.0261 (7)0.0001 (6)0.0061 (6)0.0051 (6)
C160.0330 (8)0.0279 (7)0.0263 (8)0.0014 (6)0.0057 (6)0.0061 (6)
C170.0444 (10)0.0335 (8)0.0298 (8)0.0051 (7)0.0029 (7)0.0092 (7)
C180.0659 (13)0.0398 (10)0.0372 (10)0.0097 (9)0.0100 (9)0.0145 (8)
Geometric parameters (Å, º) top
S1—C11.6710 (14)C10—H10B0.9900
O1—C91.2309 (17)C11—C121.525 (2)
N1—C11.3242 (19)C11—H11A0.9900
N1—H110.866 (9)C11—H11B0.9900
N1—H120.862 (9)C12—C131.523 (2)
N2—N31.3534 (16)C12—H12A0.9900
N2—C11.3669 (18)C12—H12B0.9900
N2—H20.869 (9)C13—C141.520 (2)
N3—C21.2931 (17)C13—H13A0.9900
N4—C91.3585 (18)C13—H13B0.9900
N4—C81.4142 (18)C14—C151.524 (2)
N4—C101.4582 (18)C14—H14A0.9900
C2—C31.4532 (19)C14—H14B0.9900
C2—C91.5063 (19)C15—C161.519 (2)
C3—C41.389 (2)C15—H15A0.9900
C3—C81.403 (2)C15—H15B0.9900
C4—C51.394 (2)C16—C171.523 (2)
C4—H40.9500C16—H16A0.9900
C5—C61.384 (3)C16—H16B0.9900
C5—H50.9500C17—C181.522 (3)
C6—C71.393 (2)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.377 (2)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C10—C111.525 (2)C18—H18C0.9800
C10—H10A0.9900
C1—N1—H11119.5 (14)C10—C11—H11B109.7
C1—N1—H12117.0 (14)C12—C11—H11B109.7
H11—N1—H12123.4 (19)H11A—C11—H11B108.2
N3—N2—C1121.07 (11)C13—C12—C11114.83 (13)
N3—N2—H2117.7 (13)C13—C12—H12A108.6
C1—N2—H2119.6 (13)C11—C12—H12A108.6
C2—N3—N2116.17 (11)C13—C12—H12B108.6
C9—N4—C8110.57 (11)C11—C12—H12B108.6
C9—N4—C10124.13 (12)H12A—C12—H12B107.5
C8—N4—C10124.85 (12)C14—C13—C12111.77 (13)
N1—C1—N2116.64 (13)C14—C13—H13A109.3
N1—C1—S1125.15 (11)C12—C13—H13A109.3
N2—C1—S1118.21 (10)C14—C13—H13B109.3
N3—C2—C3126.14 (12)C12—C13—H13B109.3
N3—C2—C9127.25 (12)H13A—C13—H13B107.9
C3—C2—C9106.48 (12)C13—C14—C15114.55 (13)
C4—C3—C8120.37 (13)C13—C14—H14A108.6
C4—C3—C2133.18 (13)C15—C14—H14A108.6
C8—C3—C2106.41 (12)C13—C14—H14B108.6
C3—C4—C5117.97 (15)C15—C14—H14B108.6
C3—C4—H4121.0H14A—C14—H14B107.6
C5—C4—H4121.0C16—C15—C14113.15 (13)
C6—C5—C4120.90 (15)C16—C15—H15A108.9
C6—C5—H5119.6C14—C15—H15A108.9
C4—C5—H5119.5C16—C15—H15B108.9
C5—C6—C7121.67 (15)C14—C15—H15B108.9
C5—C6—H6119.2H15A—C15—H15B107.8
C7—C6—H6119.2C15—C16—C17114.13 (13)
C8—C7—C6117.33 (15)C15—C16—H16A108.7
C8—C7—H7121.3C17—C16—H16A108.7
C6—C7—H7121.3C15—C16—H16B108.7
C7—C8—C3121.77 (14)C17—C16—H16B108.7
C7—C8—N4128.26 (14)H16A—C16—H16B107.6
C3—C8—N4109.97 (12)C16—C17—C18112.53 (15)
O1—C9—N4126.53 (13)C16—C17—H17A109.1
O1—C9—C2126.92 (13)C18—C17—H17A109.1
N4—C9—C2106.55 (12)C16—C17—H17B109.1
N4—C10—C11114.32 (13)C18—C17—H17B109.1
N4—C10—H10A108.7H17A—C17—H17B107.8
C11—C10—H10A108.7C17—C18—H18A109.5
N4—C10—H10B108.7C17—C18—H18B109.5
C11—C10—H10B108.7H18A—C18—H18B109.5
H10A—C10—H10B107.6C17—C18—H18C109.5
C10—C11—C12109.71 (13)H18A—C18—H18C109.5
C10—C11—H11A109.7H18B—C18—H18C109.5
C12—C11—H11A109.7
C1—N2—N3—C2172.75 (13)C10—N4—C8—C75.9 (2)
N3—N2—C1—N15.7 (2)C9—N4—C8—C31.03 (17)
N3—N2—C1—S1173.97 (10)C10—N4—C8—C3173.50 (13)
N2—N3—C2—C3175.91 (13)C8—N4—C9—O1179.53 (14)
N2—N3—C2—C90.7 (2)C10—N4—C9—O17.0 (2)
N3—C2—C3—C42.9 (3)C8—N4—C9—C20.18 (16)
C9—C2—C3—C4178.91 (16)C10—N4—C9—C2172.71 (13)
N3—C2—C3—C8174.78 (14)N3—C2—C9—O14.4 (2)
C9—C2—C3—C81.27 (15)C3—C2—C9—O1179.61 (14)
C8—C3—C4—C50.1 (2)N3—C2—C9—N4175.31 (14)
C2—C3—C4—C5177.47 (15)C3—C2—C9—N40.69 (15)
C3—C4—C5—C60.2 (2)C9—N4—C10—C11108.71 (16)
C4—C5—C6—C70.2 (3)C8—N4—C10—C1179.81 (18)
C5—C6—C7—C80.2 (2)N4—C10—C11—C12169.81 (13)
C6—C7—C8—C30.1 (2)C10—C11—C12—C13179.42 (13)
C6—C7—C8—N4179.29 (15)C11—C12—C13—C14176.25 (13)
C4—C3—C8—C70.1 (2)C12—C13—C14—C15177.78 (13)
C2—C3—C8—C7178.06 (14)C13—C14—C15—C16178.98 (13)
C4—C3—C8—N4179.43 (13)C14—C15—C16—C17178.83 (13)
C2—C3—C8—N41.42 (16)C15—C16—C17—C18179.22 (15)
C9—N4—C8—C7178.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···S1i0.87 (1)2.69 (1)3.499 (1)156 (2)
N1—H12···O1i0.86 (1)2.22 (1)3.002 (2)152 (2)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H26N4OS
Mr346.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)11.5343 (2), 10.5921 (2), 15.6262 (3)
β (°) 95.922 (1)
V3)1898.90 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.17 × 0.15 × 0.09
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
26603, 5510, 4006
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.134, 1.09
No. of reflections5510
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.51

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O1i0.86 (1)2.22 (1)3.002 (2)152 (2)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBouhfid, R., Joly, N., Ohmani, F., Essassi, E. M., Massoui, M. & Martin, P. (2008). Lett. Org. Chem. pp. 3–7.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds