organic compounds
Alternariol
aBundesanstalt fur Materialforschung und -prüfung, Abteilung Analytische Chemie; Referenzmaterialien, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany, and bHumboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
*Correspondence e-mail: david.siegel@chemie.hu-berlin.de
In the title compound (systematic name: 3,7,9-trihydroxy-1-methyl-6H-benzo[c]chromen-6-one), C14H10O5, the methyl group is shifted out of the molecular plane due to a steric collision, thus causing a slight twist of the benzene rings. The molecular structure is stabilized by an intramolecular O—H⋯O hydrogen bond, generating an S(6) ring. In the crystal, molecules are connected by intermolecular O—H⋯O hydrogen bonds into a three-dimensional network.
Related literature
Alternariol is a mycotoxin (toxic secondary fungal metabolite) produced by ubiquitous Alternaria moulds. For information on occurence and toxicity, see: Weidenbörner (2001); Brugger et al. (2006); Wollenhaupt et al. (2008); Fehr et al. (2009). For crystallization, alternariol was obtained by total synthesis according to Koch et al. (2005). For a comparable structure, (2-chloro-7-hydroxy-8-methyl-6H-benzo[c]chromen-6-one), see: Appel et al. (2006).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2006); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810017502/bt5266sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017502/bt5266Isup2.hkl
Alternariol was supplied by the workgroup of Prof. R. Faust (University of Kassel, Germany) by total synthesis according to a literature procedure (Koch et al., 2005). Alternariol crystals were grown by
in argon atmosphere. To do so, 100 mg of crude alternariol were heated to 380 °C for 2.5 h under a slow argon flow (atmospheric pressure). After cooling to room temperature, colourless needles could be collected from the water cooled compartment of the reaction vessel.In the absence of anomalous scatterers, the
cannot be determined therefore Friedel pairs were merged prior to The hydrogen atoms were located in difference maps and refined with Uiso(H) set to 1.2 Ueq of the parent atom (1.5 for methyl groups).Alternariol is a cytotoxic, fetotoxic, teratogenic (Weidenbörner, 2001), mutagenic (Brugger et al., 2006, Wollenhaupt et al., 2008) and genotoxic (Fehr et al., 2009) mycotoxin produced by ubiquitous Alternaria fungi. It naturally occurs on fruits, vegetables and cereals like apples, tomatoes or wheat (Weidenbörner, 2001) and has also been obtained by total synthesis (Koch et al., 2005). The molecular structure of the title compound and the atom-labeling scheme are shown in Fig. 1. It is noteworthy that the benzene rings are not fully coplanar. This phenomenon is not observed for the benzo[c]chromen-6-one analogue 2-chloro-7-hydroxy-8-methyl-6H-benzo[c]chromen-6-one (Appel et al., 2006). Hence, the lacking planarity of the alternariol molecule may be attributed to a
caused by the proximity of the H6A hydrogen to the C14 methyl group, which is not present in the planar analogue. This explanation is corroborated by the fact that the C8—C13—C14 angle is increased to 124.93 (17)°. The cannot be derived confidently since the molecule is a weak anomalous scatterer, which is documented by a large s.u. value for the Flack X parameter. Besides the intramolecular hydrogen bonds between O3—H3 and O2 (see dashed blue bonds in fig. 2), each molecule is connected to four adjacent molecules via intermolecular hydrogen bonds (see dashed green bonds in fig. 2). As a result undulated layers in the the ac plane are formed.For information on alternariol, see: Weidenbörner (2001); Brugger et al. (2006); Wollenhaupt et al. (2008); Fehr et al. (2009). For the total synthesis of alternariol, see: Koch et al. (2005). For a comparable structure, (2-chloro-7-hydroxy-8-methyl-6H-benzo[c]chromen-6-one), see: Appel et al. (2006).
Data collection: X-AREA (Stoe & Cie, 2006); cell
X-AREA (Stoe & Cie, 2006); data reduction: X-AREA (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H10O5 | F(000) = 536 |
Mr = 258.22 | Dx = 1.594 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 1894 reflections |
a = 18.969 (3) Å | θ = 5–26° |
b = 3.7244 (6) Å | µ = 0.12 mm−1 |
c = 15.235 (3) Å | T = 150 K |
V = 1076.3 (3) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.10 × 0.02 mm |
Stoe IPDS diffractometer | 1053 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.067 |
Graphite monochromator | θmax = 28.1°, θmin = 2.5° |
rotation method scans | h = −24→22 |
6072 measured reflections | k = −4→4 |
1338 independent reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0314P)2] where P = (Fo2 + 2Fc2)/3 |
1338 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.16 e Å−3 |
1 restraint | Δρmin = −0.23 e Å−3 |
C14H10O5 | V = 1076.3 (3) Å3 |
Mr = 258.22 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 18.969 (3) Å | µ = 0.12 mm−1 |
b = 3.7244 (6) Å | T = 150 K |
c = 15.235 (3) Å | 0.40 × 0.10 × 0.02 mm |
Stoe IPDS diffractometer | 1053 reflections with I > 2σ(I) |
6072 measured reflections | Rint = 0.067 |
1338 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.16 e Å−3 |
1338 reflections | Δρmin = −0.23 e Å−3 |
191 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.54295 (9) | 0.3728 (6) | 0.78417 (11) | 0.0213 (4) | |
O2 | 0.44464 (9) | 0.1215 (6) | 0.74006 (11) | 0.0272 (5) | |
O3 | 0.42666 (9) | −0.0612 (6) | 0.57652 (13) | 0.0277 (5) | |
H3 | 0.4192 (17) | −0.038 (10) | 0.632 (2) | 0.033* | |
O4 | 0.61983 (10) | 0.1209 (7) | 0.38531 (11) | 0.0275 (5) | |
H4 | 0.5946 (18) | 0.002 (10) | 0.344 (2) | 0.033* | |
O5 | 0.74389 (10) | 0.8553 (6) | 0.91670 (10) | 0.0260 (5) | |
H5 | 0.7843 | 0.9307 | 0.9038 | 0.031* | |
C1 | 0.50516 (13) | 0.2203 (8) | 0.71956 (16) | 0.0193 (6) | |
C2 | 0.53589 (13) | 0.1856 (8) | 0.63425 (15) | 0.0167 (6) | |
C3 | 0.49365 (13) | 0.0493 (8) | 0.56447 (16) | 0.0192 (6) | |
C4 | 0.52045 (14) | 0.0246 (8) | 0.48049 (17) | 0.0194 (6) | |
H4A | 0.4917 (15) | −0.072 (8) | 0.4295 (19) | 0.023* | |
C5 | 0.58935 (13) | 0.1357 (9) | 0.46651 (15) | 0.0183 (6) | |
C6 | 0.63205 (15) | 0.2688 (8) | 0.53304 (15) | 0.0178 (6) | |
H6A | 0.6788 (15) | 0.341 (8) | 0.5183 (18) | 0.021* | |
C7 | 0.60688 (12) | 0.2911 (7) | 0.61830 (15) | 0.0135 (5) | |
C8 | 0.64850 (13) | 0.4228 (7) | 0.69286 (14) | 0.0141 (5) | |
C9 | 0.61339 (12) | 0.4710 (8) | 0.77287 (16) | 0.0166 (6) | |
C10 | 0.64335 (14) | 0.6136 (8) | 0.84775 (16) | 0.0194 (6) | |
H10 | 0.6189 (14) | 0.644 (8) | 0.9006 (18) | 0.023* | |
C11 | 0.71326 (13) | 0.7093 (8) | 0.84418 (16) | 0.0186 (6) | |
C12 | 0.75199 (13) | 0.6479 (8) | 0.76803 (16) | 0.0159 (5) | |
H12 | 0.7968 (16) | 0.696 (8) | 0.7685 (17) | 0.019* | |
C13 | 0.72187 (13) | 0.5072 (7) | 0.69300 (15) | 0.0146 (5) | |
C14 | 0.77182 (13) | 0.4380 (8) | 0.61791 (16) | 0.0198 (6) | |
H14A | 0.8205 | 0.4683 | 0.6382 | 0.030* | |
H14B | 0.7622 | 0.6083 | 0.5704 | 0.030* | |
H14C | 0.7652 | 0.1923 | 0.5964 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0154 (8) | 0.0343 (13) | 0.0141 (8) | −0.0028 (8) | 0.0031 (6) | −0.0013 (9) |
O2 | 0.0164 (9) | 0.0475 (14) | 0.0177 (8) | −0.0068 (9) | 0.0028 (7) | 0.0060 (9) |
O3 | 0.0125 (9) | 0.0439 (14) | 0.0268 (10) | −0.0096 (9) | 0.0011 (8) | −0.0021 (11) |
O4 | 0.0164 (9) | 0.0518 (15) | 0.0143 (9) | −0.0034 (10) | −0.0002 (7) | −0.0092 (9) |
O5 | 0.0244 (10) | 0.0405 (13) | 0.0131 (8) | −0.0053 (9) | −0.0034 (7) | −0.0063 (9) |
C1 | 0.0152 (13) | 0.0243 (18) | 0.0183 (13) | −0.0006 (11) | −0.0013 (9) | 0.0027 (11) |
C2 | 0.0139 (12) | 0.0187 (16) | 0.0176 (12) | 0.0002 (10) | 0.0010 (9) | 0.0038 (11) |
C3 | 0.0113 (12) | 0.0239 (17) | 0.0222 (13) | −0.0027 (11) | −0.0021 (10) | 0.0012 (12) |
C4 | 0.0166 (13) | 0.0218 (17) | 0.0200 (12) | 0.0027 (11) | −0.0052 (10) | −0.0022 (11) |
C5 | 0.0149 (13) | 0.0277 (17) | 0.0123 (11) | 0.0025 (12) | 0.0021 (9) | −0.0019 (12) |
C6 | 0.0134 (12) | 0.0226 (17) | 0.0175 (12) | 0.0001 (10) | 0.0012 (9) | −0.0003 (11) |
C7 | 0.0124 (11) | 0.0153 (15) | 0.0127 (11) | 0.0024 (9) | 0.0007 (9) | 0.0026 (11) |
C8 | 0.0170 (12) | 0.0150 (14) | 0.0102 (10) | 0.0036 (10) | −0.0006 (9) | −0.0001 (10) |
C9 | 0.0129 (11) | 0.0216 (17) | 0.0153 (10) | 0.0008 (10) | −0.0006 (10) | 0.0035 (11) |
C10 | 0.0207 (14) | 0.0257 (17) | 0.0117 (11) | 0.0037 (11) | 0.0030 (9) | 0.0001 (11) |
C11 | 0.0205 (13) | 0.0227 (17) | 0.0125 (11) | 0.0014 (11) | −0.0061 (10) | −0.0013 (11) |
C12 | 0.0124 (11) | 0.0191 (15) | 0.0163 (11) | 0.0014 (10) | −0.0020 (9) | 0.0014 (11) |
C13 | 0.0166 (12) | 0.0139 (15) | 0.0133 (10) | 0.0023 (10) | 0.0015 (9) | 0.0030 (10) |
C14 | 0.0130 (12) | 0.0279 (17) | 0.0184 (11) | −0.0009 (10) | 0.0004 (9) | −0.0038 (12) |
O1—C1 | 1.343 (3) | C6—C7 | 1.386 (3) |
O1—C9 | 1.396 (3) | C6—H6A | 0.95 (3) |
O2—C1 | 1.245 (3) | C7—C8 | 1.468 (3) |
O3—C3 | 1.348 (3) | C8—C9 | 1.401 (3) |
O3—H3 | 0.86 (3) | C8—C13 | 1.427 (4) |
O4—C5 | 1.367 (3) | C9—C10 | 1.381 (4) |
O4—H4 | 0.91 (4) | C10—C11 | 1.374 (4) |
O5—C11 | 1.362 (3) | C10—H10 | 0.94 (3) |
O5—H5 | 0.8400 | C11—C12 | 1.392 (4) |
C1—C2 | 1.430 (3) | C12—C13 | 1.381 (4) |
C2—C7 | 1.424 (3) | C12—H12 | 0.87 (3) |
C2—C3 | 1.425 (4) | C13—C14 | 1.508 (3) |
C3—C4 | 1.380 (3) | C14—H14A | 0.9800 |
C4—C5 | 1.387 (4) | C14—H14B | 0.9800 |
C4—H4A | 1.01 (3) | C14—H14C | 0.9800 |
C5—C6 | 1.389 (4) | ||
C1—O1—C9 | 122.07 (19) | C9—C8—C13 | 115.7 (2) |
C3—O3—H3 | 105 (2) | C9—C8—C7 | 117.4 (2) |
C5—O4—H4 | 115 (2) | C13—C8—C7 | 126.8 (2) |
C11—O5—H5 | 109.5 | C10—C9—O1 | 113.1 (2) |
O2—C1—O1 | 115.6 (2) | C10—C9—C8 | 124.9 (2) |
O2—C1—C2 | 125.2 (2) | O1—C9—C8 | 121.9 (2) |
O1—C1—C2 | 119.1 (2) | C11—C10—C9 | 117.7 (2) |
C7—C2—C3 | 120.2 (2) | C11—C10—H10 | 118.7 (17) |
C7—C2—C1 | 121.0 (2) | C9—C10—H10 | 123.6 (17) |
C3—C2—C1 | 118.8 (2) | O5—C11—C10 | 118.9 (2) |
O3—C3—C4 | 116.9 (2) | O5—C11—C12 | 121.1 (2) |
O3—C3—C2 | 122.5 (2) | C10—C11—C12 | 120.0 (2) |
C4—C3—C2 | 120.6 (2) | C13—C12—C11 | 122.2 (2) |
C3—C4—C5 | 118.0 (2) | C13—C12—H12 | 119.3 (18) |
C3—C4—H4A | 122.4 (16) | C11—C12—H12 | 118.4 (18) |
C5—C4—H4A | 119.6 (16) | C12—C13—C8 | 119.2 (2) |
O4—C5—C4 | 121.7 (2) | C12—C13—C14 | 115.6 (2) |
O4—C5—C6 | 115.4 (2) | C8—C13—C14 | 125.1 (2) |
C4—C5—C6 | 122.9 (2) | C13—C14—H14A | 109.5 |
C7—C6—C5 | 120.3 (2) | C13—C14—H14B | 109.5 |
C7—C6—H6A | 121.6 (17) | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 118.1 (17) | C13—C14—H14C | 109.5 |
C6—C7—C2 | 118.0 (2) | H14A—C14—H14C | 109.5 |
C6—C7—C8 | 124.1 (2) | H14B—C14—H14C | 109.5 |
C2—C7—C8 | 118.0 (2) | ||
C9—O1—C1—O2 | 174.9 (2) | C6—C7—C8—C9 | 172.4 (3) |
C9—O1—C1—C2 | −5.6 (4) | C2—C7—C8—C9 | −6.5 (4) |
O2—C1—C2—C7 | −176.9 (3) | C6—C7—C8—C13 | −7.9 (4) |
O1—C1—C2—C7 | 3.6 (4) | C2—C7—C8—C13 | 173.3 (3) |
O2—C1—C2—C3 | 4.3 (4) | C1—O1—C9—C10 | −178.2 (3) |
O1—C1—C2—C3 | −175.2 (3) | C1—O1—C9—C8 | 1.3 (4) |
C7—C2—C3—O3 | 178.6 (3) | C13—C8—C9—C10 | 4.5 (4) |
C1—C2—C3—O3 | −2.6 (4) | C7—C8—C9—C10 | −175.7 (3) |
C7—C2—C3—C4 | −1.3 (4) | C13—C8—C9—O1 | −174.9 (2) |
C1—C2—C3—C4 | 177.5 (3) | C7—C8—C9—O1 | 4.8 (4) |
O3—C3—C4—C5 | −179.8 (3) | O1—C9—C10—C11 | 178.2 (3) |
C2—C3—C4—C5 | 0.1 (4) | C8—C9—C10—C11 | −1.3 (4) |
C3—C4—C5—O4 | −179.9 (3) | C9—C10—C11—O5 | 179.1 (2) |
C3—C4—C5—C6 | 0.1 (5) | C9—C10—C11—C12 | −2.6 (4) |
O4—C5—C6—C7 | −179.1 (3) | O5—C11—C12—C13 | −178.6 (3) |
C4—C5—C6—C7 | 0.9 (5) | C10—C11—C12—C13 | 3.1 (4) |
C5—C6—C7—C2 | −2.1 (4) | C11—C12—C13—C8 | 0.3 (4) |
C5—C6—C7—C8 | 179.1 (3) | C11—C12—C13—C14 | −176.7 (3) |
C3—C2—C7—C6 | 2.3 (4) | C9—C8—C13—C12 | −3.9 (4) |
C1—C2—C7—C6 | −176.5 (3) | C7—C8—C13—C12 | 176.4 (3) |
C3—C2—C7—C8 | −178.8 (3) | C9—C8—C13—C14 | 172.9 (3) |
C1—C2—C7—C8 | 2.5 (4) | C7—C8—C13—C14 | −6.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.86 (3) | 1.82 (3) | 2.605 (3) | 152 (3) |
O4—H4···O2i | 0.91 (3) | 1.81 (3) | 2.685 (3) | 162 (3) |
O5—H5···O4ii | 0.84 | 1.97 | 2.809 (2) | 175 |
Symmetry codes: (i) −x+1, −y, z−1/2; (ii) −x+3/2, y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H10O5 |
Mr | 258.22 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 150 |
a, b, c (Å) | 18.969 (3), 3.7244 (6), 15.235 (3) |
V (Å3) | 1076.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.40 × 0.10 × 0.02 |
Data collection | |
Diffractometer | Stoe IPDS |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6072, 1338, 1053 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.069, 0.99 |
No. of reflections | 1338 |
No. of parameters | 191 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.23 |
Computer programs: X-AREA (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.86 (3) | 1.82 (3) | 2.605 (3) | 152 (3) |
O4—H4···O2i | 0.91 (3) | 1.81 (3) | 2.685 (3) | 162 (3) |
O5—H5···O4ii | 0.84 | 1.97 | 2.809 (2) | 175 |
Symmetry codes: (i) −x+1, −y, z−1/2; (ii) −x+3/2, y+1, z+1/2. |
References
Appel, B., Saleh, N. N. R. & Langer, P. (2006). Chem. Eur. J. 12, 1221–1236. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brugger, E. M., Wagner, J., Schumacher, D. M., Koch, K., Podlech, J., Metzler, M. & Lehmann, L. (2006). Toxicol. Lett. 164, 221–230. Web of Science CrossRef PubMed CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Fehr, M., Pahlke, G., Fritz, J., Christensen, M. O., Boege, F., Altemoller, M., Podlech, J. & Marko, D. (2009). Mol. Nutr. Food Res. 53, 441–451. Web of Science CrossRef PubMed CAS Google Scholar
Koch, K., Podlech, J., Pfeiffer, E. & Metzler, M. (2005). J. Org. Chem. 70, 3275–3276. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2006). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Weidenbörner, M. (2001). Encyclopedia of Food Mycotoxins, 1st ed. Berlin: Springer. Google Scholar
Wollenhaupt, K., Schneider, F. & Tiemann, U. (2008). Toxicol. Lett. 182, 57–62. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Alternariol is a cytotoxic, fetotoxic, teratogenic (Weidenbörner, 2001), mutagenic (Brugger et al., 2006, Wollenhaupt et al., 2008) and genotoxic (Fehr et al., 2009) mycotoxin produced by ubiquitous Alternaria fungi. It naturally occurs on fruits, vegetables and cereals like apples, tomatoes or wheat (Weidenbörner, 2001) and has also been obtained by total synthesis (Koch et al., 2005). The molecular structure of the title compound and the atom-labeling scheme are shown in Fig. 1. It is noteworthy that the benzene rings are not fully coplanar. This phenomenon is not observed for the benzo[c]chromen-6-one analogue 2-chloro-7-hydroxy-8-methyl-6H-benzo[c]chromen-6-one (Appel et al., 2006). Hence, the lacking planarity of the alternariol molecule may be attributed to a steric effect caused by the proximity of the H6A hydrogen to the C14 methyl group, which is not present in the planar analogue. This explanation is corroborated by the fact that the C8—C13—C14 angle is increased to 124.93 (17)°. The absolute configuration cannot be derived confidently since the molecule is a weak anomalous scatterer, which is documented by a large s.u. value for the Flack X parameter. Besides the intramolecular hydrogen bonds between O3—H3 and O2 (see dashed blue bonds in fig. 2), each molecule is connected to four adjacent molecules via intermolecular hydrogen bonds (see dashed green bonds in fig. 2). As a result undulated layers in the the ac plane are formed.