organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­phenyl­suberamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 May 2010; accepted 11 May 2010; online 15 May 2010)

In the title compound (systematic name: N,N′-diphenyl­octanediamide), C20H24N2O2, the two phenyl rings make an inter­planar angle of 76.5 (2)°. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into chains running along the b axis. The crystal studied was non-merohedrally twinned, the fractional contribution of the minor twin component being 0.203 (2).

Related literature

For related structures, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.], 2009a[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o3064.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2516.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2

  • Mr = 324.41

  • Monoclinic, C 2/c

  • a = 18.2267 (9) Å

  • b = 5.03097 (15) Å

  • c = 38.1436 (15) Å

  • β = 96.517 (4)°

  • V = 3475.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.58 × 0.33 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.957, Tmax = 0.996

  • 27788 measured reflections

  • 3027 independent reflections

  • 2524 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.203

  • S = 1.09

  • 3027 reflections

  • 224 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (3) 2.17 (3) 3.004 (4) 173 (4)
N2—H2N⋯O2ii 0.84 (3) 2.13 (3) 2.937 (4) 161 (4)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2007; 2009a,b), the crystal structure of N,N-bis(phenyl)-suberamide has been determined (I) (Fig. 1).

In the structure, the two phenyl rings make an interplanar angle of 76.5 (2)°. The plane of the aliphatic group C2/C7 makes dihedral angles of 26.3 (5)° with the amide group (N1, H1N, C1, O1) and 27.2 (5)° with the amide group (N2, H2N, C8, O2). The conformations of the amide groups with respect to the attached phenyl rings are given by the torsion angles of C14—C9—N1—C1 = -38.0 (6)° and C16—C15—N2—C8 = -42.2 (6)°. The structure is stabilized by two intramolecular hydrogen bonds (Table 1). The intermolecular N–H···O hydrogen bonds link the molecules into the chains running along the b-axis of the crystal (Fig. 2). The crystal is merohedrally twinned with the twin fraction of 0.203 (2).

Related literature top

For related structures, see: Gowda et al. (2007, 2009a,b).

Experimental top

Suberic acid (0.3 mol) was heated with thionyl chloride (1.2 mol) at 120°C for 4 hours. The acid chloride obtained was treated with aniline (0.6 mol). The product obtained was added to crushed ice to obtain the white precipitate. It was thoroughly washed with water and then with saturated sodium bicarbonate solution and washed again with water. It was then given a wash with 2 N HCl. It was again washed with water, filtered, dried and recrystallised to constant point (186-188°C) from ethanol-Tetrahydrofuran mixture in the ratio 1:4.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its solution at room temperature.

Refinement top

The crystal used for data collection was a non-merohedral twin. The twin law was found to be a twofold axis about the [1 0 4] direct lattice direction. The final refinement was made using the HKLF4 format of the HKL file, and using the INS file having the twin matrix (-1 0 0 / 0 -1 0 / 0.5 0 1) in the TWIN instruction. The fractional contribution of the minor twin component refined to 0.203 (2). The C-bounded hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.97 Å. Amide H atoms were refined with N–H distance restrained to 0.85 (3) Å. The Uiso(H) values were set at 1.2Ueq(C, N).

Structure description top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2007; 2009a,b), the crystal structure of N,N-bis(phenyl)-suberamide has been determined (I) (Fig. 1).

In the structure, the two phenyl rings make an interplanar angle of 76.5 (2)°. The plane of the aliphatic group C2/C7 makes dihedral angles of 26.3 (5)° with the amide group (N1, H1N, C1, O1) and 27.2 (5)° with the amide group (N2, H2N, C8, O2). The conformations of the amide groups with respect to the attached phenyl rings are given by the torsion angles of C14—C9—N1—C1 = -38.0 (6)° and C16—C15—N2—C8 = -42.2 (6)°. The structure is stabilized by two intramolecular hydrogen bonds (Table 1). The intermolecular N–H···O hydrogen bonds link the molecules into the chains running along the b-axis of the crystal (Fig. 2). The crystal is merohedrally twinned with the twin fraction of 0.203 (2).

For related structures, see: Gowda et al. (2007, 2009a,b).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) viewed down the a-axis. Intermolecular N–H···O hydrogen bonds (shown as dashed lines) connect the molecules into chains running along the b-axis of the crystal. Symmetry codes (i): x, y-1, z; (ii): x, y+1, z.
N,N'-Diphenyloctanediamide top
Crystal data top
C20H24N2O2F(000) = 1392
Mr = 324.41Dx = 1.24 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7864 reflections
a = 18.2267 (9) Åθ = 1.9–27.4°
b = 5.03097 (15) ŵ = 0.08 mm1
c = 38.1436 (15) ÅT = 295 K
β = 96.517 (4)°Plate, colourless
V = 3475.1 (2) Å30.58 × 0.33 × 0.05 mm
Z = 8
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3027 independent reflections
Graphite monochromator2524 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.064
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2121
Tmin = 0.957, Tmax = 0.996k = 55
27788 measured reflectionsl = 4545
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0865P)2 + 8.373P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H24N2O2V = 3475.1 (2) Å3
Mr = 324.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.2267 (9) ŵ = 0.08 mm1
b = 5.03097 (15) ÅT = 295 K
c = 38.1436 (15) Å0.58 × 0.33 × 0.05 mm
β = 96.517 (4)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3027 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2524 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.996Rint = 0.064
27788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0762 restraints
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.21 e Å3
3027 reflectionsΔρmin = 0.22 e Å3
224 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0479 (2)0.3940 (7)0.55627 (10)0.0357 (9)
C20.0772 (2)0.2805 (8)0.52403 (10)0.0392 (9)
H2A0.03580.23780.50670.047*
H2B0.10290.11580.53060.047*
C30.1291 (2)0.4621 (8)0.50714 (10)0.0398 (9)
H3A0.17320.4890.52350.048*
H3B0.10550.63370.50280.048*
C40.1511 (2)0.3560 (8)0.47276 (10)0.0398 (9)
H4A0.10680.32570.45670.048*
H4B0.17540.18570.47720.048*
C50.2020 (2)0.5373 (8)0.45507 (9)0.0415 (10)
H5A0.2470.56270.47090.05*
H5B0.17840.70950.45140.05*
C60.2222 (2)0.4363 (8)0.42003 (10)0.0417 (10)
H6A0.24570.26380.42350.05*
H6B0.17750.41330.4040.05*
C70.2735 (2)0.6215 (8)0.40346 (10)0.0416 (10)
H7A0.31860.64180.41940.05*
H7B0.25050.7950.40040.05*
C80.2930 (2)0.5254 (7)0.36811 (10)0.0388 (9)
C90.0140 (2)0.2611 (7)0.60821 (9)0.0343 (8)
C100.0691 (2)0.0877 (9)0.61530 (10)0.0459 (10)
H100.08220.05220.59990.055*
C110.1051 (3)0.1199 (10)0.64514 (11)0.0565 (12)
H110.14250.00340.64970.068*
C120.0851 (3)0.3247 (10)0.66783 (11)0.0595 (13)
H120.1090.34820.68790.071*
C130.0299 (3)0.4945 (9)0.66109 (10)0.0574 (12)
H130.01680.6330.67670.069*
C140.0070 (2)0.4649 (8)0.63144 (10)0.0439 (10)
H140.04510.57980.62730.053*
C150.3338 (2)0.6863 (7)0.31213 (10)0.0382 (9)
C160.3837 (2)0.4959 (9)0.30577 (11)0.0517 (11)
H160.4010.37720.32350.062*
C170.4088 (3)0.4791 (11)0.27288 (13)0.0676 (14)
H170.44250.34790.26850.081*
C180.3837 (3)0.6570 (11)0.24667 (12)0.0695 (15)
H180.40110.64760.22470.083*
C190.3336 (3)0.8462 (11)0.25299 (13)0.0738 (16)
H190.31570.96330.23520.089*
C200.3091 (3)0.8644 (9)0.28602 (12)0.0565 (12)
H200.27590.99710.29050.068*
N10.02190 (19)0.2112 (6)0.57763 (8)0.0381 (8)
H1N0.029 (2)0.055 (6)0.5713 (11)0.046*
N20.3100 (2)0.7191 (6)0.34624 (9)0.0405 (8)
H2N0.302 (2)0.868 (6)0.3547 (11)0.049*
O10.04456 (18)0.6348 (5)0.56139 (8)0.0503 (8)
O20.2948 (2)0.2890 (6)0.36057 (9)0.0652 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.029 (2)0.038 (2)0.0025 (17)0.0096 (17)0.0019 (17)
C20.050 (2)0.032 (2)0.038 (2)0.0012 (18)0.0144 (18)0.0054 (17)
C30.046 (2)0.037 (2)0.038 (2)0.0056 (18)0.0141 (17)0.0075 (17)
C40.044 (2)0.038 (2)0.039 (2)0.0018 (18)0.0125 (17)0.0048 (17)
C50.052 (2)0.038 (2)0.037 (2)0.0057 (19)0.0163 (18)0.0080 (18)
C60.055 (2)0.031 (2)0.042 (2)0.0081 (18)0.0166 (19)0.0062 (17)
C70.051 (2)0.033 (2)0.042 (2)0.0046 (19)0.0131 (19)0.0038 (18)
C80.050 (2)0.026 (2)0.044 (2)0.0011 (18)0.0215 (19)0.0072 (17)
C90.039 (2)0.0295 (19)0.0347 (19)0.0036 (17)0.0069 (16)0.0021 (15)
C100.057 (3)0.043 (2)0.039 (2)0.007 (2)0.0131 (19)0.0037 (18)
C110.060 (3)0.058 (3)0.056 (3)0.002 (2)0.029 (2)0.011 (2)
C120.079 (3)0.062 (3)0.042 (2)0.013 (3)0.030 (2)0.005 (2)
C130.089 (3)0.047 (3)0.037 (2)0.005 (3)0.011 (2)0.009 (2)
C140.051 (2)0.040 (2)0.041 (2)0.0034 (19)0.0109 (19)0.0051 (19)
C150.046 (2)0.030 (2)0.041 (2)0.0092 (17)0.0134 (18)0.0034 (17)
C160.060 (3)0.049 (2)0.050 (2)0.008 (2)0.021 (2)0.002 (2)
C170.081 (3)0.060 (3)0.070 (3)0.005 (3)0.042 (3)0.009 (3)
C180.102 (4)0.066 (3)0.046 (3)0.018 (3)0.035 (3)0.009 (3)
C190.113 (5)0.063 (3)0.047 (3)0.005 (3)0.019 (3)0.013 (3)
C200.072 (3)0.042 (3)0.058 (3)0.002 (2)0.017 (2)0.004 (2)
N10.0527 (19)0.0262 (16)0.0384 (17)0.0009 (15)0.0174 (15)0.0018 (14)
N20.054 (2)0.0263 (17)0.0446 (19)0.0037 (15)0.0198 (16)0.0016 (15)
O10.072 (2)0.0293 (15)0.0548 (18)0.0002 (14)0.0316 (16)0.0006 (13)
O20.110 (3)0.0280 (16)0.067 (2)0.0056 (17)0.051 (2)0.0043 (14)
Geometric parameters (Å, º) top
C1—O11.229 (5)C9—N11.423 (5)
C1—N11.350 (5)C10—C111.386 (6)
C1—C21.508 (5)C10—H100.93
C2—C31.510 (5)C11—C121.368 (7)
C2—H2A0.97C11—H110.93
C2—H2B0.97C12—C131.366 (7)
C3—C41.512 (5)C12—H120.93
C3—H3A0.97C13—C141.388 (6)
C3—H3B0.97C13—H130.93
C4—C51.513 (5)C14—H140.93
C4—H4A0.97C15—C161.362 (6)
C4—H4B0.97C15—C201.377 (6)
C5—C61.514 (5)C15—N21.427 (5)
C5—H5A0.97C16—C171.385 (6)
C5—H5B0.97C16—H160.93
C6—C71.509 (5)C17—C181.381 (7)
C6—H6A0.97C17—H170.93
C6—H6B0.97C18—C191.360 (8)
C7—C81.512 (5)C18—H180.93
C7—H7A0.97C19—C201.387 (7)
C7—H7B0.97C19—H190.93
C8—O21.225 (5)C20—H200.93
C8—N21.342 (5)N1—H1N0.84 (3)
C9—C101.380 (6)N2—H2N0.84 (3)
C9—C141.381 (5)
O1—C1—N1123.3 (3)C10—C9—C14119.9 (3)
O1—C1—C2122.1 (3)C10—C9—N1117.5 (3)
N1—C1—C2114.5 (3)C14—C9—N1122.5 (3)
C1—C2—C3114.6 (3)C9—C10—C11120.7 (4)
C1—C2—H2A108.6C9—C10—H10119.7
C3—C2—H2A108.6C11—C10—H10119.7
C1—C2—H2B108.6C12—C11—C10119.3 (4)
C3—C2—H2B108.6C12—C11—H11120.3
H2A—C2—H2B107.6C10—C11—H11120.3
C2—C3—C4113.4 (3)C13—C12—C11120.1 (4)
C2—C3—H3A108.9C13—C12—H12119.9
C4—C3—H3A108.9C11—C12—H12119.9
C2—C3—H3B108.9C12—C13—C14121.4 (4)
C4—C3—H3B108.9C12—C13—H13119.3
H3A—C3—H3B107.7C14—C13—H13119.3
C3—C4—C5114.2 (3)C9—C14—C13118.5 (4)
C3—C4—H4A108.7C9—C14—H14120.7
C5—C4—H4A108.7C13—C14—H14120.7
C3—C4—H4B108.7C16—C15—C20120.0 (4)
C5—C4—H4B108.7C16—C15—N2121.5 (4)
H4A—C4—H4B107.6C20—C15—N2118.4 (4)
C4—C5—C6114.5 (3)C15—C16—C17120.0 (4)
C4—C5—H5A108.6C15—C16—H16120
C6—C5—H5A108.6C17—C16—H16120
C4—C5—H5B108.6C18—C17—C16120.0 (5)
C6—C5—H5B108.6C18—C17—H17120
H5A—C5—H5B107.6C16—C17—H17120
C7—C6—C5112.8 (3)C19—C18—C17119.9 (4)
C7—C6—H6A109C19—C18—H18120
C5—C6—H6A109C17—C18—H18120
C7—C6—H6B109C18—C19—C20120.0 (5)
C5—C6—H6B109C18—C19—H19120
H6A—C6—H6B107.8C20—C19—H19120
C6—C7—C8113.3 (3)C15—C20—C19120.1 (5)
C6—C7—H7A108.9C15—C20—H20119.9
C8—C7—H7A108.9C19—C20—H20119.9
C6—C7—H7B108.9C1—N1—C9126.9 (3)
C8—C7—H7B108.9C1—N1—H1N113 (3)
H7A—C7—H7B107.7C9—N1—H1N120 (3)
O2—C8—N2123.0 (4)C8—N2—C15126.8 (3)
O2—C8—C7122.3 (4)C8—N2—H2N110 (3)
N2—C8—C7114.6 (3)C15—N2—H2N123 (3)
O1—C1—C2—C323.9 (6)C20—C15—C16—C170.9 (7)
N1—C1—C2—C3159.8 (3)N2—C15—C16—C17176.4 (4)
C1—C2—C3—C4173.8 (3)C15—C16—C17—C180.7 (8)
C2—C3—C4—C5179.0 (4)C16—C17—C18—C191.0 (8)
C3—C4—C5—C6178.1 (4)C17—C18—C19—C201.7 (8)
C4—C5—C6—C7179.4 (4)C16—C15—C20—C191.5 (7)
C5—C6—C7—C8178.9 (4)N2—C15—C20—C19177.1 (4)
C6—C7—C8—O229.1 (6)C18—C19—C20—C151.9 (8)
C6—C7—C8—N2152.7 (4)O1—C1—N1—C91.5 (7)
C14—C9—C10—C111.7 (6)C2—C1—N1—C9174.8 (4)
N1—C9—C10—C11178.2 (4)C10—C9—N1—C1145.5 (4)
C9—C10—C11—C120.6 (7)C14—C9—N1—C138.0 (6)
C10—C11—C12—C130.2 (7)O2—C8—N2—C151.4 (7)
C11—C12—C13—C140.0 (7)C7—C8—N2—C15176.8 (4)
C10—C9—C14—C132.0 (6)C16—C15—N2—C842.2 (6)
N1—C9—C14—C13178.3 (4)C20—C15—N2—C8142.3 (4)
C12—C13—C14—C91.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (3)2.17 (3)3.004 (4)173 (4)
N2—H2N···O2ii0.84 (3)2.13 (3)2.937 (4)161 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H24N2O2
Mr324.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.2267 (9), 5.03097 (15), 38.1436 (15)
β (°) 96.517 (4)
V3)3475.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.58 × 0.33 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.957, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
27788, 3027, 2524
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.203, 1.09
No. of reflections3027
No. of parameters224
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (3)2.17 (3)3.004 (4)173 (4)
N2—H2N···O2ii0.84 (3)2.13 (3)2.937 (4)161 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, for the award of a research fellowship.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o3064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds