organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

r-2,c-6-Bis(2-meth­oxy­phen­yl)-t-3,t-5-di­methyl­piperidin-4-one acetic acid solvate

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 11 May 2010; accepted 14 May 2010; online 22 May 2010)

In the title compound, C21H25NO3·C2H4O2, the piperidone ring adopts a chair conformation. The two meth­oxy groups are nearly coplanar with the aromatic rings to which they are attached. The dihedral angle between the two aromatic rings is 60.9 (2)°. There are two short intra­molecular N—H⋯O contacts. The crystal packing is stabilized by inter­molecular O—H⋯N and C—H⋯O inter­actions.

Related literature

For related structures see: Aridoss et al. (2008[Aridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008). Arkivoc, xv, 133-158.]),(2009[Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, o2276-o2277.]); Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.]). For the synthesis of the title compound, see Noller & Baliah (1948[Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO3·C2H4O2

  • Mr = 399.47

  • Triclinic, [P \overline 1]

  • a = 9.3059 (5) Å

  • b = 10.7052 (8) Å

  • c = 11.8950 (7) Å

  • α = 94.432 (3)°

  • β = 93.341 (2)°

  • γ = 109.502 (3)°

  • V = 1109.21 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.25 × 0.23 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 19986 measured reflections

  • 5528 independent reflections

  • 3271 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.173

  • S = 1.00

  • 5528 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N1i 0.82 1.82 2.642 (2) 178
N1—H1⋯O2 0.869 (18) 2.210 (16) 2.835 (2) 128.6 (14)
N1—H1⋯O3 0.869 (17) 2.322 (18) 2.9241 (17) 126.6 (14)
C19—H19⋯O4ii 0.93 2.51 3.441 (2) 175
C22—H22C⋯O5iii 0.96 2.54 3.482 (3) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on establishing the crystal structure and conformation of 2,6-diaryl piperidine-4-ones and their derivatives (Aridoss et al., 2008, 2009 and Gayathri et al., 2008), we are reporting here the crystal structure of the title compound wherein the piperidone ring adopts chair conformation irrespective of the substituents' on both sides of carbonyl and secondary nitrogen in the ring.

In the present structure, the piperidone ring adopts a chair conformation with atoms N1 and C3 deviating by -0.584 (2) and 0.628 (6) Å, respectively,from the least-sqaures plane defined by the remaining atoms (C1/C2/C4/C5) in the ring. When compared with the reported structures of piperidone derivatives (Gayathri et al., 2008), it is clear that the conformation of the piperidone ring is highly influenced by the substitutions at various positions. The molecule is stabilized by N—H···O intramolecular interaction wherein, N1 atom act as a donor to O2 and O3, generating two S(6) motifs. The crystal packing is stabilized by N—H···O, O—H···N and C—H···O intra and intermolecular interactions. The sum of the bond angles around the atom N1(336.6 (3)°) of the piperidone ring in the molecule is in accordance with sp3 hybridization.

The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the piperidine ring are q2 = 0.041 (1) Å, q3 = 0.534 (4) Å; QT = 0.536 (1) Å and θ = 4.40 (1)°,φ2 = 135.887 (8)°, respectively.

Related literature top

For related structures see: Aridoss et al. (2008),(2009); Gayathri et al. (2008). For the synthesis of the title compound, see Noller & Baliah (1948). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was prepared by the condensation of 3-pentanone, 2-methoxybenzaldehyde and ammonium acetate in 1:2:1 molar ratio in ethanol as reported by Noller and Baliah (1948) with slight modification. Diffraction quality white crystal was obtained by recrystalization of the crude sample from ethanol.

Refinement top

H atoms bonded to C and O were positioned geometrically (C—H=0.93-0.98Å, O-H =0.82Å) and allowed to ride on their parent atoms, with 1.5Ueq(Cmethyl,O) or 1.2 Ueq(C). The H atom bonded to N was isotropically refined.

Structure description top

In continuation of our work on establishing the crystal structure and conformation of 2,6-diaryl piperidine-4-ones and their derivatives (Aridoss et al., 2008, 2009 and Gayathri et al., 2008), we are reporting here the crystal structure of the title compound wherein the piperidone ring adopts chair conformation irrespective of the substituents' on both sides of carbonyl and secondary nitrogen in the ring.

In the present structure, the piperidone ring adopts a chair conformation with atoms N1 and C3 deviating by -0.584 (2) and 0.628 (6) Å, respectively,from the least-sqaures plane defined by the remaining atoms (C1/C2/C4/C5) in the ring. When compared with the reported structures of piperidone derivatives (Gayathri et al., 2008), it is clear that the conformation of the piperidone ring is highly influenced by the substitutions at various positions. The molecule is stabilized by N—H···O intramolecular interaction wherein, N1 atom act as a donor to O2 and O3, generating two S(6) motifs. The crystal packing is stabilized by N—H···O, O—H···N and C—H···O intra and intermolecular interactions. The sum of the bond angles around the atom N1(336.6 (3)°) of the piperidone ring in the molecule is in accordance with sp3 hybridization.

The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the piperidine ring are q2 = 0.041 (1) Å, q3 = 0.534 (4) Å; QT = 0.536 (1) Å and θ = 4.40 (1)°,φ2 = 135.887 (8)°, respectively.

For related structures see: Aridoss et al. (2008),(2009); Gayathri et al. (2008). For the synthesis of the title compound, see Noller & Baliah (1948). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the anisotropic displacement ellipsoids at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a–axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted
r-2,c-6-Bis(2-methoxyphenyl)-t-3,t-5- dimethylpiperidin-4-one acetic acid solvate top
Crystal data top
C21H25NO3·C2H4O2Z = 2
Mr = 399.47F(000) = 428
Triclinic, P1Dx = 1.196 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3059 (5) ÅCell parameters from 3180 reflections
b = 10.7052 (8) Åθ = 1.7–28.4°
c = 11.8950 (7) ŵ = 0.08 mm1
α = 94.432 (3)°T = 292 K
β = 93.341 (2)°Block, colorless
γ = 109.502 (3)°0.25 × 0.23 × 0.2 mm
V = 1109.21 (12) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5528 independent reflections
Radiation source: fine-focus sealed tube3271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.979, Tmax = 0.983k = 1414
19986 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.1246P]
where P = (Fo2 + 2Fc2)/3
5528 reflections(Δ/σ)max = 0.005
271 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H25NO3·C2H4O2γ = 109.502 (3)°
Mr = 399.47V = 1109.21 (12) Å3
Triclinic, P1Z = 2
a = 9.3059 (5) ÅMo Kα radiation
b = 10.7052 (8) ŵ = 0.08 mm1
c = 11.8950 (7) ÅT = 292 K
α = 94.432 (3)°0.25 × 0.23 × 0.2 mm
β = 93.341 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3271 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.031
19986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
5528 reflectionsΔρmin = 0.26 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2740 (2)0.8721 (2)0.70402 (14)0.1087 (6)
C10.43491 (17)0.18195 (15)0.14948 (13)0.0541 (4)
H1A0.50800.13440.14250.065*
C20.4178 (2)0.2350 (2)0.03418 (14)0.0678 (5)
H20.34630.28420.04030.081*
C30.5705 (2)0.33189 (19)0.01370 (14)0.0650 (5)
C40.6393 (2)0.44701 (17)0.10477 (14)0.0623 (4)
H40.57140.49990.10810.075*
C50.64521 (17)0.38984 (14)0.21975 (12)0.0505 (4)
H50.72090.34450.21680.061*
C60.70122 (19)0.49821 (14)0.31787 (13)0.0533 (4)
C70.6116 (2)0.57269 (15)0.35615 (14)0.0589 (4)
C80.6675 (3)0.67106 (17)0.44625 (16)0.0746 (5)
H80.60690.71900.47220.089*
C90.8122 (3)0.6977 (2)0.49702 (18)0.0866 (6)
H90.84950.76450.55690.104*
C100.9024 (3)0.6271 (2)0.46067 (18)0.0828 (6)
H101.00050.64580.49530.099*
C110.8457 (2)0.52775 (17)0.37193 (16)0.0659 (5)
H110.90670.47940.34790.079*
C120.3732 (3)0.6129 (2)0.33376 (19)0.0891 (6)
H12A0.35400.60130.41140.134*
H12B0.27810.57950.28700.134*
H12C0.42200.70580.32610.134*
C130.7967 (3)0.5374 (2)0.08009 (19)0.0865 (6)
H13A0.86620.48830.07990.130*
H13B0.83350.61170.13740.130*
H13C0.78970.56920.00740.130*
C140.3526 (3)0.1237 (3)0.06128 (18)0.1039 (8)
H14A0.35570.16120.13220.156*
H14B0.24860.07370.05010.156*
H14C0.41240.06590.06190.156*
C150.28810 (18)0.08293 (16)0.18040 (14)0.0569 (4)
C160.2765 (2)0.04794 (18)0.18907 (17)0.0723 (5)
H160.36080.07370.17650.087*
C170.1441 (2)0.1413 (2)0.2158 (2)0.0871 (6)
H170.13850.22920.21960.104*
C180.0207 (2)0.1035 (2)0.2366 (2)0.0838 (6)
H180.06840.16590.25600.101*
C190.0267 (2)0.0254 (2)0.22903 (16)0.0717 (5)
H190.05770.05020.24330.086*
C200.15927 (18)0.11803 (17)0.20012 (14)0.0600 (4)
C210.0428 (3)0.2846 (3)0.1817 (2)0.0973 (7)
H21A0.02510.23190.11860.146*
H21B0.07040.37730.17060.146*
H21C0.00750.26860.25000.146*
N10.49978 (14)0.28941 (12)0.24234 (10)0.0474 (3)
O10.63714 (19)0.31782 (17)0.06797 (12)0.0943 (5)
O20.47078 (15)0.54141 (12)0.29933 (11)0.0716 (4)
O30.17552 (13)0.24937 (12)0.19021 (12)0.0731 (4)
H10.4328 (19)0.3276 (16)0.2563 (14)0.057 (4)*
C220.2703 (3)0.9465 (3)0.5224 (2)0.0980 (7)
H22A0.19350.98020.54900.147*
H22B0.22830.88460.45620.147*
H22C0.35601.01910.50370.147*
C230.32168 (18)0.87804 (16)0.61225 (16)0.0609 (4)
O50.42181 (15)0.82324 (12)0.58533 (10)0.0707 (4)
H5A0.44480.78870.63960.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.1096 (12)0.1637 (16)0.1017 (12)0.0972 (12)0.0448 (10)0.0488 (11)
C10.0527 (9)0.0637 (9)0.0533 (9)0.0328 (7)0.0022 (7)0.0067 (7)
C20.0644 (11)0.0993 (13)0.0521 (10)0.0474 (10)0.0012 (8)0.0032 (9)
C30.0784 (12)0.0886 (12)0.0474 (9)0.0524 (10)0.0108 (8)0.0105 (8)
C40.0791 (11)0.0689 (10)0.0558 (9)0.0436 (9)0.0180 (8)0.0150 (8)
C50.0546 (9)0.0532 (8)0.0522 (9)0.0279 (7)0.0105 (7)0.0074 (6)
C60.0645 (10)0.0476 (8)0.0509 (9)0.0214 (7)0.0101 (7)0.0100 (6)
C70.0749 (11)0.0507 (8)0.0555 (9)0.0261 (8)0.0117 (8)0.0064 (7)
C80.1046 (16)0.0570 (10)0.0654 (11)0.0316 (10)0.0157 (11)0.0011 (8)
C90.1166 (18)0.0630 (11)0.0681 (12)0.0196 (12)0.0063 (12)0.0067 (9)
C100.0855 (14)0.0684 (12)0.0818 (13)0.0133 (10)0.0152 (11)0.0076 (10)
C110.0691 (11)0.0575 (9)0.0707 (11)0.0205 (8)0.0032 (9)0.0107 (8)
C120.1012 (16)0.0992 (15)0.0907 (15)0.0668 (13)0.0186 (12)0.0036 (11)
C130.1080 (17)0.0800 (13)0.0780 (13)0.0317 (12)0.0350 (12)0.0286 (10)
C140.0884 (15)0.150 (2)0.0606 (13)0.0355 (15)0.0106 (11)0.0285 (13)
C150.0508 (9)0.0637 (9)0.0575 (9)0.0255 (7)0.0010 (7)0.0103 (7)
C160.0595 (11)0.0656 (11)0.0921 (14)0.0272 (9)0.0021 (9)0.0101 (9)
C170.0714 (13)0.0614 (11)0.1236 (19)0.0202 (10)0.0025 (12)0.0002 (11)
C180.0596 (11)0.0755 (13)0.1040 (16)0.0105 (9)0.0009 (10)0.0023 (11)
C190.0513 (10)0.0833 (13)0.0797 (13)0.0254 (9)0.0025 (8)0.0048 (10)
C200.0529 (9)0.0651 (10)0.0644 (10)0.0265 (8)0.0010 (7)0.0066 (8)
C210.0762 (13)0.1153 (17)0.131 (2)0.0613 (13)0.0365 (13)0.0465 (15)
N10.0480 (7)0.0521 (7)0.0486 (7)0.0264 (6)0.0079 (5)0.0001 (5)
O10.1128 (11)0.1183 (12)0.0627 (8)0.0504 (9)0.0354 (8)0.0029 (7)
O20.0794 (8)0.0754 (8)0.0738 (8)0.0476 (7)0.0080 (7)0.0074 (6)
O30.0597 (7)0.0747 (8)0.0979 (10)0.0392 (6)0.0169 (6)0.0049 (7)
C220.0881 (15)0.1015 (16)0.1127 (18)0.0350 (12)0.0098 (13)0.0478 (14)
C230.0485 (9)0.0621 (10)0.0718 (11)0.0157 (7)0.0113 (8)0.0145 (8)
O50.0856 (9)0.0786 (8)0.0611 (7)0.0406 (7)0.0226 (6)0.0175 (6)
Geometric parameters (Å, º) top
O4—C231.200 (2)C12—H12C0.9600
C1—N11.4731 (19)C13—H13A0.9600
C1—C151.509 (2)C13—H13B0.9600
C1—C21.544 (2)C13—H13C0.9600
C1—H1A0.9800C14—H14A0.9600
C2—C31.501 (3)C14—H14B0.9600
C2—C141.518 (3)C14—H14C0.9600
C2—H20.9800C15—C161.381 (2)
C3—O11.208 (2)C15—C201.398 (2)
C3—C41.513 (3)C16—C171.375 (3)
C4—C131.522 (3)C16—H160.9300
C4—C51.546 (2)C17—C181.369 (3)
C4—H40.9800C17—H170.9300
C5—N11.4748 (19)C18—C191.372 (3)
C5—C61.515 (2)C18—H180.9300
C5—H50.9800C19—C201.381 (3)
C6—C111.380 (2)C19—H190.9300
C6—C71.404 (2)C20—O31.378 (2)
C7—O21.362 (2)C21—O31.407 (2)
C7—C81.387 (3)C21—H21A0.9600
C8—C91.372 (3)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C9—C101.371 (3)N1—H10.869 (17)
C9—H90.9300C22—C231.485 (3)
C10—C111.382 (3)C22—H22A0.9600
C10—H100.9300C22—H22B0.9600
C11—H110.9300C22—H22C0.9600
C12—O21.427 (2)C23—O51.298 (2)
C12—H12A0.9600O5—H5A0.8200
C12—H12B0.9600
N1—C1—C15110.18 (11)C4—C13—H13A109.5
N1—C1—C2112.74 (13)C4—C13—H13B109.5
C15—C1—C2113.26 (13)H13A—C13—H13B109.5
N1—C1—H1A106.7C4—C13—H13C109.5
C15—C1—H1A106.7H13A—C13—H13C109.5
C2—C1—H1A106.7H13B—C13—H13C109.5
C3—C2—C14113.04 (15)C2—C14—H14A109.5
C3—C2—C1107.96 (13)C2—C14—H14B109.5
C14—C2—C1112.43 (18)H14A—C14—H14B109.5
C3—C2—H2107.7C2—C14—H14C109.5
C14—C2—H2107.7H14A—C14—H14C109.5
C1—C2—H2107.7H14B—C14—H14C109.5
O1—C3—C2122.82 (18)C16—C15—C20117.43 (16)
O1—C3—C4121.76 (18)C16—C15—C1120.30 (14)
C2—C3—C4115.39 (14)C20—C15—C1122.27 (15)
C3—C4—C13112.14 (15)C17—C16—C15121.94 (17)
C3—C4—C5108.37 (13)C17—C16—H16119.0
C13—C4—C5111.53 (16)C15—C16—H16119.0
C3—C4—H4108.2C18—C17—C16119.30 (19)
C13—C4—H4108.2C18—C17—H17120.4
C5—C4—H4108.2C16—C17—H17120.4
N1—C5—C6110.18 (11)C17—C18—C19120.87 (19)
N1—C5—C4114.00 (13)C17—C18—H18119.6
C6—C5—C4112.25 (12)C19—C18—H18119.6
N1—C5—H5106.6C18—C19—C20119.44 (17)
C6—C5—H5106.6C18—C19—H19120.3
C4—C5—H5106.6C20—C19—H19120.3
C11—C6—C7117.73 (15)O3—C20—C19123.47 (15)
C11—C6—C5119.99 (14)O3—C20—C15115.54 (15)
C7—C6—C5122.28 (15)C19—C20—C15120.99 (16)
O2—C7—C8123.97 (16)O3—C21—H21A109.5
O2—C7—C6115.70 (14)O3—C21—H21B109.5
C8—C7—C6120.33 (18)H21A—C21—H21B109.5
C9—C8—C7119.97 (19)O3—C21—H21C109.5
C9—C8—H8120.0H21A—C21—H21C109.5
C7—C8—H8120.0H21B—C21—H21C109.5
C8—C9—C10120.81 (18)C1—N1—C5113.75 (11)
C8—C9—H9119.6C1—N1—H1109.1 (11)
C10—C9—H9119.6C5—N1—H1110.0 (11)
C9—C10—C11119.2 (2)C7—O2—C12118.78 (15)
C9—C10—H10120.4C20—O3—C21118.41 (15)
C11—C10—H10120.4C23—C22—H22A109.5
C6—C11—C10121.98 (18)C23—C22—H22B109.5
C6—C11—H11119.0H22A—C22—H22B109.5
C10—C11—H11119.0C23—C22—H22C109.5
O2—C12—H12A109.5H22A—C22—H22C109.5
O2—C12—H12B109.5H22B—C22—H22C109.5
H12A—C12—H12B109.5O4—C23—O5121.44 (16)
O2—C12—H12C109.5O4—C23—C22122.88 (18)
H12A—C12—H12C109.5O5—C23—C22115.69 (17)
H12B—C12—H12C109.5C23—O5—H5A109.5
N1—C1—C2—C353.96 (16)C8—C9—C10—C110.2 (3)
C15—C1—C2—C3179.92 (12)C7—C6—C11—C100.2 (3)
N1—C1—C2—C14179.33 (14)C5—C6—C11—C10179.02 (16)
C15—C1—C2—C1454.70 (18)C9—C10—C11—C60.7 (3)
C14—C2—C3—O13.6 (3)N1—C1—C15—C16117.88 (16)
C1—C2—C3—O1121.43 (18)C2—C1—C15—C16114.79 (18)
C14—C2—C3—C4178.51 (16)N1—C1—C15—C2062.78 (19)
C1—C2—C3—C456.48 (18)C2—C1—C15—C2064.54 (19)
O1—C3—C4—C130.3 (2)C20—C15—C16—C170.1 (3)
C2—C3—C4—C13177.66 (15)C1—C15—C16—C17179.23 (18)
O1—C3—C4—C5123.82 (18)C15—C16—C17—C181.3 (3)
C2—C3—C4—C554.13 (19)C16—C17—C18—C191.2 (3)
C3—C4—C5—N149.38 (17)C17—C18—C19—C200.0 (3)
C13—C4—C5—N1173.28 (13)C18—C19—C20—O3179.78 (18)
C3—C4—C5—C6175.55 (13)C18—C19—C20—C151.1 (3)
C13—C4—C5—C660.54 (18)C16—C15—C20—O3179.77 (15)
N1—C5—C6—C11124.36 (15)C1—C15—C20—O30.4 (2)
C4—C5—C6—C11107.43 (17)C16—C15—C20—C191.1 (3)
N1—C5—C6—C756.50 (18)C1—C15—C20—C19179.58 (16)
C4—C5—C6—C771.71 (18)C15—C1—N1—C5179.12 (12)
C11—C6—C7—O2179.10 (14)C2—C1—N1—C553.27 (16)
C5—C6—C7—O20.1 (2)C6—C5—N1—C1178.43 (12)
C11—C6—C7—C80.8 (2)C4—C5—N1—C151.18 (16)
C5—C6—C7—C8179.95 (15)C8—C7—O2—C120.2 (3)
O2—C7—C8—C9178.64 (17)C6—C7—O2—C12179.87 (16)
C6—C7—C8—C91.2 (3)C19—C20—O3—C2116.0 (3)
C7—C8—C9—C100.7 (3)C15—C20—O3—C21164.90 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N1i0.821.822.642 (2)178
N1—H1···O20.869 (18)2.210 (16)2.835 (2)128.6 (14)
N1—H1···O30.869 (17)2.322 (18)2.9241 (17)126.6 (14)
C19—H19···O4ii0.932.513.441 (2)175
C22—H22C···O5iii0.962.543.482 (3)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H25NO3·C2H4O2
Mr399.47
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)9.3059 (5), 10.7052 (8), 11.8950 (7)
α, β, γ (°)94.432 (3), 93.341 (2), 109.502 (3)
V3)1109.21 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.23 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
19986, 5528, 3271
Rint0.031
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.173, 1.00
No. of reflections5528
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N1i0.821.822.642 (2)178.2
N1—H1···O20.869 (18)2.210 (16)2.835 (2)128.6 (14)
N1—H1···O30.869 (17)2.322 (18)2.9241 (17)126.6 (14)
C19—H19···O4ii0.932.513.441 (2)175.4
C22—H22C···O5iii0.962.543.482 (3)167.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

GA and YTJ are grateful for the support provided by the second stage of the BK21 program, Republic of Korea. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

References

First citationAridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008). Arkivoc, xv, 133–158.  CrossRef Google Scholar
First citationAridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, o2276–o2277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds