organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-{[3-methyl-4-(2,2,2-tri­fluoro­eth­­oxy)-2-pyrid­yl]methyl­sulfan­yl}-1H,3H+-benzimidazolium) 2,5-di­chloro-3,6-dioxo­cyclo­hexa-1,4-diene-1,4-diolate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 11 May 2010; accepted 25 May 2010; online 29 May 2010)

The title salt, 2C16H15F3N3OS+·C6Cl2O42−, is composed of two independent cations of a lansoprazole {systematic name 2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole} inter­mediate and a dianion of chloranilic acid. In the cations of the lansoprazole inter­mediate, the dihedral angles between the least-squares planes of the pyridine and benzimidazole rings are 11.1 (6) and 13.1 (5)°, respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole inter­mediate groups are 71.8 (1)/80.5 (7) and 74.2 (4)/74.8 (6)°. In addition to ionic bond inter­actions, the lansoprazole inter­mediate and chloranilic ions are connected by strong N—H⋯O hydrogen bonds, which produce a set of extended O—H⋯O—H⋯O—H chains along the b axis in the (011) plane. In addition, weak C—H⋯O, C—H⋯F, N—H⋯Cl and ππ [centroid–centroid distances = 3.5631 (15), 3.8187 (13), 3.7434 (17) and 3.842 (2) Å] inter­molecular inter­actions are observed, which contribute to crystal packing stability.

Related literature

For bacterial growth inhibition by lansoprazole and its analogs, see: Iwahi et al. (1991[Iwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490-496.]). For related structures, see: Arslan et al. (2006[Arslan, M., Asker, E., Krafcik, R. B., Masnovi, J. & Baker, R. J. (2006). Acta Cryst. E62, o4055-o4057.]); Gotoh et al. (2006[Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738-o4740.], 2007[Gotoh, K., Nagoshi, H. & Ishida, H. (2007). Acta Cryst. E63, o4295.], 2008[Gotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260.]); Ishida (2004a[Ishida, H. (2004a). Acta Cryst. E60, o1900-o1901.],b[Ishida, H. (2004b). Acta Cryst. E60, o2005-o2006.],c[Ishida, H. (2004c). Acta Cryst. E60, o2506-o2508.]); Ishida & Kashino (1999[Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923-1926.], 2000[Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202-e204.]); Meng & Qian (2006[Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178-o4180.]); Refat et al. (2006[Refat, M. S., Ahmed, H. A.-D., El-Zayat, L. A., Fukunaga, T. & Ishida, H. (2006). Acta Cryst. E62, o1886-o1887.]); Swamy & Ravikumar (2007[Swamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715-718.]); Tabuchi et al. (2005[Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215-o4217.]); Vyas et al. (2000[Vyas, K., Sivalakshmidevi, A. & Om Reddy, G. (2000). Acta Cryst. C56, e572-e573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C16H15F3N3OS+·C6Cl2O42−

  • Mr = 915.70

  • Monoclinic, P 21 /n

  • a = 9.48575 (8) Å

  • b = 23.6316 (2) Å

  • c = 17.86775 (15) Å

  • β = 100.2065 (9)°

  • V = 3941.92 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.22 mm−1

  • T = 295 K

  • 0.38 × 0.24 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.692, Tmax = 1.000

  • 19572 measured reflections

  • 8269 independent reflections

  • 6572 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.158

  • S = 1.10

  • 8269 reflections

  • 600 parameters

  • 138 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O3 0.86 1.95 2.749 (2) 155
N1A—H1AA⋯Cl2 0.86 2.96 3.5169 (18) 125
N2A—H2AA⋯O5i 0.86 1.91 2.737 (2) 160
N1B—H1BA⋯O2 0.86 1.89 2.717 (2) 160
N2B—H2BA⋯O6i 0.86 1.96 2.766 (2) 155
C8A—H8AB⋯O5i 0.97 2.50 3.195 (3) 127
C8B—H8BA⋯O6i 0.97 2.45 3.289 (3) 145
C6B—H6BA⋯F3AAii 0.93 2.49 3.104 (5) 124
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Lansoprazole intermediate (Systematic name: 2-([[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl]methyl]sulfanyl) -1H-benzimidazole) in this study is a benzimidazole derivative. Lansoprazole, a widely used proton-pump inhibitor, has been reported to have an independent gastroprotective action. Lansoprazole and its analogs inhibit the growth of Helicobacter pylori at concentrations of several micrograms per milliliter (Iwahi et al., 1991) and is widely used for the treatment of acid-related gastric diseases due to their ability to inhibit acid secretio. The crystal structures of lansoprazole (Vyas et al., 2000) and lansoprazole sulphone have been reported (Swamy & Ravikumar, 2007).

Charge transfer complexes of organic species are intensively studied because of their special type of interaction, which is accompanied by transfer of an electron from the donor to the acceptor. Chloranilic acid is a strong dibasic organic acid which exhibits the electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol and amino heterocyclic donors in acteonitrile have been studied. The interaction of the lansoprazole intermediate as an electron donor with chloranilic acid as electron acceptor in this study resulted in the formation of a charge transfer complex of the title compound (I). In view of the importance of lansoprazole, this paper reports the crystal structure of [C16H15F3N3OS+]2 [C6Cl2O42-], (I).

The title compound (I) is a salt composed of two independent cations (A & B) of a lansoprazole intermediate, [C16H15F3N3OS+]2, and a dianion [C6Cl2O42-] of chloranilic acid, (2:1) in the asymmetric unit (Fig. 1). In each cation (A & B) of the lansoprazole intermediate the dihedral angles between the least squares planes of the pyridine and benzimidazole rings are 11.1 (6)° (A) and 13.1 (5)° (B), respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole intermediate groups are 71.8 (1)° (A), 80.5 (7)° (B) and 74.2 (4)° (A), 74.8 (6)° (B), respectively. The fluorine atoms in both cations are disordered (relative occupancies = 0.361 (5) (A), 0.639 (5) (A) and 0.684 (5) (B), 0.316 (5) (B)). In neutral chloranilic acid, typical CO and C–O(—H) bond lengths are 1.22 (1)Å and 1.32 (1) Å. For the chloroanilate monoanion CO and C–O-, values of 1.24 (2)Å and 1.25 (2) Å have been reported (Gotoh et al., (2007). In (I), we report values of 1.248 (2)Å (C2O2), 1.248 (2) Å (C5O5), 1.249 (2) Å (C3–O3-) and 1.245 (2) Å (C6–O6-), respectively. In addition to ionic bond interactions, the lansoprazole intermediate and chloranilic acid ions are connected by strong N—H···O hydrogen bonds [N1A···O3 = 2.749 (2) Å; N2A···O5 = 2.737 (2) Å; N1B···O2 = 2.717 (2) Å; N2B···O6 = 2.766 (2) Å] (Fig. 2, Table 1). This produces a set of O—H···O—H···O—H infinite one-dimensional chains along the b axis in the (011) plane. In addition, weak C—H···O, C—H···F, N—H···Cl (Table 1) and ππ (Table 2) intermolecular stacking interactions are observed which contribute to crystal packing stability (Fig. 2).

Related literature top

For bacterial growth inhibition by Lansoprazole and its analogs, see: Iwahi et al. (1991). For related structures, see: Arslan et al. (2006); Gotoh et al. (2006, 2007, 2008); Ishida (2004a,b,c); Ishida & Kashino (1999, 2000); Meng & Qian (2006); Refat et al. (2006); Swamy & Ravikumar (2007); Tabuchi et al. (2005); Vyas et al. (2000).

Experimental top

The title compound was synthesized by adding a saturated solution of chloranilic acid (0.42 g, 2 mmol) in methanol (10 ml) to a solution of the lansoprazole intermediate (0.74 g, 2 mmol) in methanol (10 ml). A red color developed and the solution was allowed to evaporate slowly at room temperature. The red color complex formed was filtered off, washed with diethyl ether and dried under vacuum (Yield: 72.4%). Crystals were grown from a dimethyl formamide solution (m.p.: 441-444 K). Composition (%) found (calculated) for [C16H15F3N3OS+]2 [C6Cl2O42-]: C: 49.76 (49.84); H: 3.28 (3.30); N: 9.15 (9.18).

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N–H = 0.86Å and C–H distances in the range 0.93-0.97Å and with Uiso(H) = 1.19-1.50 Ueq(C,N). The fluorine atoms were disordered with F1A, F2A, F3A at 0.361 (5) and F1AA, F2AA, F3AA at 0.639 (5) partial occupancy. F1B, F2B, F3B were placed at 0.684 (5) and F1BB, F2BB, F3BB at 0.316 (5) partial occupancy. All fluorine atoms were then refined anisotropically. The following restraints were applied: the ellipsoids of the F atoms were restrained to be isotropic and to have a similar shape than their opposite counterpart. The C-F distances were restrained to 1.303 (1)Å and the F···F distances to 2.128 (1)Å.

Structure description top

The Lansoprazole intermediate (Systematic name: 2-([[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl]methyl]sulfanyl) -1H-benzimidazole) in this study is a benzimidazole derivative. Lansoprazole, a widely used proton-pump inhibitor, has been reported to have an independent gastroprotective action. Lansoprazole and its analogs inhibit the growth of Helicobacter pylori at concentrations of several micrograms per milliliter (Iwahi et al., 1991) and is widely used for the treatment of acid-related gastric diseases due to their ability to inhibit acid secretio. The crystal structures of lansoprazole (Vyas et al., 2000) and lansoprazole sulphone have been reported (Swamy & Ravikumar, 2007).

Charge transfer complexes of organic species are intensively studied because of their special type of interaction, which is accompanied by transfer of an electron from the donor to the acceptor. Chloranilic acid is a strong dibasic organic acid which exhibits the electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol and amino heterocyclic donors in acteonitrile have been studied. The interaction of the lansoprazole intermediate as an electron donor with chloranilic acid as electron acceptor in this study resulted in the formation of a charge transfer complex of the title compound (I). In view of the importance of lansoprazole, this paper reports the crystal structure of [C16H15F3N3OS+]2 [C6Cl2O42-], (I).

The title compound (I) is a salt composed of two independent cations (A & B) of a lansoprazole intermediate, [C16H15F3N3OS+]2, and a dianion [C6Cl2O42-] of chloranilic acid, (2:1) in the asymmetric unit (Fig. 1). In each cation (A & B) of the lansoprazole intermediate the dihedral angles between the least squares planes of the pyridine and benzimidazole rings are 11.1 (6)° (A) and 13.1 (5)° (B), respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole intermediate groups are 71.8 (1)° (A), 80.5 (7)° (B) and 74.2 (4)° (A), 74.8 (6)° (B), respectively. The fluorine atoms in both cations are disordered (relative occupancies = 0.361 (5) (A), 0.639 (5) (A) and 0.684 (5) (B), 0.316 (5) (B)). In neutral chloranilic acid, typical CO and C–O(—H) bond lengths are 1.22 (1)Å and 1.32 (1) Å. For the chloroanilate monoanion CO and C–O-, values of 1.24 (2)Å and 1.25 (2) Å have been reported (Gotoh et al., (2007). In (I), we report values of 1.248 (2)Å (C2O2), 1.248 (2) Å (C5O5), 1.249 (2) Å (C3–O3-) and 1.245 (2) Å (C6–O6-), respectively. In addition to ionic bond interactions, the lansoprazole intermediate and chloranilic acid ions are connected by strong N—H···O hydrogen bonds [N1A···O3 = 2.749 (2) Å; N2A···O5 = 2.737 (2) Å; N1B···O2 = 2.717 (2) Å; N2B···O6 = 2.766 (2) Å] (Fig. 2, Table 1). This produces a set of O—H···O—H···O—H infinite one-dimensional chains along the b axis in the (011) plane. In addition, weak C—H···O, C—H···F, N—H···Cl (Table 1) and ππ (Table 2) intermolecular stacking interactions are observed which contribute to crystal packing stability (Fig. 2).

For bacterial growth inhibition by Lansoprazole and its analogs, see: Iwahi et al. (1991). For related structures, see: Arslan et al. (2006); Gotoh et al. (2006, 2007, 2008); Ishida (2004a,b,c); Ishida & Kashino (1999, 2000); Meng & Qian (2006); Refat et al. (2006); Swamy & Ravikumar (2007); Tabuchi et al. (2005); Vyas et al. (2000).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [C16H15F3N3OS+]2 [C6Cl2O42-], showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate strong N—H···O intermolecular interactions within the asymmetric unit. H atoms are presented as small circles of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound ,[C16H15F3N3OS+]2 [C6Cl2O42-],, viewed down the a axis. Dashed lines indicate strong N—H···O and weak C—H···O, C—H···F intermolecular hydrogen bonds linking the [C16H15F3N3OS+]2 and [C6Cl2O42-] ions into an infinite O—H···O—H···O—H chain network along the b axis in the (011) plane.
Bis(2-{[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methylsulfanyl}- 1H,3H+-benzimidazolium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate top
Crystal data top
2C16H15F3N3OS+·C6Cl2O42F(000) = 1872
Mr = 915.70Dx = 1.543 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 10683 reflections
a = 9.48575 (8) Åθ = 4.5–77.4°
b = 23.6316 (2) ŵ = 3.22 mm1
c = 17.86775 (15) ÅT = 295 K
β = 100.2065 (9)°Prism, red-brown
V = 3941.92 (6) Å30.38 × 0.24 × 0.19 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
8269 independent reflections
Radiation source: Enhance (Cu) X-ray Source6572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 77.6°, θmin = 4.5°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 2921
Tmin = 0.692, Tmax = 1.000l = 2122
19572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.2084P]
where P = (Fo2 + 2Fc2)/3
8269 reflections(Δ/σ)max = 0.007
600 parametersΔρmax = 0.87 e Å3
138 restraintsΔρmin = 0.49 e Å3
Crystal data top
2C16H15F3N3OS+·C6Cl2O42V = 3941.92 (6) Å3
Mr = 915.70Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.48575 (8) ŵ = 3.22 mm1
b = 23.6316 (2) ÅT = 295 K
c = 17.86775 (15) Å0.38 × 0.24 × 0.19 mm
β = 100.2065 (9)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
8269 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
6572 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 1.000Rint = 0.019
19572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050138 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.10Δρmax = 0.87 e Å3
8269 reflectionsΔρmin = 0.49 e Å3
600 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.02389 (6)0.28125 (3)0.75775 (3)0.06238 (17)
Cl20.65326 (6)0.29242 (4)0.82221 (3)0.06540 (18)
O20.16831 (17)0.31643 (8)0.65093 (9)0.0562 (4)
O30.45465 (16)0.32221 (7)0.67875 (8)0.0499 (4)
O50.45948 (16)0.26157 (7)0.92935 (8)0.0487 (3)
O60.17567 (16)0.25255 (8)0.90012 (9)0.0518 (4)
C10.1616 (2)0.28648 (9)0.77553 (11)0.0401 (4)
C20.2306 (2)0.30329 (8)0.71610 (11)0.0387 (4)
C30.3966 (2)0.30515 (8)0.73206 (11)0.0380 (4)
C40.4674 (2)0.28877 (9)0.80369 (11)0.0410 (4)
C50.3979 (2)0.27343 (8)0.86360 (10)0.0372 (4)
C60.2333 (2)0.27039 (8)0.84730 (11)0.0368 (4)
S1A0.76555 (7)0.36213 (3)0.55737 (3)0.05601 (14)
F1A0.9879 (2)0.53715 (13)0.14545 (16)0.161 (4)0.361 (5)
F2A1.1807 (2)0.50633 (8)0.2122 (2)0.105 (2)0.361 (5)
F3A1.1443 (3)0.59488 (7)0.2010 (3)0.149 (3)0.361 (5)
F1AA1.0095 (2)0.51401 (8)0.15374 (14)0.1149 (16)0.639 (5)
F2AA1.21213 (17)0.52535 (11)0.2249 (2)0.153 (2)0.639 (5)
F3AA1.0897 (4)0.59702 (6)0.1800 (2)0.216 (3)0.639 (5)
O1A0.9921 (3)0.49361 (8)0.29873 (12)0.0721 (5)
N1A0.68513 (19)0.27244 (9)0.63087 (10)0.0479 (4)
H1AA0.63380.29310.65520.057*
N2A0.8291 (2)0.24764 (8)0.55373 (10)0.0469 (4)
H2AA0.88530.24970.52100.056*
N3A0.8120 (2)0.45798 (9)0.48750 (13)0.0592 (5)
C1A0.7631 (2)0.29124 (10)0.58035 (11)0.0450 (5)
C2A0.7007 (2)0.21455 (11)0.63736 (12)0.0496 (5)
C3A0.6439 (3)0.17509 (13)0.68139 (16)0.0650 (7)
H3AA0.58430.18580.71500.078*
C4A0.6802 (4)0.11919 (14)0.67281 (19)0.0813 (9)
H4AA0.64470.09160.70160.098*
C5A0.7691 (4)0.10301 (14)0.62188 (19)0.0781 (8)
H5AA0.78940.06480.61690.094*
C6A0.8277 (3)0.14224 (12)0.57871 (15)0.0634 (6)
H6AA0.88790.13150.54540.076*
C7A0.7919 (2)0.19858 (11)0.58771 (12)0.0492 (5)
C8A0.8823 (3)0.36051 (11)0.48755 (15)0.0570 (6)
H8AA0.97940.35130.51160.068*
H8AB0.84970.33230.44900.068*
C9A0.8769 (3)0.41856 (10)0.45245 (14)0.0517 (5)
C10A0.8074 (3)0.51054 (12)0.45988 (16)0.0653 (7)
H10A0.76200.53820.48400.078*
C11A0.8657 (3)0.52621 (12)0.39785 (16)0.0641 (6)
H11A0.86120.56340.38070.077*
C12A0.9315 (3)0.48433 (11)0.36190 (15)0.0577 (6)
C13A0.9393 (3)0.42859 (10)0.38825 (14)0.0526 (5)
C14A1.0114 (3)0.38352 (12)0.34966 (17)0.0673 (7)
H14A1.01940.34960.37970.101*
H14B1.10520.39610.34420.101*
H14C0.95580.37590.30040.101*
C15A1.0090 (6)0.54929 (14)0.2751 (2)0.0985 (12)
H15A1.06670.57080.31560.118*
H15B0.91650.56760.26150.118*
C16A1.08337 (16)0.54588 (6)0.20623 (10)0.1085 (15)
S1B0.37775 (7)0.35551 (3)0.47949 (3)0.05589 (14)
F1B0.46185 (16)0.52009 (8)0.0783 (2)0.144 (2)0.684 (5)
F2B0.68815 (15)0.52999 (10)0.10037 (18)0.1317 (14)0.684 (5)
F3B0.5535 (3)0.60246 (6)0.08372 (17)0.1343 (16)0.684 (5)
F1BB0.5025 (3)0.59349 (8)0.0729 (2)0.114 (3)0.316 (5)
F2BB0.5274 (3)0.50406 (7)0.0777 (2)0.115 (3)0.316 (5)
F3BB0.70535 (15)0.55741 (14)0.1178 (3)0.162 (4)0.316 (5)
O1B0.5855 (3)0.50090 (9)0.22645 (11)0.0748 (6)
N1B0.2888 (2)0.26340 (9)0.54297 (11)0.0492 (4)
H1BA0.23740.28350.56790.059*
N2B0.4330 (2)0.24045 (8)0.46559 (10)0.0467 (4)
H2BA0.48920.24340.43290.056*
N3B0.4174 (3)0.45403 (9)0.41534 (12)0.0618 (5)
C1B0.3674 (2)0.28334 (10)0.49428 (11)0.0446 (4)
C2B0.3029 (3)0.20543 (11)0.54709 (14)0.0540 (5)
C3B0.2441 (4)0.16568 (14)0.58983 (19)0.0760 (8)
H3BA0.18320.17590.62300.091*
C4B0.2813 (5)0.10991 (17)0.5801 (2)0.0975 (12)
H4BA0.24490.08170.60770.117*
C5B0.3720 (5)0.09494 (15)0.5299 (3)0.0991 (13)
H5BA0.39350.05690.52450.119*
C6B0.4311 (4)0.13501 (13)0.48792 (18)0.0744 (8)
H6BA0.49220.12470.45490.089*
C7B0.3950 (3)0.19064 (11)0.49732 (13)0.0526 (5)
C8B0.4554 (3)0.35551 (11)0.39369 (13)0.0556 (6)
H8BA0.54870.33750.40320.067*
H8BB0.39410.33500.35350.067*
C9B0.4691 (3)0.41622 (10)0.37107 (12)0.0495 (5)
C10B0.4281 (4)0.50877 (12)0.39791 (16)0.0680 (7)
H10B0.39620.53550.42930.082*
C11B0.4831 (3)0.52773 (12)0.33653 (15)0.0652 (7)
H11B0.48760.56620.32600.078*
C12B0.5319 (3)0.48743 (11)0.29059 (13)0.0566 (6)
C13B0.5295 (3)0.43033 (10)0.30822 (12)0.0513 (5)
C14B0.5910 (3)0.38603 (12)0.26233 (15)0.0655 (7)
H14D0.62830.40400.22180.098*
H14E0.51710.35980.24150.098*
H14F0.66670.36610.29460.098*
C15B0.5554 (4)0.55470 (13)0.19478 (18)0.0803 (9)
H15C0.62290.58220.22070.096*
H15D0.45950.56630.20010.096*
C16B0.56725 (15)0.55150 (6)0.11217 (10)0.0924 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0340 (2)0.1034 (5)0.0508 (3)0.0013 (2)0.0106 (2)0.0039 (3)
Cl20.0347 (2)0.1177 (5)0.0455 (3)0.0089 (3)0.0117 (2)0.0020 (3)
O20.0479 (8)0.0864 (11)0.0365 (7)0.0193 (8)0.0130 (6)0.0129 (7)
O30.0493 (7)0.0665 (9)0.0389 (7)0.0025 (7)0.0212 (6)0.0073 (6)
O50.0436 (7)0.0706 (9)0.0325 (7)0.0026 (7)0.0081 (6)0.0078 (6)
O60.0443 (7)0.0765 (10)0.0379 (7)0.0111 (7)0.0164 (6)0.0072 (7)
C10.0313 (8)0.0535 (10)0.0374 (9)0.0002 (7)0.0110 (7)0.0003 (8)
C20.0398 (9)0.0452 (9)0.0334 (9)0.0063 (7)0.0127 (7)0.0008 (7)
C30.0396 (9)0.0429 (9)0.0346 (9)0.0001 (7)0.0147 (7)0.0005 (7)
C40.0321 (8)0.0577 (11)0.0354 (9)0.0044 (8)0.0117 (7)0.0010 (8)
C50.0382 (9)0.0430 (9)0.0320 (8)0.0026 (7)0.0106 (7)0.0008 (7)
C60.0378 (9)0.0408 (9)0.0341 (8)0.0045 (7)0.0130 (7)0.0013 (7)
S1A0.0645 (3)0.0645 (3)0.0451 (3)0.0095 (3)0.0264 (2)0.0001 (2)
F1A0.162 (7)0.194 (7)0.125 (6)0.033 (6)0.018 (5)0.057 (6)
F2A0.113 (4)0.084 (3)0.136 (5)0.031 (3)0.073 (4)0.031 (3)
F3A0.227 (6)0.088 (4)0.166 (6)0.049 (4)0.124 (5)0.007 (4)
F1AA0.176 (4)0.110 (3)0.0567 (18)0.033 (3)0.016 (2)0.0122 (17)
F2AA0.109 (3)0.207 (5)0.149 (4)0.066 (3)0.042 (3)0.009 (4)
F3AA0.442 (8)0.104 (4)0.136 (4)0.017 (5)0.142 (5)0.011 (3)
O1A0.0979 (14)0.0607 (10)0.0668 (11)0.0055 (10)0.0391 (10)0.0041 (9)
N1A0.0432 (9)0.0682 (11)0.0350 (8)0.0004 (8)0.0144 (7)0.0060 (8)
N2A0.0453 (8)0.0673 (11)0.0309 (8)0.0023 (8)0.0142 (7)0.0026 (7)
N3A0.0671 (12)0.0609 (11)0.0552 (11)0.0049 (10)0.0261 (9)0.0069 (9)
C1A0.0412 (9)0.0653 (12)0.0298 (8)0.0003 (9)0.0097 (7)0.0036 (8)
C2A0.0472 (11)0.0671 (13)0.0361 (10)0.0062 (9)0.0119 (8)0.0051 (9)
C3A0.0706 (15)0.0759 (16)0.0553 (13)0.0119 (13)0.0301 (12)0.0056 (12)
C4A0.107 (2)0.0754 (18)0.0710 (18)0.0169 (17)0.0404 (17)0.0002 (15)
C5A0.101 (2)0.0652 (16)0.0752 (18)0.0023 (15)0.0363 (17)0.0048 (14)
C6A0.0743 (16)0.0688 (15)0.0511 (13)0.0052 (12)0.0219 (12)0.0066 (11)
C7A0.0501 (11)0.0659 (13)0.0330 (9)0.0028 (10)0.0108 (8)0.0056 (9)
C8A0.0640 (13)0.0591 (13)0.0554 (13)0.0039 (11)0.0313 (11)0.0038 (10)
C9A0.0541 (11)0.0573 (12)0.0470 (11)0.0001 (10)0.0180 (9)0.0068 (9)
C10A0.0741 (16)0.0620 (14)0.0636 (15)0.0097 (12)0.0230 (13)0.0104 (12)
C11A0.0773 (16)0.0535 (13)0.0636 (15)0.0023 (12)0.0186 (13)0.0012 (11)
C12A0.0625 (13)0.0615 (13)0.0522 (12)0.0056 (11)0.0192 (10)0.0022 (10)
C13A0.0557 (12)0.0576 (12)0.0488 (11)0.0010 (10)0.0208 (10)0.0052 (10)
C14A0.0813 (16)0.0654 (15)0.0651 (15)0.0067 (13)0.0399 (13)0.0019 (12)
C15A0.162 (4)0.0620 (17)0.083 (2)0.012 (2)0.054 (2)0.0002 (16)
C16A0.184 (5)0.072 (2)0.076 (2)0.025 (3)0.040 (3)0.0107 (18)
S1B0.0684 (3)0.0580 (3)0.0482 (3)0.0082 (3)0.0293 (2)0.0006 (2)
F1B0.211 (5)0.118 (3)0.091 (3)0.007 (3)0.006 (3)0.012 (2)
F2B0.191 (3)0.118 (3)0.117 (2)0.027 (3)0.110 (2)0.008 (2)
F3B0.265 (5)0.0703 (18)0.091 (2)0.014 (2)0.094 (3)0.0221 (16)
F1BB0.135 (6)0.123 (6)0.083 (5)0.006 (5)0.017 (4)0.047 (4)
F2BB0.188 (7)0.108 (5)0.053 (3)0.038 (5)0.028 (4)0.009 (3)
F3BB0.150 (7)0.205 (9)0.149 (7)0.009 (6)0.076 (6)0.030 (7)
O1B0.1124 (15)0.0664 (11)0.0570 (10)0.0159 (11)0.0467 (10)0.0109 (8)
N1B0.0446 (9)0.0646 (11)0.0415 (9)0.0019 (8)0.0158 (7)0.0003 (8)
N2B0.0459 (9)0.0610 (10)0.0353 (8)0.0045 (8)0.0124 (7)0.0030 (7)
N3B0.0853 (14)0.0589 (11)0.0494 (10)0.0164 (10)0.0340 (10)0.0038 (9)
C1B0.0416 (9)0.0599 (12)0.0332 (9)0.0020 (8)0.0088 (7)0.0019 (8)
C2B0.0521 (12)0.0662 (14)0.0443 (11)0.0036 (10)0.0103 (9)0.0003 (10)
C3B0.0829 (18)0.0791 (18)0.0714 (18)0.0151 (15)0.0283 (15)0.0081 (15)
C4B0.123 (3)0.079 (2)0.096 (3)0.018 (2)0.036 (2)0.0131 (19)
C5B0.143 (4)0.0581 (17)0.097 (3)0.000 (2)0.024 (3)0.0009 (17)
C6B0.094 (2)0.0654 (16)0.0653 (17)0.0083 (15)0.0192 (15)0.0082 (13)
C7B0.0550 (12)0.0615 (13)0.0408 (11)0.0016 (10)0.0071 (9)0.0021 (9)
C8B0.0700 (14)0.0589 (13)0.0435 (11)0.0150 (11)0.0257 (10)0.0054 (9)
C9B0.0563 (11)0.0569 (12)0.0378 (10)0.0129 (10)0.0151 (9)0.0019 (9)
C10B0.0955 (18)0.0612 (14)0.0562 (13)0.0193 (13)0.0377 (13)0.0011 (11)
C11B0.0927 (19)0.0547 (13)0.0548 (13)0.0128 (13)0.0310 (13)0.0052 (11)
C12B0.0704 (14)0.0635 (13)0.0404 (11)0.0083 (11)0.0223 (10)0.0047 (10)
C13B0.0613 (12)0.0585 (12)0.0363 (10)0.0128 (10)0.0148 (9)0.0012 (9)
C14B0.0878 (17)0.0666 (15)0.0495 (12)0.0172 (13)0.0321 (12)0.0007 (11)
C15B0.129 (3)0.0583 (15)0.0645 (16)0.0002 (16)0.0478 (17)0.0028 (12)
C16B0.148 (3)0.0671 (18)0.075 (2)0.002 (2)0.054 (2)0.0131 (16)
Geometric parameters (Å, º) top
Cl1—C11.7363 (19)C14A—H14A0.9600
Cl2—C41.7370 (19)C14A—H14B0.9600
O2—C21.248 (2)C14A—H14C0.9600
O3—C31.249 (2)C15A—C16A1.525 (4)
O5—C51.248 (2)C15A—H15A0.9700
O6—C61.245 (2)C15A—H15B0.9700
C1—C61.394 (3)S1B—C1B1.731 (2)
C1—C21.400 (3)S1B—C8B1.814 (2)
C2—C31.551 (3)F1B—C16B1.3048 (11)
C3—C41.391 (3)F2B—C16B1.3053 (11)
C4—C51.401 (3)F3B—C16B1.3047 (11)
C5—C61.539 (3)F1BB—C16B1.3039 (12)
S1A—C1A1.726 (2)F2BB—C16B1.3026 (12)
S1A—C8A1.809 (2)F3BB—C16B1.3034 (11)
F1A—C16A1.3016 (12)O1B—C12B1.371 (3)
F2A—C16A1.3045 (11)O1B—C15B1.400 (4)
F3A—C16A1.3052 (12)N1B—C1B1.328 (3)
F1AA—C16A1.3056 (11)N1B—C2B1.377 (3)
F2AA—C16A1.3016 (11)N1B—H1BA0.8600
F3AA—C16A1.3014 (12)N2B—C1B1.338 (3)
O1A—C12A1.372 (3)N2B—C7B1.382 (3)
O1A—C15A1.400 (4)N2B—H2BA0.8600
N1A—C1A1.340 (3)N3B—C10B1.339 (4)
N1A—C2A1.379 (3)N3B—C9B1.342 (3)
N1A—H1AA0.8600C2B—C3B1.389 (4)
N2A—C1A1.336 (3)C2B—C7B1.397 (3)
N2A—C7A1.383 (3)C3B—C4B1.383 (5)
N2A—H2AA0.8600C3B—H3BA0.9300
N3A—C9A1.332 (3)C4B—C5B1.393 (6)
N3A—C10A1.334 (4)C4B—H4BA0.9300
C2A—C3A1.389 (4)C5B—C6B1.387 (5)
C2A—C7A1.397 (3)C5B—H5BA0.9300
C3A—C4A1.381 (5)C6B—C7B1.376 (4)
C3A—H3AA0.9300C6B—H6BA0.9300
C4A—C5A1.399 (4)C8B—C9B1.502 (3)
C4A—H4AA0.9300C8B—H8BA0.9700
C5A—C6A1.384 (4)C8B—H8BB0.9700
C5A—H5AA0.9300C9B—C13B1.389 (3)
C6A—C7A1.390 (4)C10B—C11B1.371 (4)
C6A—H6AA0.9300C10B—H10B0.9300
C8A—C9A1.505 (4)C11B—C12B1.389 (3)
C8A—H8AA0.9700C11B—H11B0.9300
C8A—H8AB0.9700C12B—C13B1.387 (4)
C9A—C13A1.401 (3)C13B—C14B1.509 (3)
C10A—C11A1.374 (4)C14B—H14D0.9600
C10A—H10A0.9300C14B—H14E0.9600
C11A—C12A1.387 (4)C14B—H14F0.9600
C11A—H11A0.9300C15B—C16B1.502 (3)
C12A—C13A1.396 (4)C15B—H15C0.9700
C13A—C14A1.498 (3)C15B—H15D0.9700
C6—C1—C2123.92 (18)F2AA—C16A—F1AA109.21 (12)
C6—C1—Cl1117.53 (15)F2A—C16A—F1AA85.83 (17)
C2—C1—Cl1118.44 (15)F3A—C16A—F1AA130.4 (2)
O2—C2—C1124.80 (18)F3AA—C16A—C15A107.4 (2)
O2—C2—C3117.51 (17)F2AA—C16A—C15A111.1 (3)
C1—C2—C3117.69 (17)F1A—C16A—C15A109.2 (3)
O3—C3—C4125.85 (18)F2A—C16A—C15A113.2 (3)
O3—C3—C2116.08 (17)F3A—C16A—C15A106.6 (3)
C4—C3—C2118.06 (16)F1AA—C16A—C15A110.1 (2)
C3—C4—C5124.00 (18)C1B—S1B—C8B99.87 (11)
C3—C4—Cl2118.02 (14)C12B—O1B—C15B118.0 (2)
C5—C4—Cl2117.81 (15)C1B—N1B—C2B109.11 (19)
O5—C5—C4124.93 (18)C1B—N1B—H1BA125.4
O5—C5—C6117.24 (16)C2B—N1B—H1BA125.4
C4—C5—C6117.83 (16)C1B—N2B—C7B108.40 (19)
O6—C6—C1125.59 (18)C1B—N2B—H2BA125.8
O6—C6—C5116.07 (17)C7B—N2B—H2BA125.8
C1—C6—C5118.34 (16)C10B—N3B—C9B117.1 (2)
C1A—S1A—C8A100.32 (11)N1B—C1B—N2B109.6 (2)
C12A—O1A—C15A119.0 (2)N1B—C1B—S1B120.19 (17)
C1A—N1A—C2A108.78 (19)N2B—C1B—S1B130.18 (17)
C1A—N1A—H1AA125.6N1B—C2B—C3B131.1 (3)
C2A—N1A—H1AA125.6N1B—C2B—C7B106.3 (2)
C1A—N2A—C7A108.54 (18)C3B—C2B—C7B122.6 (3)
C1A—N2A—H2AA125.7C4B—C3B—C2B116.0 (3)
C7A—N2A—H2AA125.7C4B—C3B—H3BA122.0
C9A—N3A—C10A117.7 (2)C2B—C3B—H3BA122.0
N2A—C1A—N1A109.5 (2)C3B—C4B—C5B121.5 (3)
N2A—C1A—S1A129.56 (16)C3B—C4B—H4BA119.2
N1A—C1A—S1A120.94 (17)C5B—C4B—H4BA119.2
N1A—C2A—C3A131.9 (2)C6B—C5B—C4B122.0 (3)
N1A—C2A—C7A106.5 (2)C6B—C5B—H5BA119.0
C3A—C2A—C7A121.6 (2)C4B—C5B—H5BA119.0
C4A—C3A—C2A116.7 (3)C7B—C6B—C5B117.0 (3)
C4A—C3A—H3AA121.6C7B—C6B—H6BA121.5
C2A—C3A—H3AA121.6C5B—C6B—H6BA121.5
C3A—C4A—C5A121.7 (3)C6B—C7B—N2B132.5 (3)
C3A—C4A—H4AA119.2C6B—C7B—C2B120.9 (3)
C5A—C4A—H4AA119.2N2B—C7B—C2B106.6 (2)
C6A—C5A—C4A121.8 (3)C9B—C8B—S1B107.15 (16)
C6A—C5A—H5AA119.1C9B—C8B—H8BA110.3
C4A—C5A—H5AA119.1S1B—C8B—H8BA110.3
C5A—C6A—C7A116.5 (3)C9B—C8B—H8BB110.3
C5A—C6A—H6AA121.7S1B—C8B—H8BB110.3
C7A—C6A—H6AA121.7H8BA—C8B—H8BB108.5
N2A—C7A—C6A131.7 (2)N3B—C9B—C13B124.2 (2)
N2A—C7A—C2A106.7 (2)N3B—C9B—C8B114.8 (2)
C6A—C7A—C2A121.6 (2)C13B—C9B—C8B121.0 (2)
C9A—C8A—S1A106.77 (16)N3B—C10B—C11B123.8 (2)
C9A—C8A—H8AA110.4N3B—C10B—H10B118.1
S1A—C8A—H8AA110.4C11B—C10B—H10B118.1
C9A—C8A—H8AB110.4C10B—C11B—C12B117.6 (2)
S1A—C8A—H8AB110.4C10B—C11B—H11B121.2
H8AA—C8A—H8AB108.6C12B—C11B—H11B121.2
N3A—C9A—C13A124.3 (2)O1B—C12B—C13B116.0 (2)
N3A—C9A—C8A115.2 (2)O1B—C12B—C11B123.1 (2)
C13A—C9A—C8A120.5 (2)C13B—C12B—C11B120.8 (2)
N3A—C10A—C11A123.9 (2)C12B—C13B—C9B116.3 (2)
N3A—C10A—H10A118.1C12B—C13B—C14B121.9 (2)
C11A—C10A—H10A118.1C9B—C13B—C14B121.8 (2)
C10A—C11A—C12A117.4 (3)C13B—C14B—H14D109.5
C10A—C11A—H11A121.3C13B—C14B—H14E109.5
C12A—C11A—H11A121.3H14D—C14B—H14E109.5
O1A—C12A—C11A123.7 (2)C13B—C14B—H14F109.5
O1A—C12A—C13A115.0 (2)H14D—C14B—H14F109.5
C11A—C12A—C13A121.2 (2)H14E—C14B—H14F109.5
C12A—C13A—C9A115.5 (2)O1B—C15B—C16B107.8 (2)
C12A—C13A—C14A121.1 (2)O1B—C15B—H15C110.1
C9A—C13A—C14A123.4 (2)C16B—C15B—H15C110.1
C13A—C14A—H14A109.5O1B—C15B—H15D110.1
C13A—C14A—H14B109.5C16B—C15B—H15D110.1
H14A—C14A—H14B109.5H15C—C15B—H15D108.5
C13A—C14A—H14C109.5F2BB—C16B—F3BB109.42 (13)
H14A—C14A—H14C109.5F2BB—C16B—F1BB109.35 (13)
H14B—C14A—H14C109.5F3BB—C16B—F1BB109.33 (13)
O1A—C15A—C16A106.7 (3)F2BB—C16B—F3B127.6 (2)
O1A—C15A—H15A110.4F3BB—C16B—F3B87.8 (2)
C16A—C15A—H15A110.4F3BB—C16B—F1B140.7 (2)
O1A—C15A—H15B110.4F1BB—C16B—F1B86.25 (16)
C16A—C15A—H15B110.4F3B—C16B—F1B109.20 (12)
H15A—C15A—H15B108.6F2BB—C16B—F2B77.19 (18)
F3AA—C16A—F2AA109.73 (12)F1BB—C16B—F2B123.6 (2)
F3AA—C16A—F1A85.21 (19)F3B—C16B—F2B109.08 (12)
F2AA—C16A—F1A129.6 (2)F1B—C16B—F2B109.06 (12)
F3AA—C16A—F2A128.2 (2)F2BB—C16B—C15B116.2 (3)
F1A—C16A—F2A109.42 (12)F3BB—C16B—C15B99.7 (3)
F2AA—C16A—F3A86.66 (18)F1BB—C16B—C15B112.3 (3)
F1A—C16A—F3A109.40 (13)F3B—C16B—C15B108.5 (2)
F2A—C16A—F3A109.00 (12)F1B—C16B—C15B107.4 (2)
F3AA—C16A—F1AA109.29 (12)F2B—C16B—C15B113.5 (2)
C6—C1—C2—O2178.1 (2)C11A—C12A—C13A—C14A179.5 (3)
Cl1—C1—C2—O22.0 (3)N3A—C9A—C13A—C12A0.7 (4)
C6—C1—C2—C31.3 (3)C8A—C9A—C13A—C12A178.2 (2)
Cl1—C1—C2—C3177.35 (14)N3A—C9A—C13A—C14A179.9 (3)
O2—C2—C3—O33.1 (3)C8A—C9A—C13A—C14A1.2 (4)
C1—C2—C3—O3177.56 (19)C12A—O1A—C15A—C16A177.9 (2)
O2—C2—C3—C4177.9 (2)O1A—C15A—C16A—F3AA175.1 (3)
C1—C2—C3—C41.5 (3)O1A—C15A—C16A—F2AA64.9 (4)
O3—C3—C4—C5175.6 (2)O1A—C15A—C16A—F1A84.2 (4)
C2—C3—C4—C53.4 (3)O1A—C15A—C16A—F2A38.0 (4)
O3—C3—C4—Cl20.4 (3)O1A—C15A—C16A—F3A157.8 (3)
C2—C3—C4—Cl2178.54 (14)O1A—C15A—C16A—F1AA56.2 (4)
C3—C4—C5—O5175.9 (2)C2B—N1B—C1B—N2B0.2 (3)
Cl2—C4—C5—O50.8 (3)C2B—N1B—C1B—S1B177.41 (16)
C3—C4—C5—C64.6 (3)C7B—N2B—C1B—N1B0.1 (2)
Cl2—C4—C5—C6179.79 (14)C7B—N2B—C1B—S1B177.27 (18)
C2—C1—C6—O6176.2 (2)C8B—S1B—C1B—N1B165.94 (18)
Cl1—C1—C6—O60.1 (3)C8B—S1B—C1B—N2B17.0 (2)
C2—C1—C6—C52.5 (3)C1B—N1B—C2B—C3B179.3 (3)
Cl1—C1—C6—C5178.64 (14)C1B—N1B—C2B—C7B0.3 (3)
O5—C5—C6—O64.7 (3)N1B—C2B—C3B—C4B180.0 (3)
C4—C5—C6—O6174.79 (19)C7B—C2B—C3B—C4B0.3 (5)
O5—C5—C6—C1176.48 (19)C2B—C3B—C4B—C5B0.3 (6)
C4—C5—C6—C14.0 (3)C3B—C4B—C5B—C6B0.8 (7)
C7A—N2A—C1A—N1A0.5 (2)C4B—C5B—C6B—C7B0.6 (6)
C7A—N2A—C1A—S1A178.46 (17)C5B—C6B—C7B—N2B179.9 (3)
C2A—N1A—C1A—N2A0.1 (2)C5B—C6B—C7B—C2B0.0 (5)
C2A—N1A—C1A—S1A178.96 (15)C1B—N2B—C7B—C6B179.9 (3)
C8A—S1A—C1A—N2A0.0 (2)C1B—N2B—C7B—C2B0.1 (3)
C8A—S1A—C1A—N1A178.86 (18)N1B—C2B—C7B—C6B179.8 (2)
C1A—N1A—C2A—C3A179.8 (3)C3B—C2B—C7B—C6B0.5 (4)
C1A—N1A—C2A—C7A0.3 (2)N1B—C2B—C7B—N2B0.3 (3)
N1A—C2A—C3A—C4A178.8 (3)C3B—C2B—C7B—N2B179.4 (3)
C7A—C2A—C3A—C4A1.0 (4)C1B—S1B—C8B—C9B178.68 (17)
C2A—C3A—C4A—C5A0.4 (5)C10B—N3B—C9B—C13B1.3 (4)
C3A—C4A—C5A—C6A1.4 (6)C10B—N3B—C9B—C8B179.5 (3)
C4A—C5A—C6A—C7A0.9 (5)S1B—C8B—C9B—N3B2.7 (3)
C1A—N2A—C7A—C6A178.2 (3)S1B—C8B—C9B—C13B178.04 (19)
C1A—N2A—C7A—C2A0.7 (2)C9B—N3B—C10B—C11B2.5 (5)
C5A—C6A—C7A—N2A179.2 (3)N3B—C10B—C11B—C12B0.8 (5)
C5A—C6A—C7A—C2A0.5 (4)C15B—O1B—C12B—C13B163.0 (3)
N1A—C2A—C7A—N2A0.6 (2)C15B—O1B—C12B—C11B17.4 (4)
C3A—C2A—C7A—N2A179.5 (2)C10B—C11B—C12B—O1B178.1 (3)
N1A—C2A—C7A—C6A178.4 (2)C10B—C11B—C12B—C13B2.4 (5)
C3A—C2A—C7A—C6A1.5 (4)O1B—C12B—C13B—C9B177.0 (2)
C1A—S1A—C8A—C9A171.22 (17)C11B—C12B—C13B—C9B3.4 (4)
C10A—N3A—C9A—C13A0.6 (4)O1B—C12B—C13B—C14B3.7 (4)
C10A—N3A—C9A—C8A178.4 (2)C11B—C12B—C13B—C14B175.8 (3)
S1A—C8A—C9A—N3A10.6 (3)N3B—C9B—C13B—C12B1.6 (4)
S1A—C8A—C9A—C13A170.4 (2)C8B—C9B—C13B—C12B177.5 (2)
C9A—N3A—C10A—C11A0.2 (4)N3B—C9B—C13B—C14B177.6 (3)
N3A—C10A—C11A—C12A0.8 (5)C8B—C9B—C13B—C14B3.3 (4)
C15A—O1A—C12A—C11A10.1 (5)C12B—O1B—C15B—C16B156.3 (2)
C15A—O1A—C12A—C13A170.4 (3)O1B—C15B—C16B—F2BB34.4 (4)
C10A—C11A—C12A—O1A178.9 (3)O1B—C15B—C16B—F3BB82.9 (3)
C10A—C11A—C12A—C13A0.6 (4)O1B—C15B—C16B—F1BB161.4 (2)
O1A—C12A—C13A—C9A179.6 (2)O1B—C15B—C16B—F3B173.8 (2)
C11A—C12A—C13A—C9A0.1 (4)O1B—C15B—C16B—F1B68.3 (3)
O1A—C12A—C13A—C14A0.9 (4)O1B—C15B—C16B—F2B52.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O30.861.952.749 (2)155
N1A—H1AA···Cl20.862.963.5169 (18)125
N2A—H2AA···O5i0.861.912.737 (2)160
N1B—H1BA···O20.861.892.717 (2)160
N2B—H2BA···O6i0.861.962.766 (2)155
C8A—H8AB···O5i0.972.503.195 (3)127
C8B—H8BA···O6i0.972.453.289 (3)145
C6B—H6BA···F3AAii0.932.493.104 (5)124
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C16H15F3N3OS+·C6Cl2O42
Mr915.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.48575 (8), 23.6316 (2), 17.86775 (15)
β (°) 100.2065 (9)
V3)3941.92 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.22
Crystal size (mm)0.38 × 0.24 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.692, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19572, 8269, 6572
Rint0.019
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.158, 1.10
No. of reflections8269
No. of parameters600
No. of restraints138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.49

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O30.861.952.749 (2)154.6
N1A—H1AA···Cl20.862.963.5169 (18)124.6
N2A—H2AA···O5i0.861.912.737 (2)160.3
N1B—H1BA···O20.861.892.717 (2)160.2
N2B—H2BA···O6i0.861.962.766 (2)155.1
C8A—H8AB···O5i0.972.503.195 (3)127.1
C8B—H8BA···O6i0.972.453.289 (3)144.6
C6B—H6BA···F3AAii0.932.493.104 (5)124.2
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+1/2.
Weak π-π hydrogen-bond intermoleular interactions (Å) top
Cg···CgD···A
Cg1···Cg4i3.8187 (13)
Cg2···Cg2ii3.5631 (15)
Cg2···Cg5i3.7434 (17)
Cg3···Cg6i3.842 (2)
Symmetry codes: (i) x, y, z; (ii) 2-x, 1-y, 1-z; Cg1,Cg2,Cg3,Cg4,Cg5,Cg6 are the centroids of the N1A/C1A/N2A/C7A/C2A; N3A/C9A/C13A/C12A/C11A/C10A; C2A–C7A; N1B/C1B/N2B/C7B/C2B; N3B/C9B/C13B/C12B/C11B/C10B; C2B–C7B rings.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of their research facilities and HSY thanks the University of Mysore for a sabbatical. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationArslan, M., Asker, E., Krafcik, R. B., Masnovi, J. & Baker, R. J. (2006). Acta Cryst. E62, o4055–o4057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2007). Acta Cryst. E63, o4295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004a). Acta Cryst. E60, o1900–o1901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004b). Acta Cryst. E60, o2005–o2006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004c). Acta Cryst. E60, o2506–o2508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIshida, H. & Kashino, S. (2000). Acta Cryst. C56, e202–e204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationIwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMeng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRefat, M. S., Ahmed, H. A.-D., El-Zayat, L. A., Fukunaga, T. & Ishida, H. (2006). Acta Cryst. E62, o1886–o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715–718.  Web of Science CrossRef CAS Google Scholar
First citationTabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215–o4217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVyas, K., Sivalakshmidevi, A. & Om Reddy, G. (2000). Acta Cryst. C56, e572–e573.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds