organic compounds
Bis(2-{[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methylsulfanyl}-1H,3H+-benzimidazolium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu
The title salt, 2C16H15F3N3OS+·C6Cl2O42−, is composed of two independent cations of a lansoprazole {systematic name 2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole} intermediate and a dianion of chloranilic acid. In the cations of the lansoprazole intermediate, the dihedral angles between the least-squares planes of the pyridine and benzimidazole rings are 11.1 (6) and 13.1 (5)°, respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole intermediate groups are 71.8 (1)/80.5 (7) and 74.2 (4)/74.8 (6)°. In addition to ionic bond interactions, the lansoprazole intermediate and chloranilic ions are connected by strong N—H⋯O hydrogen bonds, which produce a set of extended O—H⋯O—H⋯O—H chains along the b axis in the (011) plane. In addition, weak C—H⋯O, C—H⋯F, N—H⋯Cl and π–π [centroid–centroid distances = 3.5631 (15), 3.8187 (13), 3.7434 (17) and 3.842 (2) Å] intermolecular interactions are observed, which contribute to crystal packing stability.
Related literature
For bacterial growth inhibition by lansoprazole and its analogs, see: Iwahi et al. (1991). For related structures, see: Arslan et al. (2006); Gotoh et al. (2006, 2007, 2008); Ishida (2004a,b,c); Ishida & Kashino (1999, 2000); Meng & Qian (2006); Refat et al. (2006); Swamy & Ravikumar (2007); Tabuchi et al. (2005); Vyas et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810019665/bt5269sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810019665/bt5269Isup2.hkl
The title compound was synthesized by adding a
of chloranilic acid (0.42 g, 2 mmol) in methanol (10 ml) to a solution of the lansoprazole intermediate (0.74 g, 2 mmol) in methanol (10 ml). A red color developed and the solution was allowed to evaporate slowly at room temperature. The red color complex formed was filtered off, washed with diethyl ether and dried under vacuum (Yield: 72.4%). Crystals were grown from a dimethyl formamide solution (m.p.: 441-444 K). Composition (%) found (calculated) for [C16H15F3N3OS+]2 [C6Cl2O42-]: C: 49.76 (49.84); H: 3.28 (3.30); N: 9.15 (9.18).The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N–H = 0.86Å and C–H distances in the range 0.93-0.97Å and with Uiso(H) = 1.19-1.50 Ueq(C,N). The fluorine atoms were disordered with F1A, F2A, F3A at 0.361 (5) and F1AA, F2AA, F3AA at 0.639 (5) partial occupancy. F1B, F2B, F3B were placed at 0.684 (5) and F1BB, F2BB, F3BB at 0.316 (5) partial occupancy. All fluorine atoms were then refined anisotropically. The following restraints were applied: the ellipsoids of the F atoms were restrained to be isotropic and to have a similar shape than their opposite counterpart. The C-F distances were restrained to 1.303 (1)Å and the F···F distances to 2.128 (1)Å.
The Lansoprazole intermediate (Systematic name: 2-([[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl]methyl]sulfanyl) -1H-benzimidazole) in this study is a benzimidazole derivative. Lansoprazole, a widely used proton-pump inhibitor, has been reported to have an independent gastroprotective action. Lansoprazole and its analogs inhibit the growth of Helicobacter pylori at concentrations of several micrograms per milliliter (Iwahi et al., 1991) and is widely used for the treatment of acid-related gastric diseases due to their ability to inhibit acid secretio. The crystal structures of lansoprazole (Vyas et al., 2000) and lansoprazole sulphone have been reported (Swamy & Ravikumar, 2007).
Charge transfer complexes of organic species are intensively studied because of their special type of interaction, which is accompanied by transfer of an electron from the donor to the acceptor. Chloranilic acid is a strong dibasic organic acid which exhibits the electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer hydrogen bonded ion pairs will be formed which is interesting from the point of view of
reactions in biological systems. Protonation of the donor from acidic acceptors are generally a route for the formation of adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic in ethanol and amino heterocyclic donors in acteonitrile have been studied. The interaction of the lansoprazole intermediate as an with chloranilic acid as in this study resulted in the formation of a charge transfer complex of the title compound (I). In view of the importance of lansoprazole, this paper reports the of [C16H15F3N3OS+]2 [C6Cl2O42-], (I).The title compound (I) is a salt composed of two independent cations (A & B) of a lansoprazole intermediate, [C16H15F3N3OS+]2, and a dianion [C6Cl2O42-] of chloranilic acid, (2:1) in the ═O and C–O(—H) bond lengths are 1.22 (1)Å and 1.32 (1) Å. For the chloroanilate monoanion C═O and C–O-, values of 1.24 (2)Å and 1.25 (2) Å have been reported (Gotoh et al., (2007). In (I), we report values of 1.248 (2)Å (C2═O2), 1.248 (2) Å (C5═O5), 1.249 (2) Å (C3–O3-) and 1.245 (2) Å (C6–O6-), respectively. In addition to ionic bond interactions, the lansoprazole intermediate and chloranilic acid ions are connected by strong N—H···O hydrogen bonds [N1A···O3 = 2.749 (2) Å; N2A···O5 = 2.737 (2) Å; N1B···O2 = 2.717 (2) Å; N2B···O6 = 2.766 (2) Å] (Fig. 2, Table 1). This produces a set of O—H···O—H···O—H infinite one-dimensional chains along the b axis in the (011) plane. In addition, weak C—H···O, C—H···F, N—H···Cl (Table 1) and π–π (Table 2) intermolecular stacking interactions are observed which contribute to crystal packing stability (Fig. 2).
(Fig. 1). In each cation (A & B) of the lansoprazole intermediate the dihedral angles between the least squares planes of the pyridine and benzimidazole rings are 11.1 (6)° (A) and 13.1 (5)° (B), respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole intermediate groups are 71.8 (1)° (A), 80.5 (7)° (B) and 74.2 (4)° (A), 74.8 (6)° (B), respectively. The fluorine atoms in both cations are disordered (relative occupancies = 0.361 (5) (A), 0.639 (5) (A) and 0.684 (5) (B), 0.316 (5) (B)). In neutral chloranilic acid, typical CFor bacterial growth inhibition by Lansoprazole and its analogs, see: Iwahi et al. (1991). For related structures, see: Arslan et al. (2006); Gotoh et al. (2006, 2007, 2008); Ishida (2004a,b,c); Ishida & Kashino (1999, 2000); Meng & Qian (2006); Refat et al. (2006); Swamy & Ravikumar (2007); Tabuchi et al. (2005); Vyas et al. (2000).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of [C16H15F3N3OS+]2 [C6Cl2O42-], showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate strong N—H···O intermolecular interactions within the asymmetric unit. H atoms are presented as small circles of arbitrary radius. | |
Fig. 2. Packing diagram of the title compound ,[C16H15F3N3OS+]2 [C6Cl2O42-],, viewed down the a axis. Dashed lines indicate strong N—H···O and weak C—H···O, C—H···F intermolecular hydrogen bonds linking the [C16H15F3N3OS+]2 and [C6Cl2O42-] ions into an infinite O—H···O—H···O—H chain network along the b axis in the (011) plane. |
2C16H15F3N3OS+·C6Cl2O42− | F(000) = 1872 |
Mr = 915.70 | Dx = 1.543 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 10683 reflections |
a = 9.48575 (8) Å | θ = 4.5–77.4° |
b = 23.6316 (2) Å | µ = 3.22 mm−1 |
c = 17.86775 (15) Å | T = 295 K |
β = 100.2065 (9)° | Prism, red-brown |
V = 3941.92 (6) Å3 | 0.38 × 0.24 × 0.19 mm |
Z = 4 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 8269 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 6572 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 77.6°, θmin = 4.5° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −29→21 |
Tmin = 0.692, Tmax = 1.000 | l = −21→22 |
19572 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.1054P)2 + 0.2084P] where P = (Fo2 + 2Fc2)/3 |
8269 reflections | (Δ/σ)max = 0.007 |
600 parameters | Δρmax = 0.87 e Å−3 |
138 restraints | Δρmin = −0.49 e Å−3 |
2C16H15F3N3OS+·C6Cl2O42− | V = 3941.92 (6) Å3 |
Mr = 915.70 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.48575 (8) Å | µ = 3.22 mm−1 |
b = 23.6316 (2) Å | T = 295 K |
c = 17.86775 (15) Å | 0.38 × 0.24 × 0.19 mm |
β = 100.2065 (9)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 8269 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 6572 reflections with I > 2σ(I) |
Tmin = 0.692, Tmax = 1.000 | Rint = 0.019 |
19572 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 138 restraints |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.87 e Å−3 |
8269 reflections | Δρmin = −0.49 e Å−3 |
600 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | −0.02389 (6) | 0.28125 (3) | 0.75775 (3) | 0.06238 (17) | |
Cl2 | 0.65326 (6) | 0.29242 (4) | 0.82221 (3) | 0.06540 (18) | |
O2 | 0.16831 (17) | 0.31643 (8) | 0.65093 (9) | 0.0562 (4) | |
O3 | 0.45465 (16) | 0.32221 (7) | 0.67875 (8) | 0.0499 (4) | |
O5 | 0.45948 (16) | 0.26157 (7) | 0.92935 (8) | 0.0487 (3) | |
O6 | 0.17567 (16) | 0.25255 (8) | 0.90012 (9) | 0.0518 (4) | |
C1 | 0.1616 (2) | 0.28648 (9) | 0.77553 (11) | 0.0401 (4) | |
C2 | 0.2306 (2) | 0.30329 (8) | 0.71610 (11) | 0.0387 (4) | |
C3 | 0.3966 (2) | 0.30515 (8) | 0.73206 (11) | 0.0380 (4) | |
C4 | 0.4674 (2) | 0.28877 (9) | 0.80369 (11) | 0.0410 (4) | |
C5 | 0.3979 (2) | 0.27343 (8) | 0.86360 (10) | 0.0372 (4) | |
C6 | 0.2333 (2) | 0.27039 (8) | 0.84730 (11) | 0.0368 (4) | |
S1A | 0.76555 (7) | 0.36213 (3) | 0.55737 (3) | 0.05601 (14) | |
F1A | 0.9879 (2) | 0.53715 (13) | 0.14545 (16) | 0.161 (4) | 0.361 (5) |
F2A | 1.1807 (2) | 0.50633 (8) | 0.2122 (2) | 0.105 (2) | 0.361 (5) |
F3A | 1.1443 (3) | 0.59488 (7) | 0.2010 (3) | 0.149 (3) | 0.361 (5) |
F1AA | 1.0095 (2) | 0.51401 (8) | 0.15374 (14) | 0.1149 (16) | 0.639 (5) |
F2AA | 1.21213 (17) | 0.52535 (11) | 0.2249 (2) | 0.153 (2) | 0.639 (5) |
F3AA | 1.0897 (4) | 0.59702 (6) | 0.1800 (2) | 0.216 (3) | 0.639 (5) |
O1A | 0.9921 (3) | 0.49361 (8) | 0.29873 (12) | 0.0721 (5) | |
N1A | 0.68513 (19) | 0.27244 (9) | 0.63087 (10) | 0.0479 (4) | |
H1AA | 0.6338 | 0.2931 | 0.6552 | 0.057* | |
N2A | 0.8291 (2) | 0.24764 (8) | 0.55373 (10) | 0.0469 (4) | |
H2AA | 0.8853 | 0.2497 | 0.5210 | 0.056* | |
N3A | 0.8120 (2) | 0.45798 (9) | 0.48750 (13) | 0.0592 (5) | |
C1A | 0.7631 (2) | 0.29124 (10) | 0.58035 (11) | 0.0450 (5) | |
C2A | 0.7007 (2) | 0.21455 (11) | 0.63736 (12) | 0.0496 (5) | |
C3A | 0.6439 (3) | 0.17509 (13) | 0.68139 (16) | 0.0650 (7) | |
H3AA | 0.5843 | 0.1858 | 0.7150 | 0.078* | |
C4A | 0.6802 (4) | 0.11919 (14) | 0.67281 (19) | 0.0813 (9) | |
H4AA | 0.6447 | 0.0916 | 0.7016 | 0.098* | |
C5A | 0.7691 (4) | 0.10301 (14) | 0.62188 (19) | 0.0781 (8) | |
H5AA | 0.7894 | 0.0648 | 0.6169 | 0.094* | |
C6A | 0.8277 (3) | 0.14224 (12) | 0.57871 (15) | 0.0634 (6) | |
H6AA | 0.8879 | 0.1315 | 0.5454 | 0.076* | |
C7A | 0.7919 (2) | 0.19858 (11) | 0.58771 (12) | 0.0492 (5) | |
C8A | 0.8823 (3) | 0.36051 (11) | 0.48755 (15) | 0.0570 (6) | |
H8AA | 0.9794 | 0.3513 | 0.5116 | 0.068* | |
H8AB | 0.8497 | 0.3323 | 0.4490 | 0.068* | |
C9A | 0.8769 (3) | 0.41856 (10) | 0.45245 (14) | 0.0517 (5) | |
C10A | 0.8074 (3) | 0.51054 (12) | 0.45988 (16) | 0.0653 (7) | |
H10A | 0.7620 | 0.5382 | 0.4840 | 0.078* | |
C11A | 0.8657 (3) | 0.52621 (12) | 0.39785 (16) | 0.0641 (6) | |
H11A | 0.8612 | 0.5634 | 0.3807 | 0.077* | |
C12A | 0.9315 (3) | 0.48433 (11) | 0.36190 (15) | 0.0577 (6) | |
C13A | 0.9393 (3) | 0.42859 (10) | 0.38825 (14) | 0.0526 (5) | |
C14A | 1.0114 (3) | 0.38352 (12) | 0.34966 (17) | 0.0673 (7) | |
H14A | 1.0194 | 0.3496 | 0.3797 | 0.101* | |
H14B | 1.1052 | 0.3961 | 0.3442 | 0.101* | |
H14C | 0.9558 | 0.3759 | 0.3004 | 0.101* | |
C15A | 1.0090 (6) | 0.54929 (14) | 0.2751 (2) | 0.0985 (12) | |
H15A | 1.0667 | 0.5708 | 0.3156 | 0.118* | |
H15B | 0.9165 | 0.5676 | 0.2615 | 0.118* | |
C16A | 1.08337 (16) | 0.54588 (6) | 0.20623 (10) | 0.1085 (15) | |
S1B | 0.37775 (7) | 0.35551 (3) | 0.47949 (3) | 0.05589 (14) | |
F1B | 0.46185 (16) | 0.52009 (8) | 0.0783 (2) | 0.144 (2) | 0.684 (5) |
F2B | 0.68815 (15) | 0.52999 (10) | 0.10037 (18) | 0.1317 (14) | 0.684 (5) |
F3B | 0.5535 (3) | 0.60246 (6) | 0.08372 (17) | 0.1343 (16) | 0.684 (5) |
F1BB | 0.5025 (3) | 0.59349 (8) | 0.0729 (2) | 0.114 (3) | 0.316 (5) |
F2BB | 0.5274 (3) | 0.50406 (7) | 0.0777 (2) | 0.115 (3) | 0.316 (5) |
F3BB | 0.70535 (15) | 0.55741 (14) | 0.1178 (3) | 0.162 (4) | 0.316 (5) |
O1B | 0.5855 (3) | 0.50090 (9) | 0.22645 (11) | 0.0748 (6) | |
N1B | 0.2888 (2) | 0.26340 (9) | 0.54297 (11) | 0.0492 (4) | |
H1BA | 0.2374 | 0.2835 | 0.5679 | 0.059* | |
N2B | 0.4330 (2) | 0.24045 (8) | 0.46559 (10) | 0.0467 (4) | |
H2BA | 0.4892 | 0.2434 | 0.4329 | 0.056* | |
N3B | 0.4174 (3) | 0.45403 (9) | 0.41534 (12) | 0.0618 (5) | |
C1B | 0.3674 (2) | 0.28334 (10) | 0.49428 (11) | 0.0446 (4) | |
C2B | 0.3029 (3) | 0.20543 (11) | 0.54709 (14) | 0.0540 (5) | |
C3B | 0.2441 (4) | 0.16568 (14) | 0.58983 (19) | 0.0760 (8) | |
H3BA | 0.1832 | 0.1759 | 0.6230 | 0.091* | |
C4B | 0.2813 (5) | 0.10991 (17) | 0.5801 (2) | 0.0975 (12) | |
H4BA | 0.2449 | 0.0817 | 0.6077 | 0.117* | |
C5B | 0.3720 (5) | 0.09494 (15) | 0.5299 (3) | 0.0991 (13) | |
H5BA | 0.3935 | 0.0569 | 0.5245 | 0.119* | |
C6B | 0.4311 (4) | 0.13501 (13) | 0.48792 (18) | 0.0744 (8) | |
H6BA | 0.4922 | 0.1247 | 0.4549 | 0.089* | |
C7B | 0.3950 (3) | 0.19064 (11) | 0.49732 (13) | 0.0526 (5) | |
C8B | 0.4554 (3) | 0.35551 (11) | 0.39369 (13) | 0.0556 (6) | |
H8BA | 0.5487 | 0.3375 | 0.4032 | 0.067* | |
H8BB | 0.3941 | 0.3350 | 0.3535 | 0.067* | |
C9B | 0.4691 (3) | 0.41622 (10) | 0.37107 (12) | 0.0495 (5) | |
C10B | 0.4281 (4) | 0.50877 (12) | 0.39791 (16) | 0.0680 (7) | |
H10B | 0.3962 | 0.5355 | 0.4293 | 0.082* | |
C11B | 0.4831 (3) | 0.52773 (12) | 0.33653 (15) | 0.0652 (7) | |
H11B | 0.4876 | 0.5662 | 0.3260 | 0.078* | |
C12B | 0.5319 (3) | 0.48743 (11) | 0.29059 (13) | 0.0566 (6) | |
C13B | 0.5295 (3) | 0.43033 (10) | 0.30822 (12) | 0.0513 (5) | |
C14B | 0.5910 (3) | 0.38603 (12) | 0.26233 (15) | 0.0655 (7) | |
H14D | 0.6283 | 0.4040 | 0.2218 | 0.098* | |
H14E | 0.5171 | 0.3598 | 0.2415 | 0.098* | |
H14F | 0.6667 | 0.3661 | 0.2946 | 0.098* | |
C15B | 0.5554 (4) | 0.55470 (13) | 0.19478 (18) | 0.0803 (9) | |
H15C | 0.6229 | 0.5822 | 0.2207 | 0.096* | |
H15D | 0.4595 | 0.5663 | 0.2001 | 0.096* | |
C16B | 0.56725 (15) | 0.55150 (6) | 0.11217 (10) | 0.0924 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0340 (2) | 0.1034 (5) | 0.0508 (3) | −0.0013 (2) | 0.0106 (2) | 0.0039 (3) |
Cl2 | 0.0347 (2) | 0.1177 (5) | 0.0455 (3) | −0.0089 (3) | 0.0117 (2) | 0.0020 (3) |
O2 | 0.0479 (8) | 0.0864 (11) | 0.0365 (7) | 0.0193 (8) | 0.0130 (6) | 0.0129 (7) |
O3 | 0.0493 (7) | 0.0665 (9) | 0.0389 (7) | −0.0025 (7) | 0.0212 (6) | 0.0073 (6) |
O5 | 0.0436 (7) | 0.0706 (9) | 0.0325 (7) | −0.0026 (7) | 0.0081 (6) | 0.0078 (6) |
O6 | 0.0443 (7) | 0.0765 (10) | 0.0379 (7) | −0.0111 (7) | 0.0164 (6) | 0.0072 (7) |
C1 | 0.0313 (8) | 0.0535 (10) | 0.0374 (9) | −0.0002 (7) | 0.0110 (7) | 0.0003 (8) |
C2 | 0.0398 (9) | 0.0452 (9) | 0.0334 (9) | 0.0063 (7) | 0.0127 (7) | 0.0008 (7) |
C3 | 0.0396 (9) | 0.0429 (9) | 0.0346 (9) | −0.0001 (7) | 0.0147 (7) | 0.0005 (7) |
C4 | 0.0321 (8) | 0.0577 (11) | 0.0354 (9) | −0.0044 (8) | 0.0117 (7) | 0.0010 (8) |
C5 | 0.0382 (9) | 0.0430 (9) | 0.0320 (8) | −0.0026 (7) | 0.0106 (7) | 0.0008 (7) |
C6 | 0.0378 (9) | 0.0408 (9) | 0.0341 (8) | −0.0045 (7) | 0.0130 (7) | −0.0013 (7) |
S1A | 0.0645 (3) | 0.0645 (3) | 0.0451 (3) | 0.0095 (3) | 0.0264 (2) | −0.0001 (2) |
F1A | 0.162 (7) | 0.194 (7) | 0.125 (6) | −0.033 (6) | 0.018 (5) | 0.057 (6) |
F2A | 0.113 (4) | 0.084 (3) | 0.136 (5) | −0.031 (3) | 0.073 (4) | −0.031 (3) |
F3A | 0.227 (6) | 0.088 (4) | 0.166 (6) | −0.049 (4) | 0.124 (5) | 0.007 (4) |
F1AA | 0.176 (4) | 0.110 (3) | 0.0567 (18) | 0.033 (3) | 0.016 (2) | −0.0122 (17) |
F2AA | 0.109 (3) | 0.207 (5) | 0.149 (4) | −0.066 (3) | 0.042 (3) | −0.009 (4) |
F3AA | 0.442 (8) | 0.104 (4) | 0.136 (4) | −0.017 (5) | 0.142 (5) | 0.011 (3) |
O1A | 0.0979 (14) | 0.0607 (10) | 0.0668 (11) | −0.0055 (10) | 0.0391 (10) | 0.0041 (9) |
N1A | 0.0432 (9) | 0.0682 (11) | 0.0350 (8) | −0.0004 (8) | 0.0144 (7) | −0.0060 (8) |
N2A | 0.0453 (8) | 0.0673 (11) | 0.0309 (8) | 0.0023 (8) | 0.0142 (7) | −0.0026 (7) |
N3A | 0.0671 (12) | 0.0609 (11) | 0.0552 (11) | 0.0049 (10) | 0.0261 (9) | −0.0069 (9) |
C1A | 0.0412 (9) | 0.0653 (12) | 0.0298 (8) | 0.0003 (9) | 0.0097 (7) | −0.0036 (8) |
C2A | 0.0472 (11) | 0.0671 (13) | 0.0361 (10) | −0.0062 (9) | 0.0119 (8) | −0.0051 (9) |
C3A | 0.0706 (15) | 0.0759 (16) | 0.0553 (13) | −0.0119 (13) | 0.0301 (12) | −0.0056 (12) |
C4A | 0.107 (2) | 0.0754 (18) | 0.0710 (18) | −0.0169 (17) | 0.0404 (17) | −0.0002 (15) |
C5A | 0.101 (2) | 0.0652 (16) | 0.0752 (18) | −0.0023 (15) | 0.0363 (17) | −0.0048 (14) |
C6A | 0.0743 (16) | 0.0688 (15) | 0.0511 (13) | 0.0052 (12) | 0.0219 (12) | −0.0066 (11) |
C7A | 0.0501 (11) | 0.0659 (13) | 0.0330 (9) | −0.0028 (10) | 0.0108 (8) | −0.0056 (9) |
C8A | 0.0640 (13) | 0.0591 (13) | 0.0554 (13) | 0.0039 (11) | 0.0313 (11) | −0.0038 (10) |
C9A | 0.0541 (11) | 0.0573 (12) | 0.0470 (11) | 0.0001 (10) | 0.0180 (9) | −0.0068 (9) |
C10A | 0.0741 (16) | 0.0620 (14) | 0.0636 (15) | 0.0097 (12) | 0.0230 (13) | −0.0104 (12) |
C11A | 0.0773 (16) | 0.0535 (13) | 0.0636 (15) | 0.0023 (12) | 0.0186 (13) | −0.0012 (11) |
C12A | 0.0625 (13) | 0.0615 (13) | 0.0522 (12) | −0.0056 (11) | 0.0192 (10) | −0.0022 (10) |
C13A | 0.0557 (12) | 0.0576 (12) | 0.0488 (11) | −0.0010 (10) | 0.0208 (10) | −0.0052 (10) |
C14A | 0.0813 (16) | 0.0654 (15) | 0.0651 (15) | 0.0067 (13) | 0.0399 (13) | −0.0019 (12) |
C15A | 0.162 (4) | 0.0620 (17) | 0.083 (2) | −0.012 (2) | 0.054 (2) | 0.0002 (16) |
C16A | 0.184 (5) | 0.072 (2) | 0.076 (2) | −0.025 (3) | 0.040 (3) | 0.0107 (18) |
S1B | 0.0684 (3) | 0.0580 (3) | 0.0482 (3) | 0.0082 (3) | 0.0293 (2) | 0.0006 (2) |
F1B | 0.211 (5) | 0.118 (3) | 0.091 (3) | −0.007 (3) | −0.006 (3) | −0.012 (2) |
F2B | 0.191 (3) | 0.118 (3) | 0.117 (2) | 0.027 (3) | 0.110 (2) | 0.008 (2) |
F3B | 0.265 (5) | 0.0703 (18) | 0.091 (2) | 0.014 (2) | 0.094 (3) | 0.0221 (16) |
F1BB | 0.135 (6) | 0.123 (6) | 0.083 (5) | 0.006 (5) | 0.017 (4) | 0.047 (4) |
F2BB | 0.188 (7) | 0.108 (5) | 0.053 (3) | 0.038 (5) | 0.028 (4) | −0.009 (3) |
F3BB | 0.150 (7) | 0.205 (9) | 0.149 (7) | −0.009 (6) | 0.076 (6) | 0.030 (7) |
O1B | 0.1124 (15) | 0.0664 (11) | 0.0570 (10) | 0.0159 (11) | 0.0467 (10) | 0.0109 (8) |
N1B | 0.0446 (9) | 0.0646 (11) | 0.0415 (9) | 0.0019 (8) | 0.0158 (7) | −0.0003 (8) |
N2B | 0.0459 (9) | 0.0610 (10) | 0.0353 (8) | 0.0045 (8) | 0.0124 (7) | −0.0030 (7) |
N3B | 0.0853 (14) | 0.0589 (11) | 0.0494 (10) | 0.0164 (10) | 0.0340 (10) | 0.0038 (9) |
C1B | 0.0416 (9) | 0.0599 (12) | 0.0332 (9) | 0.0020 (8) | 0.0088 (7) | −0.0019 (8) |
C2B | 0.0521 (12) | 0.0662 (14) | 0.0443 (11) | −0.0036 (10) | 0.0103 (9) | −0.0003 (10) |
C3B | 0.0829 (18) | 0.0791 (18) | 0.0714 (18) | −0.0151 (15) | 0.0283 (15) | 0.0081 (15) |
C4B | 0.123 (3) | 0.079 (2) | 0.096 (3) | −0.018 (2) | 0.036 (2) | 0.0131 (19) |
C5B | 0.143 (4) | 0.0581 (17) | 0.097 (3) | 0.000 (2) | 0.024 (3) | 0.0009 (17) |
C6B | 0.094 (2) | 0.0654 (16) | 0.0653 (17) | 0.0083 (15) | 0.0192 (15) | −0.0082 (13) |
C7B | 0.0550 (12) | 0.0615 (13) | 0.0408 (11) | 0.0016 (10) | 0.0071 (9) | −0.0021 (9) |
C8B | 0.0700 (14) | 0.0589 (13) | 0.0435 (11) | 0.0150 (11) | 0.0257 (10) | 0.0054 (9) |
C9B | 0.0563 (11) | 0.0569 (12) | 0.0378 (10) | 0.0129 (10) | 0.0151 (9) | 0.0019 (9) |
C10B | 0.0955 (18) | 0.0612 (14) | 0.0562 (13) | 0.0193 (13) | 0.0377 (13) | −0.0011 (11) |
C11B | 0.0927 (19) | 0.0547 (13) | 0.0548 (13) | 0.0128 (13) | 0.0310 (13) | 0.0052 (11) |
C12B | 0.0704 (14) | 0.0635 (13) | 0.0404 (11) | 0.0083 (11) | 0.0223 (10) | 0.0047 (10) |
C13B | 0.0613 (12) | 0.0585 (12) | 0.0363 (10) | 0.0128 (10) | 0.0148 (9) | 0.0012 (9) |
C14B | 0.0878 (17) | 0.0666 (15) | 0.0495 (12) | 0.0172 (13) | 0.0321 (12) | −0.0007 (11) |
C15B | 0.129 (3) | 0.0583 (15) | 0.0645 (16) | −0.0002 (16) | 0.0478 (17) | 0.0028 (12) |
C16B | 0.148 (3) | 0.0671 (18) | 0.075 (2) | 0.002 (2) | 0.054 (2) | 0.0131 (16) |
Cl1—C1 | 1.7363 (19) | C14A—H14A | 0.9600 |
Cl2—C4 | 1.7370 (19) | C14A—H14B | 0.9600 |
O2—C2 | 1.248 (2) | C14A—H14C | 0.9600 |
O3—C3 | 1.249 (2) | C15A—C16A | 1.525 (4) |
O5—C5 | 1.248 (2) | C15A—H15A | 0.9700 |
O6—C6 | 1.245 (2) | C15A—H15B | 0.9700 |
C1—C6 | 1.394 (3) | S1B—C1B | 1.731 (2) |
C1—C2 | 1.400 (3) | S1B—C8B | 1.814 (2) |
C2—C3 | 1.551 (3) | F1B—C16B | 1.3048 (11) |
C3—C4 | 1.391 (3) | F2B—C16B | 1.3053 (11) |
C4—C5 | 1.401 (3) | F3B—C16B | 1.3047 (11) |
C5—C6 | 1.539 (3) | F1BB—C16B | 1.3039 (12) |
S1A—C1A | 1.726 (2) | F2BB—C16B | 1.3026 (12) |
S1A—C8A | 1.809 (2) | F3BB—C16B | 1.3034 (11) |
F1A—C16A | 1.3016 (12) | O1B—C12B | 1.371 (3) |
F2A—C16A | 1.3045 (11) | O1B—C15B | 1.400 (4) |
F3A—C16A | 1.3052 (12) | N1B—C1B | 1.328 (3) |
F1AA—C16A | 1.3056 (11) | N1B—C2B | 1.377 (3) |
F2AA—C16A | 1.3016 (11) | N1B—H1BA | 0.8600 |
F3AA—C16A | 1.3014 (12) | N2B—C1B | 1.338 (3) |
O1A—C12A | 1.372 (3) | N2B—C7B | 1.382 (3) |
O1A—C15A | 1.400 (4) | N2B—H2BA | 0.8600 |
N1A—C1A | 1.340 (3) | N3B—C10B | 1.339 (4) |
N1A—C2A | 1.379 (3) | N3B—C9B | 1.342 (3) |
N1A—H1AA | 0.8600 | C2B—C3B | 1.389 (4) |
N2A—C1A | 1.336 (3) | C2B—C7B | 1.397 (3) |
N2A—C7A | 1.383 (3) | C3B—C4B | 1.383 (5) |
N2A—H2AA | 0.8600 | C3B—H3BA | 0.9300 |
N3A—C9A | 1.332 (3) | C4B—C5B | 1.393 (6) |
N3A—C10A | 1.334 (4) | C4B—H4BA | 0.9300 |
C2A—C3A | 1.389 (4) | C5B—C6B | 1.387 (5) |
C2A—C7A | 1.397 (3) | C5B—H5BA | 0.9300 |
C3A—C4A | 1.381 (5) | C6B—C7B | 1.376 (4) |
C3A—H3AA | 0.9300 | C6B—H6BA | 0.9300 |
C4A—C5A | 1.399 (4) | C8B—C9B | 1.502 (3) |
C4A—H4AA | 0.9300 | C8B—H8BA | 0.9700 |
C5A—C6A | 1.384 (4) | C8B—H8BB | 0.9700 |
C5A—H5AA | 0.9300 | C9B—C13B | 1.389 (3) |
C6A—C7A | 1.390 (4) | C10B—C11B | 1.371 (4) |
C6A—H6AA | 0.9300 | C10B—H10B | 0.9300 |
C8A—C9A | 1.505 (4) | C11B—C12B | 1.389 (3) |
C8A—H8AA | 0.9700 | C11B—H11B | 0.9300 |
C8A—H8AB | 0.9700 | C12B—C13B | 1.387 (4) |
C9A—C13A | 1.401 (3) | C13B—C14B | 1.509 (3) |
C10A—C11A | 1.374 (4) | C14B—H14D | 0.9600 |
C10A—H10A | 0.9300 | C14B—H14E | 0.9600 |
C11A—C12A | 1.387 (4) | C14B—H14F | 0.9600 |
C11A—H11A | 0.9300 | C15B—C16B | 1.502 (3) |
C12A—C13A | 1.396 (4) | C15B—H15C | 0.9700 |
C13A—C14A | 1.498 (3) | C15B—H15D | 0.9700 |
C6—C1—C2 | 123.92 (18) | F2AA—C16A—F1AA | 109.21 (12) |
C6—C1—Cl1 | 117.53 (15) | F2A—C16A—F1AA | 85.83 (17) |
C2—C1—Cl1 | 118.44 (15) | F3A—C16A—F1AA | 130.4 (2) |
O2—C2—C1 | 124.80 (18) | F3AA—C16A—C15A | 107.4 (2) |
O2—C2—C3 | 117.51 (17) | F2AA—C16A—C15A | 111.1 (3) |
C1—C2—C3 | 117.69 (17) | F1A—C16A—C15A | 109.2 (3) |
O3—C3—C4 | 125.85 (18) | F2A—C16A—C15A | 113.2 (3) |
O3—C3—C2 | 116.08 (17) | F3A—C16A—C15A | 106.6 (3) |
C4—C3—C2 | 118.06 (16) | F1AA—C16A—C15A | 110.1 (2) |
C3—C4—C5 | 124.00 (18) | C1B—S1B—C8B | 99.87 (11) |
C3—C4—Cl2 | 118.02 (14) | C12B—O1B—C15B | 118.0 (2) |
C5—C4—Cl2 | 117.81 (15) | C1B—N1B—C2B | 109.11 (19) |
O5—C5—C4 | 124.93 (18) | C1B—N1B—H1BA | 125.4 |
O5—C5—C6 | 117.24 (16) | C2B—N1B—H1BA | 125.4 |
C4—C5—C6 | 117.83 (16) | C1B—N2B—C7B | 108.40 (19) |
O6—C6—C1 | 125.59 (18) | C1B—N2B—H2BA | 125.8 |
O6—C6—C5 | 116.07 (17) | C7B—N2B—H2BA | 125.8 |
C1—C6—C5 | 118.34 (16) | C10B—N3B—C9B | 117.1 (2) |
C1A—S1A—C8A | 100.32 (11) | N1B—C1B—N2B | 109.6 (2) |
C12A—O1A—C15A | 119.0 (2) | N1B—C1B—S1B | 120.19 (17) |
C1A—N1A—C2A | 108.78 (19) | N2B—C1B—S1B | 130.18 (17) |
C1A—N1A—H1AA | 125.6 | N1B—C2B—C3B | 131.1 (3) |
C2A—N1A—H1AA | 125.6 | N1B—C2B—C7B | 106.3 (2) |
C1A—N2A—C7A | 108.54 (18) | C3B—C2B—C7B | 122.6 (3) |
C1A—N2A—H2AA | 125.7 | C4B—C3B—C2B | 116.0 (3) |
C7A—N2A—H2AA | 125.7 | C4B—C3B—H3BA | 122.0 |
C9A—N3A—C10A | 117.7 (2) | C2B—C3B—H3BA | 122.0 |
N2A—C1A—N1A | 109.5 (2) | C3B—C4B—C5B | 121.5 (3) |
N2A—C1A—S1A | 129.56 (16) | C3B—C4B—H4BA | 119.2 |
N1A—C1A—S1A | 120.94 (17) | C5B—C4B—H4BA | 119.2 |
N1A—C2A—C3A | 131.9 (2) | C6B—C5B—C4B | 122.0 (3) |
N1A—C2A—C7A | 106.5 (2) | C6B—C5B—H5BA | 119.0 |
C3A—C2A—C7A | 121.6 (2) | C4B—C5B—H5BA | 119.0 |
C4A—C3A—C2A | 116.7 (3) | C7B—C6B—C5B | 117.0 (3) |
C4A—C3A—H3AA | 121.6 | C7B—C6B—H6BA | 121.5 |
C2A—C3A—H3AA | 121.6 | C5B—C6B—H6BA | 121.5 |
C3A—C4A—C5A | 121.7 (3) | C6B—C7B—N2B | 132.5 (3) |
C3A—C4A—H4AA | 119.2 | C6B—C7B—C2B | 120.9 (3) |
C5A—C4A—H4AA | 119.2 | N2B—C7B—C2B | 106.6 (2) |
C6A—C5A—C4A | 121.8 (3) | C9B—C8B—S1B | 107.15 (16) |
C6A—C5A—H5AA | 119.1 | C9B—C8B—H8BA | 110.3 |
C4A—C5A—H5AA | 119.1 | S1B—C8B—H8BA | 110.3 |
C5A—C6A—C7A | 116.5 (3) | C9B—C8B—H8BB | 110.3 |
C5A—C6A—H6AA | 121.7 | S1B—C8B—H8BB | 110.3 |
C7A—C6A—H6AA | 121.7 | H8BA—C8B—H8BB | 108.5 |
N2A—C7A—C6A | 131.7 (2) | N3B—C9B—C13B | 124.2 (2) |
N2A—C7A—C2A | 106.7 (2) | N3B—C9B—C8B | 114.8 (2) |
C6A—C7A—C2A | 121.6 (2) | C13B—C9B—C8B | 121.0 (2) |
C9A—C8A—S1A | 106.77 (16) | N3B—C10B—C11B | 123.8 (2) |
C9A—C8A—H8AA | 110.4 | N3B—C10B—H10B | 118.1 |
S1A—C8A—H8AA | 110.4 | C11B—C10B—H10B | 118.1 |
C9A—C8A—H8AB | 110.4 | C10B—C11B—C12B | 117.6 (2) |
S1A—C8A—H8AB | 110.4 | C10B—C11B—H11B | 121.2 |
H8AA—C8A—H8AB | 108.6 | C12B—C11B—H11B | 121.2 |
N3A—C9A—C13A | 124.3 (2) | O1B—C12B—C13B | 116.0 (2) |
N3A—C9A—C8A | 115.2 (2) | O1B—C12B—C11B | 123.1 (2) |
C13A—C9A—C8A | 120.5 (2) | C13B—C12B—C11B | 120.8 (2) |
N3A—C10A—C11A | 123.9 (2) | C12B—C13B—C9B | 116.3 (2) |
N3A—C10A—H10A | 118.1 | C12B—C13B—C14B | 121.9 (2) |
C11A—C10A—H10A | 118.1 | C9B—C13B—C14B | 121.8 (2) |
C10A—C11A—C12A | 117.4 (3) | C13B—C14B—H14D | 109.5 |
C10A—C11A—H11A | 121.3 | C13B—C14B—H14E | 109.5 |
C12A—C11A—H11A | 121.3 | H14D—C14B—H14E | 109.5 |
O1A—C12A—C11A | 123.7 (2) | C13B—C14B—H14F | 109.5 |
O1A—C12A—C13A | 115.0 (2) | H14D—C14B—H14F | 109.5 |
C11A—C12A—C13A | 121.2 (2) | H14E—C14B—H14F | 109.5 |
C12A—C13A—C9A | 115.5 (2) | O1B—C15B—C16B | 107.8 (2) |
C12A—C13A—C14A | 121.1 (2) | O1B—C15B—H15C | 110.1 |
C9A—C13A—C14A | 123.4 (2) | C16B—C15B—H15C | 110.1 |
C13A—C14A—H14A | 109.5 | O1B—C15B—H15D | 110.1 |
C13A—C14A—H14B | 109.5 | C16B—C15B—H15D | 110.1 |
H14A—C14A—H14B | 109.5 | H15C—C15B—H15D | 108.5 |
C13A—C14A—H14C | 109.5 | F2BB—C16B—F3BB | 109.42 (13) |
H14A—C14A—H14C | 109.5 | F2BB—C16B—F1BB | 109.35 (13) |
H14B—C14A—H14C | 109.5 | F3BB—C16B—F1BB | 109.33 (13) |
O1A—C15A—C16A | 106.7 (3) | F2BB—C16B—F3B | 127.6 (2) |
O1A—C15A—H15A | 110.4 | F3BB—C16B—F3B | 87.8 (2) |
C16A—C15A—H15A | 110.4 | F3BB—C16B—F1B | 140.7 (2) |
O1A—C15A—H15B | 110.4 | F1BB—C16B—F1B | 86.25 (16) |
C16A—C15A—H15B | 110.4 | F3B—C16B—F1B | 109.20 (12) |
H15A—C15A—H15B | 108.6 | F2BB—C16B—F2B | 77.19 (18) |
F3AA—C16A—F2AA | 109.73 (12) | F1BB—C16B—F2B | 123.6 (2) |
F3AA—C16A—F1A | 85.21 (19) | F3B—C16B—F2B | 109.08 (12) |
F2AA—C16A—F1A | 129.6 (2) | F1B—C16B—F2B | 109.06 (12) |
F3AA—C16A—F2A | 128.2 (2) | F2BB—C16B—C15B | 116.2 (3) |
F1A—C16A—F2A | 109.42 (12) | F3BB—C16B—C15B | 99.7 (3) |
F2AA—C16A—F3A | 86.66 (18) | F1BB—C16B—C15B | 112.3 (3) |
F1A—C16A—F3A | 109.40 (13) | F3B—C16B—C15B | 108.5 (2) |
F2A—C16A—F3A | 109.00 (12) | F1B—C16B—C15B | 107.4 (2) |
F3AA—C16A—F1AA | 109.29 (12) | F2B—C16B—C15B | 113.5 (2) |
C6—C1—C2—O2 | 178.1 (2) | C11A—C12A—C13A—C14A | −179.5 (3) |
Cl1—C1—C2—O2 | 2.0 (3) | N3A—C9A—C13A—C12A | 0.7 (4) |
C6—C1—C2—C3 | −1.3 (3) | C8A—C9A—C13A—C12A | −178.2 (2) |
Cl1—C1—C2—C3 | −177.35 (14) | N3A—C9A—C13A—C14A | −179.9 (3) |
O2—C2—C3—O3 | 3.1 (3) | C8A—C9A—C13A—C14A | 1.2 (4) |
C1—C2—C3—O3 | −177.56 (19) | C12A—O1A—C15A—C16A | 177.9 (2) |
O2—C2—C3—C4 | −177.9 (2) | O1A—C15A—C16A—F3AA | 175.1 (3) |
C1—C2—C3—C4 | 1.5 (3) | O1A—C15A—C16A—F2AA | −64.9 (4) |
O3—C3—C4—C5 | 175.6 (2) | O1A—C15A—C16A—F1A | 84.2 (4) |
C2—C3—C4—C5 | −3.4 (3) | O1A—C15A—C16A—F2A | −38.0 (4) |
O3—C3—C4—Cl2 | 0.4 (3) | O1A—C15A—C16A—F3A | −157.8 (3) |
C2—C3—C4—Cl2 | −178.54 (14) | O1A—C15A—C16A—F1AA | 56.2 (4) |
C3—C4—C5—O5 | −175.9 (2) | C2B—N1B—C1B—N2B | 0.2 (3) |
Cl2—C4—C5—O5 | −0.8 (3) | C2B—N1B—C1B—S1B | −177.41 (16) |
C3—C4—C5—C6 | 4.6 (3) | C7B—N2B—C1B—N1B | −0.1 (2) |
Cl2—C4—C5—C6 | 179.79 (14) | C7B—N2B—C1B—S1B | 177.27 (18) |
C2—C1—C6—O6 | −176.2 (2) | C8B—S1B—C1B—N1B | −165.94 (18) |
Cl1—C1—C6—O6 | −0.1 (3) | C8B—S1B—C1B—N2B | 17.0 (2) |
C2—C1—C6—C5 | 2.5 (3) | C1B—N1B—C2B—C3B | 179.3 (3) |
Cl1—C1—C6—C5 | 178.64 (14) | C1B—N1B—C2B—C7B | −0.3 (3) |
O5—C5—C6—O6 | −4.7 (3) | N1B—C2B—C3B—C4B | −180.0 (3) |
C4—C5—C6—O6 | 174.79 (19) | C7B—C2B—C3B—C4B | −0.3 (5) |
O5—C5—C6—C1 | 176.48 (19) | C2B—C3B—C4B—C5B | −0.3 (6) |
C4—C5—C6—C1 | −4.0 (3) | C3B—C4B—C5B—C6B | 0.8 (7) |
C7A—N2A—C1A—N1A | 0.5 (2) | C4B—C5B—C6B—C7B | −0.6 (6) |
C7A—N2A—C1A—S1A | −178.46 (17) | C5B—C6B—C7B—N2B | 179.9 (3) |
C2A—N1A—C1A—N2A | −0.1 (2) | C5B—C6B—C7B—C2B | 0.0 (5) |
C2A—N1A—C1A—S1A | 178.96 (15) | C1B—N2B—C7B—C6B | 179.9 (3) |
C8A—S1A—C1A—N2A | 0.0 (2) | C1B—N2B—C7B—C2B | −0.1 (3) |
C8A—S1A—C1A—N1A | −178.86 (18) | N1B—C2B—C7B—C6B | −179.8 (2) |
C1A—N1A—C2A—C3A | 179.8 (3) | C3B—C2B—C7B—C6B | 0.5 (4) |
C1A—N1A—C2A—C7A | −0.3 (2) | N1B—C2B—C7B—N2B | 0.3 (3) |
N1A—C2A—C3A—C4A | 178.8 (3) | C3B—C2B—C7B—N2B | −179.4 (3) |
C7A—C2A—C3A—C4A | −1.0 (4) | C1B—S1B—C8B—C9B | 178.68 (17) |
C2A—C3A—C4A—C5A | −0.4 (5) | C10B—N3B—C9B—C13B | −1.3 (4) |
C3A—C4A—C5A—C6A | 1.4 (6) | C10B—N3B—C9B—C8B | 179.5 (3) |
C4A—C5A—C6A—C7A | −0.9 (5) | S1B—C8B—C9B—N3B | −2.7 (3) |
C1A—N2A—C7A—C6A | 178.2 (3) | S1B—C8B—C9B—C13B | 178.04 (19) |
C1A—N2A—C7A—C2A | −0.7 (2) | C9B—N3B—C10B—C11B | 2.5 (5) |
C5A—C6A—C7A—N2A | −179.2 (3) | N3B—C10B—C11B—C12B | −0.8 (5) |
C5A—C6A—C7A—C2A | −0.5 (4) | C15B—O1B—C12B—C13B | 163.0 (3) |
N1A—C2A—C7A—N2A | 0.6 (2) | C15B—O1B—C12B—C11B | −17.4 (4) |
C3A—C2A—C7A—N2A | −179.5 (2) | C10B—C11B—C12B—O1B | 178.1 (3) |
N1A—C2A—C7A—C6A | −178.4 (2) | C10B—C11B—C12B—C13B | −2.4 (5) |
C3A—C2A—C7A—C6A | 1.5 (4) | O1B—C12B—C13B—C9B | −177.0 (2) |
C1A—S1A—C8A—C9A | 171.22 (17) | C11B—C12B—C13B—C9B | 3.4 (4) |
C10A—N3A—C9A—C13A | −0.6 (4) | O1B—C12B—C13B—C14B | 3.7 (4) |
C10A—N3A—C9A—C8A | 178.4 (2) | C11B—C12B—C13B—C14B | −175.8 (3) |
S1A—C8A—C9A—N3A | 10.6 (3) | N3B—C9B—C13B—C12B | −1.6 (4) |
S1A—C8A—C9A—C13A | −170.4 (2) | C8B—C9B—C13B—C12B | 177.5 (2) |
C9A—N3A—C10A—C11A | −0.2 (4) | N3B—C9B—C13B—C14B | 177.6 (3) |
N3A—C10A—C11A—C12A | 0.8 (5) | C8B—C9B—C13B—C14B | −3.3 (4) |
C15A—O1A—C12A—C11A | 10.1 (5) | C12B—O1B—C15B—C16B | −156.3 (2) |
C15A—O1A—C12A—C13A | −170.4 (3) | O1B—C15B—C16B—F2BB | 34.4 (4) |
C10A—C11A—C12A—O1A | 178.9 (3) | O1B—C15B—C16B—F3BB | −82.9 (3) |
C10A—C11A—C12A—C13A | −0.6 (4) | O1B—C15B—C16B—F1BB | 161.4 (2) |
O1A—C12A—C13A—C9A | −179.6 (2) | O1B—C15B—C16B—F3B | −173.8 (2) |
C11A—C12A—C13A—C9A | −0.1 (4) | O1B—C15B—C16B—F1B | 68.3 (3) |
O1A—C12A—C13A—C14A | 0.9 (4) | O1B—C15B—C16B—F2B | −52.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O3 | 0.86 | 1.95 | 2.749 (2) | 155 |
N1A—H1AA···Cl2 | 0.86 | 2.96 | 3.5169 (18) | 125 |
N2A—H2AA···O5i | 0.86 | 1.91 | 2.737 (2) | 160 |
N1B—H1BA···O2 | 0.86 | 1.89 | 2.717 (2) | 160 |
N2B—H2BA···O6i | 0.86 | 1.96 | 2.766 (2) | 155 |
C8A—H8AB···O5i | 0.97 | 2.50 | 3.195 (3) | 127 |
C8B—H8BA···O6i | 0.97 | 2.45 | 3.289 (3) | 145 |
C6B—H6BA···F3AAii | 0.93 | 2.49 | 3.104 (5) | 124 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | 2C16H15F3N3OS+·C6Cl2O42− |
Mr | 915.70 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 9.48575 (8), 23.6316 (2), 17.86775 (15) |
β (°) | 100.2065 (9) |
V (Å3) | 3941.92 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.22 |
Crystal size (mm) | 0.38 × 0.24 × 0.19 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.692, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19572, 8269, 6572 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.158, 1.10 |
No. of reflections | 8269 |
No. of parameters | 600 |
No. of restraints | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.49 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O3 | 0.86 | 1.95 | 2.749 (2) | 154.6 |
N1A—H1AA···Cl2 | 0.86 | 2.96 | 3.5169 (18) | 124.6 |
N2A—H2AA···O5i | 0.86 | 1.91 | 2.737 (2) | 160.3 |
N1B—H1BA···O2 | 0.86 | 1.89 | 2.717 (2) | 160.2 |
N2B—H2BA···O6i | 0.86 | 1.96 | 2.766 (2) | 155.1 |
C8A—H8AB···O5i | 0.97 | 2.50 | 3.195 (3) | 127.1 |
C8B—H8BA···O6i | 0.97 | 2.45 | 3.289 (3) | 144.6 |
C6B—H6BA···F3AAii | 0.93 | 2.49 | 3.104 (5) | 124.2 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2. |
Cg···Cg | D···A |
Cg1···Cg4i | 3.8187 (13) |
Cg2···Cg2ii | 3.5631 (15) |
Cg2···Cg5i | 3.7434 (17) |
Cg3···Cg6i | 3.842 (2) |
Symmetry codes: (i) x, y, z; (ii) 2-x, 1-y, 1-z; Cg1,Cg2,Cg3,Cg4,Cg5,Cg6 are the centroids of the N1A/C1A/N2A/C7A/C2A; N3A/C9A/C13A/C12A/C11A/C10A; C2A–C7A; N1B/C1B/N2B/C7B/C2B; N3B/C9B/C13B/C12B/C11B/C10B; C2B–C7B rings. |
Acknowledgements
QNMHA thanks the University of Mysore for use of their research facilities and HSY thanks the University of Mysore for a sabbatical. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Arslan, M., Asker, E., Krafcik, R. B., Masnovi, J. & Baker, R. J. (2006). Acta Cryst. E62, o4055–o4057. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2007). Acta Cryst. E63, o4295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, H. (2004a). Acta Cryst. E60, o1900–o1901. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, H. (2004b). Acta Cryst. E60, o2005–o2006. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, H. (2004c). Acta Cryst. E60, o2506–o2508. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202–e204. CSD CrossRef CAS IUCr Journals Google Scholar
Iwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490–496. CrossRef CAS PubMed Web of Science Google Scholar
Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Refat, M. S., Ahmed, H. A.-D., El-Zayat, L. A., Fukunaga, T. & Ishida, H. (2006). Acta Cryst. E62, o1886–o1887. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715–718. Web of Science CrossRef CAS Google Scholar
Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215–o4217. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vyas, K., Sivalakshmidevi, A. & Om Reddy, G. (2000). Acta Cryst. C56, e572–e573. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Lansoprazole intermediate (Systematic name: 2-([[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl]methyl]sulfanyl) -1H-benzimidazole) in this study is a benzimidazole derivative. Lansoprazole, a widely used proton-pump inhibitor, has been reported to have an independent gastroprotective action. Lansoprazole and its analogs inhibit the growth of Helicobacter pylori at concentrations of several micrograms per milliliter (Iwahi et al., 1991) and is widely used for the treatment of acid-related gastric diseases due to their ability to inhibit acid secretio. The crystal structures of lansoprazole (Vyas et al., 2000) and lansoprazole sulphone have been reported (Swamy & Ravikumar, 2007).
Charge transfer complexes of organic species are intensively studied because of their special type of interaction, which is accompanied by transfer of an electron from the donor to the acceptor. Chloranilic acid is a strong dibasic organic acid which exhibits the electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol and amino heterocyclic donors in acteonitrile have been studied. The interaction of the lansoprazole intermediate as an electron donor with chloranilic acid as electron acceptor in this study resulted in the formation of a charge transfer complex of the title compound (I). In view of the importance of lansoprazole, this paper reports the crystal structure of [C16H15F3N3OS+]2 [C6Cl2O42-], (I).
The title compound (I) is a salt composed of two independent cations (A & B) of a lansoprazole intermediate, [C16H15F3N3OS+]2, and a dianion [C6Cl2O42-] of chloranilic acid, (2:1) in the asymmetric unit (Fig. 1). In each cation (A & B) of the lansoprazole intermediate the dihedral angles between the least squares planes of the pyridine and benzimidazole rings are 11.1 (6)° (A) and 13.1 (5)° (B), respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole intermediate groups are 71.8 (1)° (A), 80.5 (7)° (B) and 74.2 (4)° (A), 74.8 (6)° (B), respectively. The fluorine atoms in both cations are disordered (relative occupancies = 0.361 (5) (A), 0.639 (5) (A) and 0.684 (5) (B), 0.316 (5) (B)). In neutral chloranilic acid, typical C═O and C–O(—H) bond lengths are 1.22 (1)Å and 1.32 (1) Å. For the chloroanilate monoanion C═O and C–O-, values of 1.24 (2)Å and 1.25 (2) Å have been reported (Gotoh et al., (2007). In (I), we report values of 1.248 (2)Å (C2═O2), 1.248 (2) Å (C5═O5), 1.249 (2) Å (C3–O3-) and 1.245 (2) Å (C6–O6-), respectively. In addition to ionic bond interactions, the lansoprazole intermediate and chloranilic acid ions are connected by strong N—H···O hydrogen bonds [N1A···O3 = 2.749 (2) Å; N2A···O5 = 2.737 (2) Å; N1B···O2 = 2.717 (2) Å; N2B···O6 = 2.766 (2) Å] (Fig. 2, Table 1). This produces a set of O—H···O—H···O—H infinite one-dimensional chains along the b axis in the (011) plane. In addition, weak C—H···O, C—H···F, N—H···Cl (Table 1) and π–π (Table 2) intermolecular stacking interactions are observed which contribute to crystal packing stability (Fig. 2).