organic compounds
Bis(4-carboxypiperidinium) 5-nitroisophthalate
aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: luckyms@126.com
Cocrystallization of 4-carboxypiperdine with 5-nitroisophthalic acid afforded the title salt, 2C6H12NO2+·C8H3NO62−, in which the heterocyclic N atoms are protonated and the carboxylic acid groups are deprotonated. In the crystal, intermolecular N—H⋯O and O—H⋯O hydrogen-bonding interactions assemble the ions into a three-dimensional network.
Related literature
For molecular self-assembly by non-covalent interactions and its potential applications, see: Remenar et al. (2003); Oxtoby et al. (2005); Zaworotko (2001); Wang et al. (2009). For 4-piperdinecarboxylic acid as a zwitterion in aqueous solution, see: Mora et al. (2002) and for its ability to act selectively as a bridging or terminal ligand, see: Inomata et al. (2002). For related structures, see: Adams et al. (2006); Podesta & Orpen (2002); Delgado et al. (2001); Zhang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810017927/bt5271sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017927/bt5271Isup2.hkl
4-Piperidinecarboxylic acid (0.1 mmol, 12.9 mg) and 5–nitroisophthalic acid (0.1 mmol, 21.0 mg) were dissolved in a mixed CH3OH—H2O solution (v : v = 5 : 2, 7.0 ml) and stirred constantly for about 30 min. The resulting mixture was then filtered. Colorless block-shaped crystals suitable for X–ray diffraction were collected by slow evaporation of the filtrate in one week. Yield: 65% based on 4-piperdinecarboxylic acid. Anal. calcd for C20H27N3O10: C, 51.17; H, 5.80; N, 8.95%. Found: C, 51.27; H, 5.91; N, 9.03%.
H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93 (for methylene) or 0.97 (for aromatic C – H), O – H = 0.82, and N – H = 0.90 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)].
Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering fields due to its potential applications in materials (Zaworotko, 2001), molecular recognition (Wang et al., 2009; Oxtoby et al., 2005), and pharmaceutical chemistry (Remenar et al., 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since popular hydrogen-bonding and π··· π interactions are the main driven forces of the assembly process. In this regard, bearing two functional groups (–NH– and –COOH–) capable of producing abundant hydrogen-bonding interactions as well as coordination with transitional ions, 4-piperdinecarboxylic acid (Hpipe) exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora et al., 2002). While, in the solid state, the zwitterionic Hpipe can either coordinate with metal ions by its deprotonated carboxylate group or form cocrystals with other compensated components by hydrogen-bonding interactions (Inomata et al. 2002; Adams et al., 2006; Podesta & Orpen, 2002; Zhang et al., 2009; Delgado et al. 2001). To continue to investigate the self-assembly behavior of Hpipe in the solid state, herein, we report the cocrystal of Hpipe and 5-nitroisophthalic acid (H2nip).
As shown in Figure 1, the
of (I) comprises one doubly deprotonated 5-nitro-isophthalate anion (nip2-) and two chemically equal but crystallographically independent 4-piperdinecarboxylic acid cations (H2pipe+). In the crystal, a pair of symmetry-related nip anions and two crystallographically equivalent Hpipe+ cations are connected together in a head-to-tail manner by N–H···O and O–H···O hydrogen-bonds between the protonated amino/carboxylic groups of H2pipe+ and the deprotonated carboxylate of nip anions (Table 1). Thus, closed four-component-based supramolecular rings are gerenated and extended in [1 -1 1] direction (Figure 2). Then, these supramolecular rings are further non-covalently extended by pairs of the second crystallographically unique Hpipe+ cation, leading to a three-dimensional (3-D) hdrogen-bonds network (Figure 3 and Table 1). Thus, the abundant hydrogen-bonding interactions significantly dominate the formation of 3-D supramolecular network of the title cocrystal.For molecular self-assembly by non-covalent interactions and its potential applications, see: Remenar et al. (2003); Oxtoby et al. (2005); Zaworotko (2001); Wang et al. (2009). For 4-piperdinecarboxylic acid as a zwitterion in aqueous solution, see: Mora et al. (2002) and for its ability to act selectively as a bridging or terminal ligand, see: Inomata et al. (2002). For related structures, see: Adams et al. (2006); Podesta & Orpen (2002); Delgado et al. (2001); Zhang et al. (2009).
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. Partial packing diagram of the title compound. H bonds drawn as dashed lines. |
2C6H12NO2+·C8H3NO62− | F(000) = 1984 |
Mr = 469.45 | Dx = 1.419 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.6865 (12) Å | Cell parameters from 5783 reflections |
b = 8.2478 (4) Å | θ = 2.6–27.7° |
c = 22.5140 (11) Å | µ = 0.12 mm−1 |
β = 92.396 (1)° | T = 296 K |
V = 4394.5 (4) Å3 | Block, colourless |
Z = 8 | 0.25 × 0.24 × 0.20 mm |
Bruker APEXII CCD area-detector diffractometer | 3855 independent reflections |
Radiation source: fine-focus sealed tube | 3272 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
phi and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −26→28 |
Tmin = 0.972, Tmax = 0.977 | k = −6→9 |
10813 measured reflections | l = −26→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0446P)2 + 3.6101P] where P = (Fo2 + 2Fc2)/3 |
3855 reflections | (Δ/σ)max = 0.001 |
300 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
2C6H12NO2+·C8H3NO62− | V = 4394.5 (4) Å3 |
Mr = 469.45 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.6865 (12) Å | µ = 0.12 mm−1 |
b = 8.2478 (4) Å | T = 296 K |
c = 22.5140 (11) Å | 0.25 × 0.24 × 0.20 mm |
β = 92.396 (1)° |
Bruker APEXII CCD area-detector diffractometer | 3855 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3272 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.977 | Rint = 0.016 |
10813 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.30 e Å−3 |
3855 reflections | Δρmin = −0.23 e Å−3 |
300 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.05079 (5) | 0.70916 (18) | −0.03056 (5) | 0.0496 (3) | |
O2 | 0.08990 (5) | 0.83618 (18) | −0.10541 (5) | 0.0508 (3) | |
O3 | 0.16282 (6) | 0.63183 (16) | 0.15592 (5) | 0.0497 (3) | |
O4 | 0.22886 (5) | 0.81433 (15) | 0.18158 (5) | 0.0431 (3) | |
O5 | 0.31864 (6) | 1.0750 (2) | 0.00708 (7) | 0.0634 (4) | |
O6 | 0.26236 (6) | 1.1471 (2) | −0.06513 (7) | 0.0702 (5) | |
O7 | 1.00128 (5) | 0.77960 (18) | 0.83217 (6) | 0.0561 (4) | |
H7 | 1.0273 | 0.8104 | 0.8546 | 0.084* | |
O8 | 0.96201 (7) | 1.0009 (2) | 0.86340 (11) | 0.1136 (9) | |
O9 | 0.89526 (5) | 0.40628 (18) | 0.75229 (5) | 0.0520 (4) | |
H9 | 0.8714 | 0.3961 | 0.7774 | 0.078* | |
O10 | 0.82217 (6) | 0.3599 (3) | 0.69185 (7) | 0.0915 (7) | |
N1 | 0.27300 (6) | 1.07054 (18) | −0.01985 (7) | 0.0410 (3) | |
N2 | 0.78899 (5) | 0.87733 (17) | 0.76390 (6) | 0.0333 (3) | |
H2A | 0.7801 | 0.9650 | 0.7854 | 0.040* | |
H2B | 0.7578 | 0.8468 | 0.7426 | 0.040* | |
N3 | 0.99531 (6) | 0.26082 (18) | 0.57233 (6) | 0.0410 (3) | |
H3A | 1.0170 | 0.2687 | 0.5406 | 0.049* | |
H3B | 1.0025 | 0.1645 | 0.5898 | 0.049* | |
C1 | 0.14080 (6) | 0.83039 (19) | −0.01316 (7) | 0.0310 (3) | |
C2 | 0.14657 (6) | 0.77035 (19) | 0.04446 (7) | 0.0314 (3) | |
H2 | 0.1191 | 0.7006 | 0.0582 | 0.038* | |
C3 | 0.19210 (6) | 0.81163 (19) | 0.08202 (6) | 0.0304 (3) | |
C4 | 0.23391 (6) | 0.9130 (2) | 0.06152 (7) | 0.0324 (4) | |
H4 | 0.2646 | 0.9434 | 0.0861 | 0.039* | |
C5 | 0.22846 (6) | 0.96748 (19) | 0.00345 (7) | 0.0314 (3) | |
C6 | 0.18275 (6) | 0.92973 (19) | −0.03393 (7) | 0.0326 (3) | |
H6 | 0.1801 | 0.9704 | −0.0725 | 0.039* | |
C7 | 0.08946 (6) | 0.7881 (2) | −0.05230 (7) | 0.0350 (4) | |
C8 | 0.19502 (7) | 0.7475 (2) | 0.14504 (7) | 0.0335 (4) | |
C9 | 0.90789 (6) | 0.8298 (2) | 0.79810 (8) | 0.0386 (4) | |
H9A | 0.9167 | 0.7345 | 0.7742 | 0.046* | |
C10 | 0.88790 (7) | 0.9662 (2) | 0.75661 (8) | 0.0424 (4) | |
H10A | 0.8819 | 1.0635 | 0.7797 | 0.051* | |
H10B | 0.9170 | 0.9894 | 0.7288 | 0.051* | |
C11 | 0.83367 (7) | 0.9221 (2) | 0.72253 (8) | 0.0426 (4) | |
H11A | 0.8210 | 1.0135 | 0.6983 | 0.051* | |
H11B | 0.8405 | 0.8317 | 0.6962 | 0.051* | |
C12 | 0.80657 (7) | 0.7439 (2) | 0.80488 (8) | 0.0411 (4) | |
H12A | 0.8121 | 0.6456 | 0.7822 | 0.049* | |
H12B | 0.7769 | 0.7236 | 0.8323 | 0.049* | |
C13 | 0.86074 (7) | 0.7858 (2) | 0.83956 (8) | 0.0422 (4) | |
H13A | 0.8725 | 0.6940 | 0.8640 | 0.051* | |
H13B | 0.8540 | 0.8766 | 0.8657 | 0.051* | |
C14 | 0.96009 (7) | 0.8790 (2) | 0.83435 (9) | 0.0433 (4) | |
C15 | 0.91160 (7) | 0.3924 (2) | 0.64910 (7) | 0.0358 (4) | |
H15 | 0.9051 | 0.4959 | 0.6286 | 0.043* | |
C16 | 0.89746 (7) | 0.2580 (2) | 0.60467 (7) | 0.0405 (4) | |
H16A | 0.9024 | 0.1536 | 0.6240 | 0.049* | |
H16B | 0.8582 | 0.2674 | 0.5910 | 0.049* | |
C17 | 0.93479 (7) | 0.2668 (2) | 0.55192 (8) | 0.0436 (4) | |
H17A | 0.9264 | 0.1766 | 0.5253 | 0.052* | |
H17B | 0.9273 | 0.3666 | 0.5302 | 0.052* | |
C18 | 1.01064 (7) | 0.3933 (2) | 0.61503 (8) | 0.0448 (4) | |
H18A | 1.0056 | 0.4974 | 0.5955 | 0.054* | |
H18B | 1.0501 | 0.3830 | 0.6280 | 0.054* | |
C19 | 0.97391 (7) | 0.3853 (2) | 0.66851 (8) | 0.0418 (4) | |
H19A | 0.9830 | 0.4754 | 0.6949 | 0.050* | |
H19B | 0.9815 | 0.2855 | 0.6901 | 0.050* | |
C20 | 0.87172 (7) | 0.3847 (2) | 0.69963 (8) | 0.0406 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0375 (7) | 0.0741 (9) | 0.0371 (7) | −0.0206 (6) | 0.0007 (5) | −0.0047 (6) |
O2 | 0.0380 (7) | 0.0776 (10) | 0.0356 (7) | −0.0124 (6) | −0.0110 (5) | 0.0119 (6) |
O3 | 0.0657 (8) | 0.0494 (8) | 0.0343 (6) | −0.0115 (7) | 0.0051 (6) | 0.0055 (6) |
O4 | 0.0462 (7) | 0.0512 (7) | 0.0311 (6) | 0.0052 (6) | −0.0100 (5) | 0.0004 (5) |
O5 | 0.0413 (8) | 0.0816 (11) | 0.0667 (9) | −0.0263 (7) | −0.0037 (7) | −0.0034 (8) |
O6 | 0.0663 (10) | 0.0886 (12) | 0.0559 (9) | −0.0231 (8) | 0.0044 (7) | 0.0300 (8) |
O7 | 0.0410 (7) | 0.0657 (9) | 0.0596 (9) | 0.0117 (7) | −0.0218 (6) | −0.0146 (7) |
O8 | 0.0655 (11) | 0.0722 (12) | 0.198 (2) | 0.0142 (9) | −0.0592 (13) | −0.0777 (14) |
O9 | 0.0445 (7) | 0.0722 (9) | 0.0398 (7) | −0.0102 (7) | 0.0066 (6) | −0.0009 (7) |
O10 | 0.0310 (8) | 0.191 (2) | 0.0526 (9) | −0.0075 (10) | 0.0066 (6) | −0.0059 (11) |
N1 | 0.0385 (8) | 0.0437 (8) | 0.0414 (8) | −0.0086 (6) | 0.0070 (6) | −0.0033 (7) |
N2 | 0.0262 (6) | 0.0404 (8) | 0.0328 (7) | −0.0002 (6) | −0.0040 (5) | −0.0028 (6) |
N3 | 0.0386 (8) | 0.0470 (9) | 0.0379 (8) | 0.0116 (6) | 0.0060 (6) | 0.0081 (7) |
C1 | 0.0268 (7) | 0.0360 (9) | 0.0301 (8) | 0.0001 (6) | −0.0015 (6) | −0.0016 (7) |
C2 | 0.0283 (8) | 0.0356 (9) | 0.0305 (8) | −0.0024 (6) | 0.0026 (6) | −0.0003 (7) |
C3 | 0.0302 (8) | 0.0342 (8) | 0.0268 (7) | 0.0035 (6) | 0.0008 (6) | −0.0020 (6) |
C4 | 0.0278 (8) | 0.0370 (9) | 0.0320 (8) | 0.0006 (6) | −0.0041 (6) | −0.0049 (7) |
C5 | 0.0294 (8) | 0.0321 (8) | 0.0329 (8) | −0.0026 (6) | 0.0024 (6) | −0.0015 (7) |
C6 | 0.0325 (8) | 0.0372 (9) | 0.0278 (8) | 0.0023 (7) | −0.0004 (6) | 0.0022 (7) |
C7 | 0.0298 (8) | 0.0441 (10) | 0.0308 (8) | −0.0005 (7) | −0.0018 (6) | −0.0029 (7) |
C8 | 0.0350 (8) | 0.0373 (9) | 0.0282 (8) | 0.0077 (7) | −0.0007 (7) | −0.0014 (7) |
C9 | 0.0287 (8) | 0.0333 (9) | 0.0532 (10) | 0.0005 (7) | −0.0052 (7) | −0.0104 (8) |
C10 | 0.0339 (9) | 0.0461 (10) | 0.0475 (10) | −0.0069 (8) | 0.0057 (7) | 0.0022 (8) |
C11 | 0.0378 (9) | 0.0546 (11) | 0.0353 (9) | −0.0019 (8) | 0.0032 (7) | 0.0060 (8) |
C12 | 0.0329 (9) | 0.0461 (10) | 0.0438 (9) | −0.0079 (7) | −0.0041 (7) | 0.0103 (8) |
C13 | 0.0375 (9) | 0.0449 (10) | 0.0433 (10) | −0.0045 (8) | −0.0096 (7) | 0.0089 (8) |
C14 | 0.0325 (9) | 0.0369 (10) | 0.0597 (11) | −0.0035 (7) | −0.0073 (8) | −0.0068 (9) |
C15 | 0.0326 (8) | 0.0371 (9) | 0.0380 (9) | 0.0023 (7) | 0.0030 (7) | 0.0068 (7) |
C16 | 0.0319 (9) | 0.0490 (10) | 0.0403 (9) | −0.0024 (7) | −0.0016 (7) | 0.0028 (8) |
C17 | 0.0399 (9) | 0.0539 (11) | 0.0366 (9) | 0.0026 (8) | −0.0026 (7) | −0.0001 (8) |
C18 | 0.0303 (9) | 0.0591 (12) | 0.0453 (10) | −0.0017 (8) | 0.0031 (7) | 0.0017 (9) |
C19 | 0.0326 (9) | 0.0549 (11) | 0.0379 (9) | −0.0021 (8) | 0.0011 (7) | −0.0015 (8) |
C20 | 0.0329 (9) | 0.0459 (10) | 0.0431 (10) | 0.0039 (7) | 0.0035 (7) | 0.0036 (8) |
O1—C7 | 1.241 (2) | C5—C6 | 1.379 (2) |
O2—C7 | 1.260 (2) | C6—H6 | 0.9300 |
O3—C8 | 1.252 (2) | C9—C14 | 1.508 (2) |
O4—C8 | 1.2524 (19) | C9—C10 | 1.525 (2) |
O5—N1 | 1.2177 (19) | C9—C13 | 1.529 (2) |
O6—N1 | 1.216 (2) | C9—H9A | 0.9800 |
O7—C14 | 1.277 (2) | C10—C11 | 1.513 (2) |
O7—H7 | 0.8200 | C10—H10A | 0.9700 |
O8—C14 | 1.199 (2) | C10—H10B | 0.9700 |
O9—C20 | 1.301 (2) | C11—H11A | 0.9700 |
O9—H9 | 0.8200 | C11—H11B | 0.9700 |
O10—C20 | 1.197 (2) | C12—C13 | 1.514 (2) |
N1—C5 | 1.469 (2) | C12—H12A | 0.9700 |
N2—C12 | 1.485 (2) | C12—H12B | 0.9700 |
N2—C11 | 1.485 (2) | C13—H13A | 0.9700 |
N2—H2A | 0.9000 | C13—H13B | 0.9700 |
N2—H2B | 0.9000 | C15—C20 | 1.510 (2) |
N3—C17 | 1.488 (2) | C15—C16 | 1.521 (2) |
N3—C18 | 1.490 (2) | C15—C19 | 1.523 (2) |
N3—H3A | 0.9000 | C15—H15 | 0.9800 |
N3—H3B | 0.9000 | C16—C17 | 1.512 (2) |
C1—C6 | 1.384 (2) | C16—H16A | 0.9700 |
C1—C2 | 1.390 (2) | C16—H16B | 0.9700 |
C1—C7 | 1.512 (2) | C17—H17A | 0.9700 |
C2—C3 | 1.385 (2) | C17—H17B | 0.9700 |
C2—H2 | 0.9300 | C18—C19 | 1.516 (2) |
C3—C4 | 1.390 (2) | C18—H18A | 0.9700 |
C3—C8 | 1.513 (2) | C18—H18B | 0.9700 |
C4—C5 | 1.383 (2) | C19—H19A | 0.9700 |
C4—H4 | 0.9300 | C19—H19B | 0.9700 |
C14—O7—H7 | 109.5 | N2—C11—H11A | 109.5 |
C20—O9—H9 | 109.5 | C10—C11—H11A | 109.5 |
O6—N1—O5 | 123.39 (15) | N2—C11—H11B | 109.5 |
O6—N1—C5 | 118.22 (14) | C10—C11—H11B | 109.5 |
O5—N1—C5 | 118.38 (15) | H11A—C11—H11B | 108.1 |
C12—N2—C11 | 112.66 (13) | N2—C12—C13 | 111.15 (14) |
C12—N2—H2A | 109.1 | N2—C12—H12A | 109.4 |
C11—N2—H2A | 109.1 | C13—C12—H12A | 109.4 |
C12—N2—H2B | 109.1 | N2—C12—H12B | 109.4 |
C11—N2—H2B | 109.1 | C13—C12—H12B | 109.4 |
H2A—N2—H2B | 107.8 | H12A—C12—H12B | 108.0 |
C17—N3—C18 | 112.38 (13) | C12—C13—C9 | 111.37 (14) |
C17—N3—H3A | 109.1 | C12—C13—H13A | 109.4 |
C18—N3—H3A | 109.1 | C9—C13—H13A | 109.4 |
C17—N3—H3B | 109.1 | C12—C13—H13B | 109.4 |
C18—N3—H3B | 109.1 | C9—C13—H13B | 109.4 |
H3A—N3—H3B | 107.9 | H13A—C13—H13B | 108.0 |
C6—C1—C2 | 118.83 (14) | O8—C14—O7 | 123.21 (17) |
C6—C1—C7 | 120.71 (14) | O8—C14—C9 | 122.15 (17) |
C2—C1—C7 | 120.46 (14) | O7—C14—C9 | 114.63 (15) |
C3—C2—C1 | 121.73 (14) | C20—C15—C16 | 109.74 (14) |
C3—C2—H2 | 119.1 | C20—C15—C19 | 114.31 (14) |
C1—C2—H2 | 119.1 | C16—C15—C19 | 110.20 (14) |
C2—C3—C4 | 119.53 (14) | C20—C15—H15 | 107.4 |
C2—C3—C8 | 119.36 (14) | C16—C15—H15 | 107.4 |
C4—C3—C8 | 121.11 (14) | C19—C15—H15 | 107.4 |
C5—C4—C3 | 118.01 (14) | C17—C16—C15 | 111.22 (14) |
C5—C4—H4 | 121.0 | C17—C16—H16A | 109.4 |
C3—C4—H4 | 121.0 | C15—C16—H16A | 109.4 |
C6—C5—C4 | 122.91 (14) | C17—C16—H16B | 109.4 |
C6—C5—N1 | 118.04 (14) | C15—C16—H16B | 109.4 |
C4—C5—N1 | 119.05 (14) | H16A—C16—H16B | 108.0 |
C5—C6—C1 | 118.94 (14) | N3—C17—C16 | 110.08 (14) |
C5—C6—H6 | 120.5 | N3—C17—H17A | 109.6 |
C1—C6—H6 | 120.5 | C16—C17—H17A | 109.6 |
O1—C7—O2 | 125.10 (15) | N3—C17—H17B | 109.6 |
O1—C7—C1 | 118.68 (14) | C16—C17—H17B | 109.6 |
O2—C7—C1 | 116.22 (14) | H17A—C17—H17B | 108.2 |
O3—C8—O4 | 125.83 (15) | N3—C18—C19 | 110.39 (14) |
O3—C8—C3 | 116.47 (14) | N3—C18—H18A | 109.6 |
O4—C8—C3 | 117.70 (15) | C19—C18—H18A | 109.6 |
C14—C9—C10 | 111.07 (14) | N3—C18—H18B | 109.6 |
C14—C9—C13 | 109.67 (15) | C19—C18—H18B | 109.6 |
C10—C9—C13 | 109.44 (13) | H18A—C18—H18B | 108.1 |
C14—C9—H9A | 108.9 | C18—C19—C15 | 110.60 (14) |
C10—C9—H9A | 108.9 | C18—C19—H19A | 109.5 |
C13—C9—H9A | 108.9 | C15—C19—H19A | 109.5 |
C11—C10—C9 | 111.62 (14) | C18—C19—H19B | 109.5 |
C11—C10—H10A | 109.3 | C15—C19—H19B | 109.5 |
C9—C10—H10A | 109.3 | H19A—C19—H19B | 108.1 |
C11—C10—H10B | 109.3 | O10—C20—O9 | 122.47 (17) |
C9—C10—H10B | 109.3 | O10—C20—C15 | 122.50 (16) |
H10A—C10—H10B | 108.0 | O9—C20—C15 | 115.03 (14) |
N2—C11—C10 | 110.73 (14) | ||
C6—C1—C2—C3 | 2.2 (2) | C14—C9—C10—C11 | −176.73 (15) |
C7—C1—C2—C3 | −177.66 (14) | C13—C9—C10—C11 | −55.51 (19) |
C1—C2—C3—C4 | −1.3 (2) | C12—N2—C11—C10 | −55.94 (19) |
C1—C2—C3—C8 | 177.74 (14) | C9—C10—C11—N2 | 56.0 (2) |
C2—C3—C4—C5 | −0.8 (2) | C11—N2—C12—C13 | 55.84 (19) |
C8—C3—C4—C5 | −179.84 (14) | N2—C12—C13—C9 | −55.4 (2) |
C3—C4—C5—C6 | 2.1 (2) | C14—C9—C13—C12 | 177.09 (15) |
C3—C4—C5—N1 | −178.06 (14) | C10—C9—C13—C12 | 55.02 (19) |
O6—N1—C5—C6 | 16.3 (2) | C10—C9—C14—O8 | 53.3 (3) |
O5—N1—C5—C6 | −163.70 (16) | C13—C9—C14—O8 | −67.8 (3) |
O6—N1—C5—C4 | −163.54 (17) | C10—C9—C14—O7 | −127.69 (18) |
O5—N1—C5—C4 | 16.5 (2) | C13—C9—C14—O7 | 111.21 (18) |
C4—C5—C6—C1 | −1.3 (2) | C20—C15—C16—C17 | 177.29 (14) |
N1—C5—C6—C1 | 178.86 (14) | C19—C15—C16—C17 | −55.98 (19) |
C2—C1—C6—C5 | −0.8 (2) | C18—N3—C17—C16 | −57.40 (19) |
C7—C1—C6—C5 | 178.99 (14) | C15—C16—C17—N3 | 56.3 (2) |
C6—C1—C7—O1 | −174.49 (16) | C17—N3—C18—C19 | 57.68 (19) |
C2—C1—C7—O1 | 5.3 (2) | N3—C18—C19—C15 | −56.3 (2) |
C6—C1—C7—O2 | 6.0 (2) | C20—C15—C19—C18 | 179.86 (15) |
C2—C1—C7—O2 | −174.16 (15) | C16—C15—C19—C18 | 55.7 (2) |
C2—C3—C8—O3 | 15.5 (2) | C16—C15—C20—O10 | −42.0 (3) |
C4—C3—C8—O3 | −165.40 (15) | C19—C15—C20—O10 | −166.3 (2) |
C2—C3—C8—O4 | −164.12 (15) | C16—C15—C20—O9 | 137.65 (16) |
C4—C3—C8—O4 | 15.0 (2) | C19—C15—C20—O9 | 13.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O2i | 0.82 | 1.72 | 2.5204 (16) | 166 |
O9—H9···O3ii | 0.82 | 1.75 | 2.5495 (17) | 164 |
N2—H2A···O4iii | 0.90 | 1.98 | 2.8629 (19) | 166 |
N2—H2B···O4iv | 0.90 | 2.01 | 2.7823 (17) | 143 |
N3—H3A···O1v | 0.90 | 1.83 | 2.7220 (18) | 171 |
N3—H3B···O8vi | 0.90 | 1.89 | 2.755 (2) | 161 |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) x+1/2, −y+3/2, z+1/2; (v) x+1, −y+1, z+1/2; (vi) −x+2, y−1, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | 2C6H12NO2+·C8H3NO62− |
Mr | 469.45 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 23.6865 (12), 8.2478 (4), 22.5140 (11) |
β (°) | 92.396 (1) |
V (Å3) | 4394.5 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.25 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.972, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10813, 3855, 3272 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.101, 1.04 |
No. of reflections | 3855 |
No. of parameters | 300 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.23 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O2i | 0.82 | 1.72 | 2.5204 (16) | 166.4 |
O9—H9···O3ii | 0.82 | 1.75 | 2.5495 (17) | 164.1 |
N2—H2A···O4iii | 0.90 | 1.98 | 2.8629 (19) | 166.2 |
N2—H2B···O4iv | 0.90 | 2.01 | 2.7823 (17) | 142.9 |
N3—H3A···O1v | 0.90 | 1.83 | 2.7220 (18) | 171.0 |
N3—H3B···O8vi | 0.90 | 1.89 | 2.755 (2) | 161.4 |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) x+1/2, −y+3/2, z+1/2; (v) x+1, −y+1, z+1/2; (vi) −x+2, y−1, −z+3/2. |
Acknowledgements
The author gratefully acknowledges the financial support of the Tianjin Key Laboratory of Structure and Performance for Functional Molecule.
References
Adams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). Dalton Trans. pp. 4078–4092. Web of Science CSD CrossRef PubMed Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delgado, G., Mora, A. J. & Bahsas, A. (2001). Acta Cryst. C57, 965–967. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Inomata, Y., Ando, M. & Howell, F. S. (2002). J. Mol. Struct. 616, 201–212. Web of Science CSD CrossRef CAS Google Scholar
Mora, A. J., Delgado, G., Ramírez, B. M., Rincón, L., Almeida, R., Cuervo, J. & Bahsas, A. (2002). J. Mol. Struct. 615, 201–208. Web of Science CrossRef CAS Google Scholar
Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 1–13. Web of Science CSD CrossRef Google Scholar
Podesta, T. J. & Orpen, A. G. (2002). CrystEngComm, 4, 336–342. Web of Science CSD CrossRef CAS Google Scholar
Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456–8457. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, o492–o494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zaworotko, M. J. (2001). Chem. Commun. pp. 1–9. Web of Science CrossRef Google Scholar
Zhang, R.-W., Wang, L.-L. & Zhao, X.-J. (2009). Acta Cryst. E65, m664–m665. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering fields due to its potential applications in materials (Zaworotko, 2001), molecular recognition (Wang et al., 2009; Oxtoby et al., 2005), and pharmaceutical chemistry (Remenar et al., 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since popular hydrogen-bonding and π··· π interactions are the main driven forces of the assembly process. In this regard, bearing two functional groups (–NH– and –COOH–) capable of producing abundant hydrogen-bonding interactions as well as coordination with transitional ions, 4-piperdinecarboxylic acid (Hpipe) exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora et al., 2002). While, in the solid state, the zwitterionic Hpipe can either coordinate with metal ions by its deprotonated carboxylate group or form cocrystals with other compensated components by hydrogen-bonding interactions (Inomata et al. 2002; Adams et al., 2006; Podesta & Orpen, 2002; Zhang et al., 2009; Delgado et al. 2001). To continue to investigate the self-assembly behavior of Hpipe in the solid state, herein, we report the cocrystal of Hpipe and 5-nitroisophthalic acid (H2nip).
As shown in Figure 1, the asymmetric unit of (I) comprises one doubly deprotonated 5-nitro-isophthalate anion (nip2-) and two chemically equal but crystallographically independent 4-piperdinecarboxylic acid cations (H2pipe+). In the crystal, a pair of symmetry-related nip anions and two crystallographically equivalent Hpipe+ cations are connected together in a head-to-tail manner by N–H···O and O–H···O hydrogen-bonds between the protonated amino/carboxylic groups of H2pipe+ and the deprotonated carboxylate of nip anions (Table 1). Thus, closed four-component-based supramolecular rings are gerenated and extended in [1 -1 1] direction (Figure 2). Then, these supramolecular rings are further non-covalently extended by pairs of the second crystallographically unique Hpipe+ cation, leading to a three-dimensional (3-D) hdrogen-bonds network (Figure 3 and Table 1). Thus, the abundant hydrogen-bonding interactions significantly dominate the formation of 3-D supramolecular network of the title cocrystal.