organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-carb­oxy­piperidinium) 5-nitro­isophthalate

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: luckyms@126.com

(Received 14 May 2010; accepted 14 May 2010; online 19 May 2010)

Cocrystallization of 4-carboxypiperdine with 5-nitro­isophthalic acid afforded the title salt, 2C6H12NO2+·C8H3NO62−, in which the heterocyclic N atoms are protonated and the carboxylic acid groups are deprotonated. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen-bonding inter­actions assemble the ions into a three-dimensional network.

Related literature

For mol­ecular self-assembly by non-covalent inter­actions and its potential applications, see: Remenar et al. (2003[Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456-8457.]); Oxtoby et al. (2005[Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 1-13.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]); Wang et al. (2009[Wang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, o492-o494.]). For 4-piperdinecarboxylic acid as a zwitterion in aqueous solution, see: Mora et al. (2002[Mora, A. J., Delgado, G., Ramírez, B. M., Rincón, L., Almeida, R., Cuervo, J. & Bahsas, A. (2002). J. Mol. Struct. 615, 201-208.]) and for its ability to act selectively as a bridging or terminal ligand, see: Inomata et al. (2002[Inomata, Y., Ando, M. & Howell, F. S. (2002). J. Mol. Struct. 616, 201-212.]). For related structures, see: Adams et al. (2006[Adams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). Dalton Trans. pp. 4078-4092.]); Podesta & Orpen (2002[Podesta, T. J. & Orpen, A. G. (2002). CrystEngComm, 4, 336-342.]); Delgado et al. (2001[Delgado, G., Mora, A. J. & Bahsas, A. (2001). Acta Cryst. C57, 965-967.]); Zhang et al. (2009[Zhang, R.-W., Wang, L.-L. & Zhao, X.-J. (2009). Acta Cryst. E65, m664-m665.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H12NO2+·C8H3NO62−

  • Mr = 469.45

  • Monoclinic, C 2/c

  • a = 23.6865 (12) Å

  • b = 8.2478 (4) Å

  • c = 22.5140 (11) Å

  • β = 92.396 (1)°

  • V = 4394.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.977

  • 10813 measured reflections

  • 3855 independent reflections

  • 3272 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.04

  • 3855 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O2i 0.82 1.72 2.5204 (16) 166
O9—H9⋯O3ii 0.82 1.75 2.5495 (17) 164
N2—H2A⋯O4iii 0.90 1.98 2.8629 (19) 166
N2—H2B⋯O4iv 0.90 2.01 2.7823 (17) 143
N3—H3A⋯O1v 0.90 1.83 2.7220 (18) 171
N3—H3B⋯O8vi 0.90 1.89 2.755 (2) 161
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x+1, -y+1, z+{\script{1\over 2}}]; (vi) [-x+2, y-1, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering fields due to its potential applications in materials (Zaworotko, 2001), molecular recognition (Wang et al., 2009; Oxtoby et al., 2005), and pharmaceutical chemistry (Remenar et al., 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since popular hydrogen-bonding and π··· π interactions are the main driven forces of the assembly process. In this regard, bearing two functional groups (–NH– and –COOH–) capable of producing abundant hydrogen-bonding interactions as well as coordination with transitional ions, 4-piperdinecarboxylic acid (Hpipe) exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora et al., 2002). While, in the solid state, the zwitterionic Hpipe can either coordinate with metal ions by its deprotonated carboxylate group or form cocrystals with other compensated components by hydrogen-bonding interactions (Inomata et al. 2002; Adams et al., 2006; Podesta & Orpen, 2002; Zhang et al., 2009; Delgado et al. 2001). To continue to investigate the self-assembly behavior of Hpipe in the solid state, herein, we report the cocrystal of Hpipe and 5-nitroisophthalic acid (H2nip).

As shown in Figure 1, the asymmetric unit of (I) comprises one doubly deprotonated 5-nitro-isophthalate anion (nip2-) and two chemically equal but crystallographically independent 4-piperdinecarboxylic acid cations (H2pipe+). In the crystal, a pair of symmetry-related nip anions and two crystallographically equivalent Hpipe+ cations are connected together in a head-to-tail manner by N–H···O and O–H···O hydrogen-bonds between the protonated amino/carboxylic groups of H2pipe+ and the deprotonated carboxylate of nip anions (Table 1). Thus, closed four-component-based supramolecular rings are gerenated and extended in [1 -1 1] direction (Figure 2). Then, these supramolecular rings are further non-covalently extended by pairs of the second crystallographically unique Hpipe+ cation, leading to a three-dimensional (3-D) hdrogen-bonds network (Figure 3 and Table 1). Thus, the abundant hydrogen-bonding interactions significantly dominate the formation of 3-D supramolecular network of the title cocrystal.

Related literature top

For molecular self-assembly by non-covalent interactions and its potential applications, see: Remenar et al. (2003); Oxtoby et al. (2005); Zaworotko (2001); Wang et al. (2009). For 4-piperdinecarboxylic acid as a zwitterion in aqueous solution, see: Mora et al. (2002) and for its ability to act selectively as a bridging or terminal ligand, see: Inomata et al. (2002). For related structures, see: Adams et al. (2006); Podesta & Orpen (2002); Delgado et al. (2001); Zhang et al. (2009).

Experimental top

4-Piperidinecarboxylic acid (0.1 mmol, 12.9 mg) and 5–nitroisophthalic acid (0.1 mmol, 21.0 mg) were dissolved in a mixed CH3OH—H2O solution (v : v = 5 : 2, 7.0 ml) and stirred constantly for about 30 min. The resulting mixture was then filtered. Colorless block-shaped crystals suitable for X–ray diffraction were collected by slow evaporation of the filtrate in one week. Yield: 65% based on 4-piperdinecarboxylic acid. Anal. calcd for C20H27N3O10: C, 51.17; H, 5.80; N, 8.95%. Found: C, 51.27; H, 5.91; N, 9.03%.

Refinement top

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93 (for methylene) or 0.97 (for aromatic C – H), O – H = 0.82, and N – H = 0.90 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)].

Structure description top

Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering fields due to its potential applications in materials (Zaworotko, 2001), molecular recognition (Wang et al., 2009; Oxtoby et al., 2005), and pharmaceutical chemistry (Remenar et al., 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since popular hydrogen-bonding and π··· π interactions are the main driven forces of the assembly process. In this regard, bearing two functional groups (–NH– and –COOH–) capable of producing abundant hydrogen-bonding interactions as well as coordination with transitional ions, 4-piperdinecarboxylic acid (Hpipe) exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora et al., 2002). While, in the solid state, the zwitterionic Hpipe can either coordinate with metal ions by its deprotonated carboxylate group or form cocrystals with other compensated components by hydrogen-bonding interactions (Inomata et al. 2002; Adams et al., 2006; Podesta & Orpen, 2002; Zhang et al., 2009; Delgado et al. 2001). To continue to investigate the self-assembly behavior of Hpipe in the solid state, herein, we report the cocrystal of Hpipe and 5-nitroisophthalic acid (H2nip).

As shown in Figure 1, the asymmetric unit of (I) comprises one doubly deprotonated 5-nitro-isophthalate anion (nip2-) and two chemically equal but crystallographically independent 4-piperdinecarboxylic acid cations (H2pipe+). In the crystal, a pair of symmetry-related nip anions and two crystallographically equivalent Hpipe+ cations are connected together in a head-to-tail manner by N–H···O and O–H···O hydrogen-bonds between the protonated amino/carboxylic groups of H2pipe+ and the deprotonated carboxylate of nip anions (Table 1). Thus, closed four-component-based supramolecular rings are gerenated and extended in [1 -1 1] direction (Figure 2). Then, these supramolecular rings are further non-covalently extended by pairs of the second crystallographically unique Hpipe+ cation, leading to a three-dimensional (3-D) hdrogen-bonds network (Figure 3 and Table 1). Thus, the abundant hydrogen-bonding interactions significantly dominate the formation of 3-D supramolecular network of the title cocrystal.

For molecular self-assembly by non-covalent interactions and its potential applications, see: Remenar et al. (2003); Oxtoby et al. (2005); Zaworotko (2001); Wang et al. (2009). For 4-piperdinecarboxylic acid as a zwitterion in aqueous solution, see: Mora et al. (2002) and for its ability to act selectively as a bridging or terminal ligand, see: Inomata et al. (2002). For related structures, see: Adams et al. (2006); Podesta & Orpen (2002); Delgado et al. (2001); Zhang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram of the title compound. H bonds drawn as dashed lines.
Bis(4-carboxypiperidinium) 5-nitroisophthalate top
Crystal data top
2C6H12NO2+·C8H3NO62F(000) = 1984
Mr = 469.45Dx = 1.419 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.6865 (12) ÅCell parameters from 5783 reflections
b = 8.2478 (4) Åθ = 2.6–27.7°
c = 22.5140 (11) ŵ = 0.12 mm1
β = 92.396 (1)°T = 296 K
V = 4394.5 (4) Å3Block, colourless
Z = 80.25 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3855 independent reflections
Radiation source: fine-focus sealed tube3272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2628
Tmin = 0.972, Tmax = 0.977k = 69
10813 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0446P)2 + 3.6101P]
where P = (Fo2 + 2Fc2)/3
3855 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C6H12NO2+·C8H3NO62V = 4394.5 (4) Å3
Mr = 469.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.6865 (12) ŵ = 0.12 mm1
b = 8.2478 (4) ÅT = 296 K
c = 22.5140 (11) Å0.25 × 0.24 × 0.20 mm
β = 92.396 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3272 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.016
10813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3855 reflectionsΔρmin = 0.23 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05079 (5)0.70916 (18)0.03056 (5)0.0496 (3)
O20.08990 (5)0.83618 (18)0.10541 (5)0.0508 (3)
O30.16282 (6)0.63183 (16)0.15592 (5)0.0497 (3)
O40.22886 (5)0.81433 (15)0.18158 (5)0.0431 (3)
O50.31864 (6)1.0750 (2)0.00708 (7)0.0634 (4)
O60.26236 (6)1.1471 (2)0.06513 (7)0.0702 (5)
O71.00128 (5)0.77960 (18)0.83217 (6)0.0561 (4)
H71.02730.81040.85460.084*
O80.96201 (7)1.0009 (2)0.86340 (11)0.1136 (9)
O90.89526 (5)0.40628 (18)0.75229 (5)0.0520 (4)
H90.87140.39610.77740.078*
O100.82217 (6)0.3599 (3)0.69185 (7)0.0915 (7)
N10.27300 (6)1.07054 (18)0.01985 (7)0.0410 (3)
N20.78899 (5)0.87733 (17)0.76390 (6)0.0333 (3)
H2A0.78010.96500.78540.040*
H2B0.75780.84680.74260.040*
N30.99531 (6)0.26082 (18)0.57233 (6)0.0410 (3)
H3A1.01700.26870.54060.049*
H3B1.00250.16450.58980.049*
C10.14080 (6)0.83039 (19)0.01316 (7)0.0310 (3)
C20.14657 (6)0.77035 (19)0.04446 (7)0.0314 (3)
H20.11910.70060.05820.038*
C30.19210 (6)0.81163 (19)0.08202 (6)0.0304 (3)
C40.23391 (6)0.9130 (2)0.06152 (7)0.0324 (4)
H40.26460.94340.08610.039*
C50.22846 (6)0.96748 (19)0.00345 (7)0.0314 (3)
C60.18275 (6)0.92973 (19)0.03393 (7)0.0326 (3)
H60.18010.97040.07250.039*
C70.08946 (6)0.7881 (2)0.05230 (7)0.0350 (4)
C80.19502 (7)0.7475 (2)0.14504 (7)0.0335 (4)
C90.90789 (6)0.8298 (2)0.79810 (8)0.0386 (4)
H9A0.91670.73450.77420.046*
C100.88790 (7)0.9662 (2)0.75661 (8)0.0424 (4)
H10A0.88191.06350.77970.051*
H10B0.91700.98940.72880.051*
C110.83367 (7)0.9221 (2)0.72253 (8)0.0426 (4)
H11A0.82101.01350.69830.051*
H11B0.84050.83170.69620.051*
C120.80657 (7)0.7439 (2)0.80488 (8)0.0411 (4)
H12A0.81210.64560.78220.049*
H12B0.77690.72360.83230.049*
C130.86074 (7)0.7858 (2)0.83956 (8)0.0422 (4)
H13A0.87250.69400.86400.051*
H13B0.85400.87660.86570.051*
C140.96009 (7)0.8790 (2)0.83435 (9)0.0433 (4)
C150.91160 (7)0.3924 (2)0.64910 (7)0.0358 (4)
H150.90510.49590.62860.043*
C160.89746 (7)0.2580 (2)0.60467 (7)0.0405 (4)
H16A0.90240.15360.62400.049*
H16B0.85820.26740.59100.049*
C170.93479 (7)0.2668 (2)0.55192 (8)0.0436 (4)
H17A0.92640.17660.52530.052*
H17B0.92730.36660.53020.052*
C181.01064 (7)0.3933 (2)0.61503 (8)0.0448 (4)
H18A1.00560.49740.59550.054*
H18B1.05010.38300.62800.054*
C190.97391 (7)0.3853 (2)0.66851 (8)0.0418 (4)
H19A0.98300.47540.69490.050*
H19B0.98150.28550.69010.050*
C200.87172 (7)0.3847 (2)0.69963 (8)0.0406 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0375 (7)0.0741 (9)0.0371 (7)0.0206 (6)0.0007 (5)0.0047 (6)
O20.0380 (7)0.0776 (10)0.0356 (7)0.0124 (6)0.0110 (5)0.0119 (6)
O30.0657 (8)0.0494 (8)0.0343 (6)0.0115 (7)0.0051 (6)0.0055 (6)
O40.0462 (7)0.0512 (7)0.0311 (6)0.0052 (6)0.0100 (5)0.0004 (5)
O50.0413 (8)0.0816 (11)0.0667 (9)0.0263 (7)0.0037 (7)0.0034 (8)
O60.0663 (10)0.0886 (12)0.0559 (9)0.0231 (8)0.0044 (7)0.0300 (8)
O70.0410 (7)0.0657 (9)0.0596 (9)0.0117 (7)0.0218 (6)0.0146 (7)
O80.0655 (11)0.0722 (12)0.198 (2)0.0142 (9)0.0592 (13)0.0777 (14)
O90.0445 (7)0.0722 (9)0.0398 (7)0.0102 (7)0.0066 (6)0.0009 (7)
O100.0310 (8)0.191 (2)0.0526 (9)0.0075 (10)0.0066 (6)0.0059 (11)
N10.0385 (8)0.0437 (8)0.0414 (8)0.0086 (6)0.0070 (6)0.0033 (7)
N20.0262 (6)0.0404 (8)0.0328 (7)0.0002 (6)0.0040 (5)0.0028 (6)
N30.0386 (8)0.0470 (9)0.0379 (8)0.0116 (6)0.0060 (6)0.0081 (7)
C10.0268 (7)0.0360 (9)0.0301 (8)0.0001 (6)0.0015 (6)0.0016 (7)
C20.0283 (8)0.0356 (9)0.0305 (8)0.0024 (6)0.0026 (6)0.0003 (7)
C30.0302 (8)0.0342 (8)0.0268 (7)0.0035 (6)0.0008 (6)0.0020 (6)
C40.0278 (8)0.0370 (9)0.0320 (8)0.0006 (6)0.0041 (6)0.0049 (7)
C50.0294 (8)0.0321 (8)0.0329 (8)0.0026 (6)0.0024 (6)0.0015 (7)
C60.0325 (8)0.0372 (9)0.0278 (8)0.0023 (7)0.0004 (6)0.0022 (7)
C70.0298 (8)0.0441 (10)0.0308 (8)0.0005 (7)0.0018 (6)0.0029 (7)
C80.0350 (8)0.0373 (9)0.0282 (8)0.0077 (7)0.0007 (7)0.0014 (7)
C90.0287 (8)0.0333 (9)0.0532 (10)0.0005 (7)0.0052 (7)0.0104 (8)
C100.0339 (9)0.0461 (10)0.0475 (10)0.0069 (8)0.0057 (7)0.0022 (8)
C110.0378 (9)0.0546 (11)0.0353 (9)0.0019 (8)0.0032 (7)0.0060 (8)
C120.0329 (9)0.0461 (10)0.0438 (9)0.0079 (7)0.0041 (7)0.0103 (8)
C130.0375 (9)0.0449 (10)0.0433 (10)0.0045 (8)0.0096 (7)0.0089 (8)
C140.0325 (9)0.0369 (10)0.0597 (11)0.0035 (7)0.0073 (8)0.0068 (9)
C150.0326 (8)0.0371 (9)0.0380 (9)0.0023 (7)0.0030 (7)0.0068 (7)
C160.0319 (9)0.0490 (10)0.0403 (9)0.0024 (7)0.0016 (7)0.0028 (8)
C170.0399 (9)0.0539 (11)0.0366 (9)0.0026 (8)0.0026 (7)0.0001 (8)
C180.0303 (9)0.0591 (12)0.0453 (10)0.0017 (8)0.0031 (7)0.0017 (9)
C190.0326 (9)0.0549 (11)0.0379 (9)0.0021 (8)0.0011 (7)0.0015 (8)
C200.0329 (9)0.0459 (10)0.0431 (10)0.0039 (7)0.0035 (7)0.0036 (8)
Geometric parameters (Å, º) top
O1—C71.241 (2)C5—C61.379 (2)
O2—C71.260 (2)C6—H60.9300
O3—C81.252 (2)C9—C141.508 (2)
O4—C81.2524 (19)C9—C101.525 (2)
O5—N11.2177 (19)C9—C131.529 (2)
O6—N11.216 (2)C9—H9A0.9800
O7—C141.277 (2)C10—C111.513 (2)
O7—H70.8200C10—H10A0.9700
O8—C141.199 (2)C10—H10B0.9700
O9—C201.301 (2)C11—H11A0.9700
O9—H90.8200C11—H11B0.9700
O10—C201.197 (2)C12—C131.514 (2)
N1—C51.469 (2)C12—H12A0.9700
N2—C121.485 (2)C12—H12B0.9700
N2—C111.485 (2)C13—H13A0.9700
N2—H2A0.9000C13—H13B0.9700
N2—H2B0.9000C15—C201.510 (2)
N3—C171.488 (2)C15—C161.521 (2)
N3—C181.490 (2)C15—C191.523 (2)
N3—H3A0.9000C15—H150.9800
N3—H3B0.9000C16—C171.512 (2)
C1—C61.384 (2)C16—H16A0.9700
C1—C21.390 (2)C16—H16B0.9700
C1—C71.512 (2)C17—H17A0.9700
C2—C31.385 (2)C17—H17B0.9700
C2—H20.9300C18—C191.516 (2)
C3—C41.390 (2)C18—H18A0.9700
C3—C81.513 (2)C18—H18B0.9700
C4—C51.383 (2)C19—H19A0.9700
C4—H40.9300C19—H19B0.9700
C14—O7—H7109.5N2—C11—H11A109.5
C20—O9—H9109.5C10—C11—H11A109.5
O6—N1—O5123.39 (15)N2—C11—H11B109.5
O6—N1—C5118.22 (14)C10—C11—H11B109.5
O5—N1—C5118.38 (15)H11A—C11—H11B108.1
C12—N2—C11112.66 (13)N2—C12—C13111.15 (14)
C12—N2—H2A109.1N2—C12—H12A109.4
C11—N2—H2A109.1C13—C12—H12A109.4
C12—N2—H2B109.1N2—C12—H12B109.4
C11—N2—H2B109.1C13—C12—H12B109.4
H2A—N2—H2B107.8H12A—C12—H12B108.0
C17—N3—C18112.38 (13)C12—C13—C9111.37 (14)
C17—N3—H3A109.1C12—C13—H13A109.4
C18—N3—H3A109.1C9—C13—H13A109.4
C17—N3—H3B109.1C12—C13—H13B109.4
C18—N3—H3B109.1C9—C13—H13B109.4
H3A—N3—H3B107.9H13A—C13—H13B108.0
C6—C1—C2118.83 (14)O8—C14—O7123.21 (17)
C6—C1—C7120.71 (14)O8—C14—C9122.15 (17)
C2—C1—C7120.46 (14)O7—C14—C9114.63 (15)
C3—C2—C1121.73 (14)C20—C15—C16109.74 (14)
C3—C2—H2119.1C20—C15—C19114.31 (14)
C1—C2—H2119.1C16—C15—C19110.20 (14)
C2—C3—C4119.53 (14)C20—C15—H15107.4
C2—C3—C8119.36 (14)C16—C15—H15107.4
C4—C3—C8121.11 (14)C19—C15—H15107.4
C5—C4—C3118.01 (14)C17—C16—C15111.22 (14)
C5—C4—H4121.0C17—C16—H16A109.4
C3—C4—H4121.0C15—C16—H16A109.4
C6—C5—C4122.91 (14)C17—C16—H16B109.4
C6—C5—N1118.04 (14)C15—C16—H16B109.4
C4—C5—N1119.05 (14)H16A—C16—H16B108.0
C5—C6—C1118.94 (14)N3—C17—C16110.08 (14)
C5—C6—H6120.5N3—C17—H17A109.6
C1—C6—H6120.5C16—C17—H17A109.6
O1—C7—O2125.10 (15)N3—C17—H17B109.6
O1—C7—C1118.68 (14)C16—C17—H17B109.6
O2—C7—C1116.22 (14)H17A—C17—H17B108.2
O3—C8—O4125.83 (15)N3—C18—C19110.39 (14)
O3—C8—C3116.47 (14)N3—C18—H18A109.6
O4—C8—C3117.70 (15)C19—C18—H18A109.6
C14—C9—C10111.07 (14)N3—C18—H18B109.6
C14—C9—C13109.67 (15)C19—C18—H18B109.6
C10—C9—C13109.44 (13)H18A—C18—H18B108.1
C14—C9—H9A108.9C18—C19—C15110.60 (14)
C10—C9—H9A108.9C18—C19—H19A109.5
C13—C9—H9A108.9C15—C19—H19A109.5
C11—C10—C9111.62 (14)C18—C19—H19B109.5
C11—C10—H10A109.3C15—C19—H19B109.5
C9—C10—H10A109.3H19A—C19—H19B108.1
C11—C10—H10B109.3O10—C20—O9122.47 (17)
C9—C10—H10B109.3O10—C20—C15122.50 (16)
H10A—C10—H10B108.0O9—C20—C15115.03 (14)
N2—C11—C10110.73 (14)
C6—C1—C2—C32.2 (2)C14—C9—C10—C11176.73 (15)
C7—C1—C2—C3177.66 (14)C13—C9—C10—C1155.51 (19)
C1—C2—C3—C41.3 (2)C12—N2—C11—C1055.94 (19)
C1—C2—C3—C8177.74 (14)C9—C10—C11—N256.0 (2)
C2—C3—C4—C50.8 (2)C11—N2—C12—C1355.84 (19)
C8—C3—C4—C5179.84 (14)N2—C12—C13—C955.4 (2)
C3—C4—C5—C62.1 (2)C14—C9—C13—C12177.09 (15)
C3—C4—C5—N1178.06 (14)C10—C9—C13—C1255.02 (19)
O6—N1—C5—C616.3 (2)C10—C9—C14—O853.3 (3)
O5—N1—C5—C6163.70 (16)C13—C9—C14—O867.8 (3)
O6—N1—C5—C4163.54 (17)C10—C9—C14—O7127.69 (18)
O5—N1—C5—C416.5 (2)C13—C9—C14—O7111.21 (18)
C4—C5—C6—C11.3 (2)C20—C15—C16—C17177.29 (14)
N1—C5—C6—C1178.86 (14)C19—C15—C16—C1755.98 (19)
C2—C1—C6—C50.8 (2)C18—N3—C17—C1657.40 (19)
C7—C1—C6—C5178.99 (14)C15—C16—C17—N356.3 (2)
C6—C1—C7—O1174.49 (16)C17—N3—C18—C1957.68 (19)
C2—C1—C7—O15.3 (2)N3—C18—C19—C1556.3 (2)
C6—C1—C7—O26.0 (2)C20—C15—C19—C18179.86 (15)
C2—C1—C7—O2174.16 (15)C16—C15—C19—C1855.7 (2)
C2—C3—C8—O315.5 (2)C16—C15—C20—O1042.0 (3)
C4—C3—C8—O3165.40 (15)C19—C15—C20—O10166.3 (2)
C2—C3—C8—O4164.12 (15)C16—C15—C20—O9137.65 (16)
C4—C3—C8—O415.0 (2)C19—C15—C20—O913.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.821.722.5204 (16)166
O9—H9···O3ii0.821.752.5495 (17)164
N2—H2A···O4iii0.901.982.8629 (19)166
N2—H2B···O4iv0.902.012.7823 (17)143
N3—H3A···O1v0.901.832.7220 (18)171
N3—H3B···O8vi0.901.892.755 (2)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+1, z+1/2; (vi) x+2, y1, z+3/2.

Experimental details

Crystal data
Chemical formula2C6H12NO2+·C8H3NO62
Mr469.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.6865 (12), 8.2478 (4), 22.5140 (11)
β (°) 92.396 (1)
V3)4394.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10813, 3855, 3272
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections3855
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.821.722.5204 (16)166.4
O9—H9···O3ii0.821.752.5495 (17)164.1
N2—H2A···O4iii0.901.982.8629 (19)166.2
N2—H2B···O4iv0.902.012.7823 (17)142.9
N3—H3A···O1v0.901.832.7220 (18)171.0
N3—H3B···O8vi0.901.892.755 (2)161.4
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+1, z+1/2; (vi) x+2, y1, z+3/2.
 

Acknowledgements

The author gratefully acknowledges the financial support of the Tianjin Key Laboratory of Structure and Performance for Functional Mol­ecule.

References

First citationAdams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). Dalton Trans. pp. 4078–4092.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelgado, G., Mora, A. J. & Bahsas, A. (2001). Acta Cryst. C57, 965–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInomata, Y., Ando, M. & Howell, F. S. (2002). J. Mol. Struct. 616, 201–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationMora, A. J., Delgado, G., Ramírez, B. M., Rincón, L., Almeida, R., Cuervo, J. & Bahsas, A. (2002). J. Mol. Struct. 615, 201–208.  Web of Science CrossRef CAS Google Scholar
First citationOxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 1–13.  Web of Science CSD CrossRef Google Scholar
First citationPodesta, T. J. & Orpen, A. G. (2002). CrystEngComm, 4, 336–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationRemenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456–8457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, o492–o494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar
First citationZhang, R.-W., Wang, L.-L. & Zhao, X.-J. (2009). Acta Cryst. E65, m664–m665.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds