organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­benzoic acid–2,2′-bi­imidazole (2/1)

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: zhuwq@sdu.edu.cn

(Received 20 April 2010; accepted 28 April 2010; online 8 May 2010)

In the title adduct, C7H5NO4·0.5C6H6N4, the complete biimidazole molecule is generated by a crystallographic inversion centre. In the crystal, N—H⋯O and O—H⋯N hydrogen bonds connects the 4-nitro­benzoic acid and 2,2′-biimidazole units, affording multi-dimensional frameworks with graph-set descriptor R22(9).

Related literature

For the potential applications of coordination complexes as functional materials and enzymes, see: Zhang et al. (2003[Zhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181-1185.]) For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4·0.5C6H6N4

  • Mr = 234.19

  • Monoclinic, P 21 /c

  • a = 4.852 (1) Å

  • b = 10.9245 (10) Å

  • c = 19.7981 (10) Å

  • β = 90.496 (1)°

  • V = 1049.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.991

  • 5185 measured reflections

  • 1849 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.134

  • S = 1.00

  • 1849 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.85 (1) 1.75 (1) 2.580 (2) 168 (3)
N2—H2⋯O1i 0.86 1.89 2.742 (2) 173
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the design and synthesis of coordination complexes have attracted much attention due to their diversity structures as well as potential applications as functional materials and enzymes (Zhang et al. , 2003). Here, we report one by-product of the hydrothermal reaction of FeCl3 with 4-nitrobenzoic acid and biimidazole. The asymmetric unit of (I) consists of a 4-nitrobenzoic acid molecule and half biimidazole molecule, Fig 1. In the 4-nitrobenzoic acid molecule, the nitro group is rotated 10.6 (3)° from aromatic ring. N—H···O and O—H···N hydrogen bonds connects the C7H5NO4 . 0.5C6H6N4 units to affords a macrocycle with graph-set descriptor R22(9) (Bernstein et al., 1995), Fig2.

Related literature top

For the potential applications of coordination complexes as functional materials and enzymes, see: Zhang et al. (2003) For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-nitrobenzoic acid (1 mmoL, 0.17 g), biimidazole (1 mmoL, 0.14 g), and iron trichloride (1 mmoL, 0.27 g) in 12 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals suitable for the single X-ray diffraction were obtained.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier). The lengths of bond H—O were constrained with 0.82 Å .

Structure description top

Recently, the design and synthesis of coordination complexes have attracted much attention due to their diversity structures as well as potential applications as functional materials and enzymes (Zhang et al. , 2003). Here, we report one by-product of the hydrothermal reaction of FeCl3 with 4-nitrobenzoic acid and biimidazole. The asymmetric unit of (I) consists of a 4-nitrobenzoic acid molecule and half biimidazole molecule, Fig 1. In the 4-nitrobenzoic acid molecule, the nitro group is rotated 10.6 (3)° from aromatic ring. N—H···O and O—H···N hydrogen bonds connects the C7H5NO4 . 0.5C6H6N4 units to affords a macrocycle with graph-set descriptor R22(9) (Bernstein et al., 1995), Fig2.

For the potential applications of coordination complexes as functional materials and enzymes, see: Zhang et al. (2003) For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and with displacement ellipsoids at the 30% probability level. Unlabeled atoms are related to labeled atoms by the symmetry code (-x, 2-y, 1-z).
4-Nitrobenzoic acid–2,2'-biimidazole (2/1) top
Crystal data top
C7H5NO4·0.5C6H6N4F(000) = 484
Mr = 234.19Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1230 reflections
a = 4.852 (1) Åθ = 2.8–22.0°
b = 10.9245 (10) ŵ = 0.12 mm1
c = 19.7981 (10) ÅT = 296 K
β = 90.496 (1)°Block, colourless
V = 1049.4 (2) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1849 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 55
Tmin = 0.986, Tmax = 0.991k = 129
5185 measured reflectionsl = 2320
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1849 reflectionsΔρmax = 0.25 e Å3
158 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (4)
Crystal data top
C7H5NO4·0.5C6H6N4V = 1049.4 (2) Å3
Mr = 234.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.852 (1) ŵ = 0.12 mm1
b = 10.9245 (10) ÅT = 296 K
c = 19.7981 (10) Å0.12 × 0.10 × 0.08 mm
β = 90.496 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1849 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1264 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.034
5185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
1849 reflectionsΔρmin = 0.15 e Å3
158 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3475 (4)0.7795 (2)0.58109 (11)0.0548 (6)
C20.2424 (4)0.54924 (18)0.67279 (9)0.0493 (5)
C30.1097 (4)0.5072 (2)0.61681 (10)0.0577 (6)
H30.14750.42980.59950.069*
C40.0825 (4)0.5826 (2)0.58629 (11)0.0586 (6)
H40.17530.55570.54820.070*
C50.1368 (4)0.69760 (19)0.61233 (10)0.0502 (5)
C60.0063 (4)0.7371 (2)0.66845 (10)0.0565 (6)
H60.02830.81480.68580.068*
C70.1990 (4)0.66362 (19)0.69917 (11)0.0551 (6)
H70.29630.69080.73660.066*
C90.9965 (4)0.95887 (18)0.47185 (10)0.0468 (5)
C100.8856 (5)0.8140 (2)0.40287 (11)0.0676 (7)
H100.79610.74720.38360.081*
C111.0980 (5)0.8751 (2)0.37532 (11)0.0678 (7)
H111.18130.85800.33420.081*
H2A0.566 (4)0.7886 (19)0.5083 (11)0.080*
N10.8218 (3)0.86605 (16)0.46396 (9)0.0549 (5)
N21.1672 (3)0.96604 (16)0.41881 (8)0.0550 (5)
H21.29681.01880.41350.066*
N30.4451 (4)0.46869 (19)0.70582 (9)0.0596 (5)
O10.4057 (3)0.87721 (14)0.60756 (8)0.0689 (5)
O20.4566 (3)0.73838 (16)0.52653 (8)0.0739 (5)
O30.5946 (4)0.50989 (16)0.74887 (10)0.0873 (6)
O40.4548 (4)0.36262 (17)0.68800 (10)0.0926 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (12)0.0579 (14)0.0621 (14)0.0011 (10)0.0014 (10)0.0114 (11)
C20.0449 (11)0.0507 (12)0.0522 (12)0.0036 (9)0.0044 (9)0.0051 (10)
C30.0628 (14)0.0509 (12)0.0595 (13)0.0100 (10)0.0119 (11)0.0058 (10)
C40.0577 (14)0.0624 (14)0.0559 (13)0.0052 (11)0.0124 (10)0.0028 (11)
C50.0427 (12)0.0505 (13)0.0574 (12)0.0028 (9)0.0024 (10)0.0076 (10)
C60.0561 (13)0.0481 (13)0.0653 (13)0.0028 (10)0.0007 (11)0.0026 (10)
C70.0543 (13)0.0554 (13)0.0556 (12)0.0002 (10)0.0060 (10)0.0031 (10)
C90.0399 (11)0.0483 (12)0.0523 (11)0.0004 (9)0.0024 (9)0.0056 (9)
C100.0701 (16)0.0621 (15)0.0705 (15)0.0161 (12)0.0037 (12)0.0095 (12)
C110.0719 (16)0.0709 (16)0.0609 (14)0.0068 (13)0.0132 (12)0.0095 (13)
N10.0520 (11)0.0516 (10)0.0610 (11)0.0074 (8)0.0014 (8)0.0017 (9)
N20.0500 (10)0.0544 (11)0.0609 (11)0.0053 (8)0.0088 (9)0.0025 (9)
N30.0581 (12)0.0634 (13)0.0573 (11)0.0071 (10)0.0092 (9)0.0029 (9)
O10.0602 (10)0.0563 (10)0.0904 (11)0.0113 (8)0.0095 (8)0.0033 (9)
O20.0713 (12)0.0737 (12)0.0769 (11)0.0217 (9)0.0177 (9)0.0076 (9)
O30.0907 (13)0.0871 (13)0.0849 (12)0.0056 (10)0.0419 (10)0.0034 (10)
O40.1113 (16)0.0649 (12)0.1021 (13)0.0320 (10)0.0356 (11)0.0089 (10)
Geometric parameters (Å, º) top
C1—O11.222 (3)C7—H70.9300
C1—O21.288 (3)C9—N11.330 (2)
C1—C51.496 (3)C9—N21.345 (2)
C2—C31.366 (3)C9—C9i1.432 (4)
C2—C71.370 (3)C10—C111.347 (3)
C2—N31.476 (3)C10—N11.374 (3)
C3—C41.387 (3)C10—H100.9300
C3—H30.9300C11—N21.355 (3)
C4—C51.382 (3)C11—H110.9300
C4—H40.9300N2—H20.8600
C5—C61.384 (3)N3—O31.211 (2)
C6—C71.377 (3)N3—O41.212 (2)
C6—H60.9300O2—H2A0.845 (10)
O1—C1—O2124.7 (2)C2—C7—H7121.1
O1—C1—C5120.1 (2)C6—C7—H7121.1
O2—C1—C5115.2 (2)N1—C9—N2110.41 (18)
C3—C2—C7122.95 (19)N1—C9—C9i125.5 (2)
C3—C2—N3118.65 (19)N2—C9—C9i124.1 (2)
C7—C2—N3118.40 (18)C11—C10—N1109.3 (2)
C2—C3—C4118.5 (2)C11—C10—H10125.3
C2—C3—H3120.7N1—C10—H10125.3
C4—C3—H3120.7C10—C11—N2106.98 (19)
C5—C4—C3120.3 (2)C10—C11—H11126.5
C5—C4—H4119.9N2—C11—H11126.5
C3—C4—H4119.9C9—N1—C10105.70 (18)
C4—C5—C6119.17 (19)C9—N2—C11107.60 (17)
C4—C5—C1121.2 (2)C9—N2—H2126.2
C6—C5—C1119.7 (2)C11—N2—H2126.2
C7—C6—C5121.3 (2)O3—N3—O4122.56 (19)
C7—C6—H6119.3O3—N3—C2119.7 (2)
C5—C6—H6119.3O4—N3—C2117.72 (18)
C2—C7—C6117.76 (19)C1—O2—H2A113.3 (17)
C7—C2—C3—C41.6 (3)C5—C6—C7—C20.7 (3)
N3—C2—C3—C4179.36 (18)N1—C10—C11—N20.4 (3)
C2—C3—C4—C50.1 (3)N2—C9—N1—C100.6 (2)
C3—C4—C5—C61.1 (3)C9i—C9—N1—C10178.9 (2)
C3—C4—C5—C1178.72 (18)C11—C10—N1—C90.6 (3)
O1—C1—C5—C4175.01 (18)N1—C9—N2—C110.4 (2)
O2—C1—C5—C44.7 (3)C9i—C9—N2—C11179.1 (2)
O1—C1—C5—C64.8 (3)C10—C11—N2—C90.0 (2)
O2—C1—C5—C6175.56 (18)C3—C2—N3—O3168.9 (2)
C4—C5—C6—C70.7 (3)C7—C2—N3—O310.2 (3)
C1—C5—C6—C7179.06 (18)C3—C2—N3—O410.8 (3)
C3—C2—C7—C61.9 (3)C7—C2—N3—O4170.2 (2)
N3—C2—C7—C6179.04 (18)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.85 (1)1.75 (1)2.580 (2)168 (3)
N2—H2···O1i0.861.892.742 (2)173
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H5NO4·0.5C6H6N4
Mr234.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.852 (1), 10.9245 (10), 19.7981 (10)
β (°) 90.496 (1)
V3)1049.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5185, 1849, 1264
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.00
No. of reflections1849
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.845 (10)1.747 (11)2.580 (2)168 (3)
N2—H2···O1i0.861.892.742 (2)172.9
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors thank Shandong University for support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181–1185.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds