organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Koetjapic acid chloro­form hemisolvate

aDepartment of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 March 2010; accepted 5 May 2010; online 8 May 2010)

The asymmetric unit of the title compound, C30H46O4·0.5CHCl3, consists of one koetjapic acid [systematic name: (3R,4aR,4bS,7S,8S,10bS,12aS)-7-(2-carboxy­ethyl)-3,4b,7,10b,12a-penta­methyl-8-(prop-1-en-2-yl)-1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexa­deca­hydro­chrysene-3-carboxylic acid] mol­ecule and one half-mol­ecule of chloro­form solvent, which is disordered about a twofold rotation axis. The symmetry-independent component is further disordered over two sites, with occupancies of 0.30 and 0.20. The koetjapic acid contains a fused four-ring system, A/B/C/D. The A/B, B/C and C/D junctions adopt E/trans/cis configurations, respectively. The conformation of ring A is inter­mediate between envelope and half-chair and ring B adopts an envelope conformation whereas rings C and D adopt chair conformations. A weak intra­molecular C—H⋯O hydrogen bond is observed. The koetjapic acid mol­ecules are linked into dimers by two pairs of inter­molecular O—H⋯O hydrogen bonds. The dimers are stacked along the c axis.

Related literature

For the biological properties of Sandoricum koetjape and koetjapic acid, see: Aisha et al. (2009[Aisha, A. F. A., Alrokayan, S. A., Abu-Salah, K. M., Darwis, Y. & Abdul Majid, A. M. S. (2009). Int. J. Cancer Res. 5, 123-129.]); Kaneda et al. (1992[Kaneda, N., Pezzuto, J. M., Kinghorn, D. & Fransworth, N. R. (1992). J. Nat. Prod. 55, 654-659.]); Sun et al. (1999[Sun, D., Starck, S. R., Locke, E. P. & Hecht, S. M. (1999). J. Nat. Prod. 62, 1110-1113.]); Ismail et al. (2003[Ismail, I. S., Ito, H., Mukainaka, T., Higashihara, H., Enjo, F., Tokuda, H., Nishino, H. & Yoshida, T. (2003). Biol. Pharm. Bull. 26, 1351-1353.]); Rasadah et al. (2004[Rasadah, M. A., Khozirah, S., Aznie, A. A. & Nik, M. M. (2004). Phytomedicine, 11, 261-263.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H46O4·0.5CHCl3

  • Mr = 530.35

  • Orthorhombic, P 21 21 2

  • a = 12.8950 (3) Å

  • b = 33.7309 (8) Å

  • c = 6.5307 (1) Å

  • V = 2840.59 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.88 mm−1

  • T = 100 K

  • 0.34 × 0.28 × 0.11 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.567, Tmax = 0.827

  • 26063 measured reflections

  • 4654 independent reflections

  • 4467 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.169

  • S = 1.09

  • 4654 reflections

  • 357 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1876 Friedel pairs

  • Flack parameter: 0.08 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.81 2.621 (6) 168
O3—H3⋯O2i 0.82 1.85 2.670 (4) 176
C22—H22B⋯O1 0.96 2.56 3.380 (5) 144
Symmetry code: (i) -x+1, -y+2, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

n-Hexane extract of Sandoricum koetjape was reported previously to have cytotoxic and apoptotic properties on HCT-116 colon cancer cell line (Aisha et al., 2009). The koetjapic acid can be isolated from the stem bark of S. koetjape using column chromatography and was studied for cytotoxic activity (Kaneda et al., 1992). This compound was found to possess DNA polymerase β inhibition (Sun et al., 1999), ichthyotoxic (Ismail et al., 2003), and anti-inflammatory properties (Rasadah et al., 2004). The structure of koetjapic acid was established previously by several research groups from spectral evidence (Kaneda et al., 1992; Rasadah et al., 2004; Sun et al., 1999). Herein we describe a new simple method to purify koetjapic acid from Sandoricum koetjape. This method utilizes two steps of crystallization process but without the use of column chromatography.

The asymmetric unit of title compound, consists of one koetjapic acid molecule and half a molecule of disordered chloroform solvent (Fig. 1). The koetjapic acid contains fused four-ring system, A/B/C/D (Scheme 1). The A/B, B/C and C/D junctions adopt E/trans/cis configuration, respectively. The conformation of the ring A is intermediate between envelope and half-chair [Q = 0.516 (4) Å, θ = 131.6 (3)°, φ = 45.7 (5)°]. The ring B adopts an envelope conformation [Q = 0.509 (3) Å, θ = 52.9 (3)°, φ = 177.6 (5)°] whereas ring C and D adopt chair conformations [Q = 0.561 (3) Å, θ = 155.6 (3)°, φ = 117.8 (8)°; Q = 0.491 (4) Å, θ = 168.1 (5)°, φ = 77 (2)°] (Cremer & Pople, 1975). A weak intramolecular C22—H22B···O1 hydrogen bond is observed in the molecular structure.

The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O1—H1···O4 and O3—H3···O2 hydrogen bonds (Table 1). The dimers are stacked along the c axis (Fig. 2).

The chloroform molecule is disordered over four sites in a void with twofold symmetry. In one set of symmetry-related sites, atom Cl2 lies on the twofold rotation axis and the three Cl sites [Cl1, Cl2, Cl1A; occupancy 0.60] are shared by two disorder components. In the other set of symmetry-related site, atoms Cl3 and Cl3A [occupancy 0.40] are shared by two disorder components with atoms Cl4 or Cl4A [occupancy 0.20] in each component. The chloroform solvent molecule lies in the cavity produced by the dimer.

Related literature top

For the biological properties of Sandoricum koetjape and koetjapic acid, see: Aisha et al. (2009); Kaneda et al. (1992); Sun et al. (1999); Ismail et al. (2003); Rasadah et al. (2004). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was isolated from the stem bark of Sandoricum koetjape, which was collected from the main campus of Universiti Sains Malaysia on middle of October 2009. 200 g of the dried powder was extracted with 1000 ml of n-hexane at 313 K for 24 hours with intermittent shaking. The extract was filtered and concentrated to dryness under reduced pressure at 313 K to give 10 g of solid material. 10 g of the extract was dissolved in 50 ml, 1:1, methanol-acetone and was kept at 253 K. After 24 hours, a white precipitate was formed. The solid was filtered and washed thrice with ice-chilled chloroform. The compound was crystallized from chloroform to give colourless prism-shaped crystals (400 mg). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93–0.98 Å, Uiso(H) = 1.2 or 1.5 Ueq(C) and O–H = 0.82 Å, Uiso(H) = 1.5 Ueq(O). A rotating group model was applied for the methyl groups. The chloroform molecule is disordered across a twofold rotation axis. The symmetry independent component is further disordered over two sites with occupancies of 0.30 and 0.20. All C—Cl distances were restrained to be equal and Uij components of Cl atoms were restrained to an approximate isotropic behaviour. The distance between atoms Cl3 and Cl4 at (1-x, 2-y, z) were restrained to 2.60 (1) Å. The highest residual electron density peak is located at 0.53 Å from Cl3 and the deepest hole is located at 0.68 Å from Cl2. 1876 Friedel pairs were used to determine the absolute configuration using the anomalous scattering of the CuKα radiation.

Structure description top

n-Hexane extract of Sandoricum koetjape was reported previously to have cytotoxic and apoptotic properties on HCT-116 colon cancer cell line (Aisha et al., 2009). The koetjapic acid can be isolated from the stem bark of S. koetjape using column chromatography and was studied for cytotoxic activity (Kaneda et al., 1992). This compound was found to possess DNA polymerase β inhibition (Sun et al., 1999), ichthyotoxic (Ismail et al., 2003), and anti-inflammatory properties (Rasadah et al., 2004). The structure of koetjapic acid was established previously by several research groups from spectral evidence (Kaneda et al., 1992; Rasadah et al., 2004; Sun et al., 1999). Herein we describe a new simple method to purify koetjapic acid from Sandoricum koetjape. This method utilizes two steps of crystallization process but without the use of column chromatography.

The asymmetric unit of title compound, consists of one koetjapic acid molecule and half a molecule of disordered chloroform solvent (Fig. 1). The koetjapic acid contains fused four-ring system, A/B/C/D (Scheme 1). The A/B, B/C and C/D junctions adopt E/trans/cis configuration, respectively. The conformation of the ring A is intermediate between envelope and half-chair [Q = 0.516 (4) Å, θ = 131.6 (3)°, φ = 45.7 (5)°]. The ring B adopts an envelope conformation [Q = 0.509 (3) Å, θ = 52.9 (3)°, φ = 177.6 (5)°] whereas ring C and D adopt chair conformations [Q = 0.561 (3) Å, θ = 155.6 (3)°, φ = 117.8 (8)°; Q = 0.491 (4) Å, θ = 168.1 (5)°, φ = 77 (2)°] (Cremer & Pople, 1975). A weak intramolecular C22—H22B···O1 hydrogen bond is observed in the molecular structure.

The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O1—H1···O4 and O3—H3···O2 hydrogen bonds (Table 1). The dimers are stacked along the c axis (Fig. 2).

The chloroform molecule is disordered over four sites in a void with twofold symmetry. In one set of symmetry-related sites, atom Cl2 lies on the twofold rotation axis and the three Cl sites [Cl1, Cl2, Cl1A; occupancy 0.60] are shared by two disorder components. In the other set of symmetry-related site, atoms Cl3 and Cl3A [occupancy 0.40] are shared by two disorder components with atoms Cl4 or Cl4A [occupancy 0.20] in each component. The chloroform solvent molecule lies in the cavity produced by the dimer.

For the biological properties of Sandoricum koetjape and koetjapic acid, see: Aisha et al. (2009); Kaneda et al. (1992); Sun et al. (1999); Ismail et al. (2003); Rasadah et al. (2004). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of koetjapic acid, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Only one disorder component of the chloroform solvent molecule is shown. Atom Cl1A is generated by the symmetry operation (1-x, 2-y, z).
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the c axis, showing dimers stacked along the c axis. Hydrogen bonds are shown as dashed lines. For clarity, Only two disorder components of the chloroform solvent molecule are shown.
(3R,4aR,4bS,7S,8S,10bS,12aS)- 7-(2-carboxyethyl)-3,4b,7,10b,12a-pentamethyl-8-(prop-1-en-2-yl)- 1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexadecahydrochrysene-3-carboxylic acid chloroform hemisolvate top
Crystal data top
C30H46O4·0.5CHCl3F(000) = 1148
Mr = 530.35Dx = 1.240 Mg m3
Orthorhombic, P21212Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2 2abCell parameters from 9931 reflections
a = 12.8950 (3) Åθ = 2.6–65.7°
b = 33.7309 (8) ŵ = 1.88 mm1
c = 6.5307 (1) ÅT = 100 K
V = 2840.59 (10) Å3Block, colourless
Z = 40.34 × 0.28 × 0.11 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4654 independent reflections
Radiation source: fine-focus sealed tube4467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 66.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.567, Tmax = 0.827k = 3839
26063 measured reflectionsl = 57
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0958P)2 + 1.9305P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.53 e Å3
4654 reflectionsΔρmin = 0.68 e Å3
357 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
40 restraintsExtinction coefficient: 0.0082 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1876 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (5)
Crystal data top
C30H46O4·0.5CHCl3V = 2840.59 (10) Å3
Mr = 530.35Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 12.8950 (3) ŵ = 1.88 mm1
b = 33.7309 (8) ÅT = 100 K
c = 6.5307 (1) Å0.34 × 0.28 × 0.11 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4654 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4467 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.827Rint = 0.031
26063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.169Δρmax = 0.53 e Å3
S = 1.09Δρmin = 0.68 e Å3
4654 reflectionsAbsolute structure: Flack (1983), 1876 Friedel pairs
357 parametersAbsolute structure parameter: 0.08 (5)
40 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2093 (2)0.96882 (8)0.3593 (5)0.0439 (8)
H10.24170.98680.41470.066*
O20.1261 (2)0.96828 (8)0.6601 (5)0.0436 (8)
O30.7713 (3)0.96911 (9)0.8069 (6)0.0514 (9)
H30.80000.98870.75900.077*
O40.6996 (5)0.96705 (14)0.4969 (7)0.106 (2)
C10.5175 (3)0.84482 (11)0.6074 (6)0.0304 (8)
C20.4878 (3)0.86704 (12)0.4167 (6)0.0329 (9)
H2A0.53140.85770.30560.039*
H2B0.50370.89490.43780.039*
C30.3751 (3)0.86394 (12)0.3479 (6)0.0328 (9)
H3A0.36780.84120.25780.039*
H3B0.35720.88750.27000.039*
C40.2988 (3)0.85964 (10)0.5262 (6)0.0262 (8)
C50.1868 (3)0.85387 (10)0.4384 (6)0.0264 (8)
H5A0.19460.83170.34270.032*
C60.1433 (3)0.88781 (10)0.3023 (6)0.0292 (8)
H6A0.20200.90060.23690.035*
H6B0.10270.87550.19440.035*
C70.0758 (3)0.92092 (11)0.3973 (7)0.0339 (9)
C80.0003 (3)0.90414 (12)0.5567 (7)0.0391 (10)
H8A0.02730.92590.63740.047*
H8B0.05740.89180.48590.047*
C90.0491 (3)0.87389 (12)0.7005 (7)0.0354 (9)
H9A0.00440.86360.79050.042*
H9B0.10000.88730.78510.042*
C100.1020 (3)0.83885 (11)0.5927 (6)0.0300 (9)
C110.1466 (3)0.81017 (12)0.7559 (6)0.0356 (9)
H11A0.10080.81070.87370.043*
H11B0.14440.78350.70010.043*
C120.2567 (3)0.81809 (12)0.8308 (6)0.0325 (9)
H12A0.27880.79660.91900.039*
H12B0.25780.84240.91030.039*
C130.3322 (3)0.82188 (10)0.6488 (5)0.0252 (8)
C140.4463 (3)0.82387 (10)0.7164 (5)0.0254 (8)
C150.4753 (3)0.79887 (11)0.8945 (6)0.0303 (8)
H15A0.44130.77340.88030.036*
H15B0.44840.81131.01760.036*
C160.5911 (3)0.79172 (12)0.9237 (6)0.0346 (9)
H16A0.61420.77100.83120.042*
H16B0.60430.78301.06280.042*
C170.6514 (3)0.82981 (11)0.8812 (6)0.0304 (8)
H17A0.61970.85050.96580.036*
C180.6348 (3)0.84244 (11)0.6529 (6)0.0270 (8)
C190.6891 (3)0.88239 (12)0.6111 (6)0.0335 (9)
H19A0.76280.87900.63520.040*
H19B0.68030.88880.46730.040*
C200.6517 (4)0.91792 (12)0.7379 (7)0.0440 (11)
H20A0.57790.92180.71780.053*
H20B0.66400.91300.88230.053*
C210.7097 (5)0.95397 (14)0.6711 (8)0.0539 (13)
C220.3104 (3)0.89708 (11)0.6604 (6)0.0325 (9)
H22A0.25090.89960.74780.049*
H22B0.31570.92000.57420.049*
H22C0.37180.89480.74270.049*
C230.1407 (3)0.95455 (11)0.4877 (7)0.0338 (9)
C240.0136 (4)0.94111 (12)0.2222 (8)0.0453 (11)
H24A0.06080.95090.12050.068*
H24B0.02600.96270.27700.068*
H24C0.03240.92210.16100.068*
C250.0193 (3)0.81565 (11)0.4729 (7)0.0378 (9)
H25A0.03170.80550.56630.057*
H25B0.05150.79400.40170.057*
H25C0.01360.83290.37580.057*
C260.3264 (3)0.78339 (11)0.5175 (6)0.0326 (9)
H26A0.37860.78420.41280.049*
H26B0.25920.78150.45510.049*
H26C0.33780.76070.60360.049*
C270.7649 (3)0.82688 (13)0.9473 (6)0.0357 (9)
C280.8203 (3)0.79269 (13)0.9245 (7)0.0440 (11)
H28A0.88800.79120.97300.066*
H28B0.79040.77090.86040.066*
C290.8118 (3)0.86138 (13)1.0484 (6)0.0407 (10)
H29A0.87640.85381.10990.061*
H29B0.76570.87111.15230.061*
H29C0.82400.88180.94910.061*
C300.6836 (3)0.81256 (12)0.5030 (6)0.0361 (9)
H30A0.66900.82050.36490.054*
H30B0.65490.78670.52710.054*
H30C0.75730.81180.52360.054*
C310.5335 (9)0.9947 (3)0.0839 (17)0.087 (5)0.50
H31A0.60410.98560.08900.104*0.299 (3)
H31B0.58710.97800.13840.104*0.201 (3)
Cl10.4660 (3)0.95921 (9)0.1615 (9)0.1061 (18)0.597 (7)
Cl20.50001.00000.2013 (6)0.127 (3)0.597 (7)
Cl30.4269 (6)0.9672 (3)0.0147 (14)0.153 (4)0.403 (7)
Cl40.4584 (9)1.0233 (3)0.2864 (15)0.107 (4)0.201 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (17)0.0302 (14)0.0561 (18)0.0102 (13)0.0042 (15)0.0052 (14)
O20.0436 (17)0.0284 (14)0.059 (2)0.0053 (12)0.0067 (15)0.0103 (14)
O30.0545 (19)0.0332 (15)0.067 (2)0.0172 (14)0.0117 (17)0.0117 (15)
O40.166 (5)0.075 (3)0.076 (3)0.080 (3)0.044 (3)0.034 (2)
C10.0276 (19)0.033 (2)0.0302 (19)0.0056 (16)0.0014 (16)0.0033 (15)
C20.030 (2)0.044 (2)0.0252 (19)0.0015 (17)0.0039 (16)0.0049 (16)
C30.033 (2)0.036 (2)0.030 (2)0.0023 (16)0.0003 (16)0.0074 (16)
C40.0269 (18)0.0229 (17)0.0287 (18)0.0009 (14)0.0005 (15)0.0021 (14)
C50.0267 (18)0.0226 (17)0.0298 (19)0.0008 (14)0.0016 (15)0.0012 (14)
C60.0297 (19)0.0253 (18)0.033 (2)0.0020 (15)0.0062 (16)0.0020 (15)
C70.0256 (19)0.0235 (18)0.053 (2)0.0005 (15)0.0041 (19)0.0037 (17)
C80.030 (2)0.0284 (19)0.059 (3)0.0028 (17)0.0018 (19)0.0086 (18)
C90.027 (2)0.036 (2)0.043 (2)0.0044 (16)0.0065 (17)0.0050 (18)
C100.0264 (18)0.0276 (19)0.036 (2)0.0038 (15)0.0027 (16)0.0006 (16)
C110.030 (2)0.036 (2)0.041 (2)0.0039 (17)0.0063 (18)0.0087 (17)
C120.031 (2)0.036 (2)0.031 (2)0.0012 (16)0.0034 (16)0.0055 (17)
C130.0256 (18)0.0250 (17)0.0250 (17)0.0030 (14)0.0028 (14)0.0002 (14)
C140.031 (2)0.0205 (17)0.0246 (17)0.0027 (14)0.0020 (14)0.0041 (14)
C150.034 (2)0.0255 (18)0.031 (2)0.0047 (16)0.0044 (17)0.0018 (15)
C160.038 (2)0.033 (2)0.033 (2)0.0072 (18)0.0078 (17)0.0074 (16)
C170.0301 (19)0.0321 (19)0.0288 (18)0.0076 (16)0.0003 (16)0.0018 (15)
C180.0269 (19)0.0263 (18)0.0277 (18)0.0041 (15)0.0005 (15)0.0024 (14)
C190.030 (2)0.036 (2)0.035 (2)0.0099 (16)0.0028 (17)0.0069 (16)
C200.048 (3)0.032 (2)0.052 (3)0.0112 (19)0.004 (2)0.0015 (19)
C210.075 (4)0.033 (2)0.054 (3)0.014 (2)0.013 (3)0.005 (2)
C220.032 (2)0.0271 (19)0.038 (2)0.0031 (16)0.0067 (17)0.0032 (16)
C230.030 (2)0.0221 (18)0.050 (2)0.0003 (15)0.0005 (19)0.0031 (18)
C240.037 (2)0.031 (2)0.067 (3)0.0004 (18)0.012 (2)0.003 (2)
C250.031 (2)0.028 (2)0.054 (2)0.0047 (17)0.0031 (19)0.0002 (18)
C260.032 (2)0.0250 (18)0.041 (2)0.0009 (15)0.0048 (17)0.0022 (16)
C270.037 (2)0.043 (2)0.0267 (19)0.0099 (18)0.0052 (16)0.0083 (17)
C280.036 (2)0.042 (2)0.054 (3)0.0047 (19)0.013 (2)0.009 (2)
C290.037 (2)0.050 (3)0.035 (2)0.0166 (19)0.0029 (18)0.0055 (18)
C300.036 (2)0.040 (2)0.032 (2)0.0063 (17)0.0022 (17)0.0023 (17)
C310.066 (8)0.051 (7)0.143 (13)0.020 (6)0.016 (8)0.002 (8)
Cl10.103 (3)0.0606 (17)0.154 (4)0.0130 (16)0.036 (3)0.032 (2)
Cl20.245 (7)0.078 (3)0.059 (2)0.095 (4)0.0000.000
Cl30.154 (6)0.141 (6)0.162 (7)0.086 (5)0.055 (5)0.070 (6)
Cl40.151 (8)0.077 (5)0.094 (6)0.008 (6)0.001 (6)0.038 (5)
Geometric parameters (Å, º) top
O1—C231.310 (5)C17—C271.529 (6)
O1—H10.82C17—C181.565 (5)
O2—C231.232 (5)C17—H17A0.98
O3—C211.296 (6)C18—C301.539 (5)
O3—H30.82C18—C191.543 (5)
O4—C211.227 (6)C19—C201.534 (6)
C1—C141.360 (5)C19—H19A0.97
C1—C21.504 (5)C19—H19B0.97
C1—C181.544 (5)C20—C211.492 (6)
C2—C31.525 (6)C20—H20A0.97
C2—H2A0.97C20—H20B0.97
C2—H2B0.97C22—H22A0.96
C3—C41.531 (5)C22—H22B0.96
C3—H3A0.97C22—H22C0.96
C3—H3B0.97C24—H24A0.96
C4—C221.545 (5)C24—H24B0.96
C4—C131.565 (5)C24—H24C0.96
C4—C51.565 (5)C25—H25A0.96
C5—C61.554 (5)C25—H25B0.96
C5—C101.571 (5)C25—H25C0.96
C5—H5A0.98C26—H26A0.96
C6—C71.546 (5)C26—H26B0.96
C6—H6A0.97C26—H26C0.96
C6—H6B0.97C27—C281.365 (6)
C7—C231.528 (5)C27—C291.468 (6)
C7—C81.534 (6)C28—H28A0.93
C7—C241.554 (6)C28—H28B0.93
C8—C91.523 (6)C29—H29A0.96
C8—H8A0.97C29—H29B0.96
C8—H8B0.97C29—H29C0.96
C9—C101.536 (5)C30—H30A0.96
C9—H9A0.97C30—H30B0.96
C9—H9B0.97C30—H30C0.96
C10—C251.538 (6)C31—C31i0.94 (2)
C10—C111.550 (5)C31—Cl4i1.460 (13)
C11—C121.525 (6)C31—Cl3i1.526 (10)
C11—H11A0.97C31—Cl11.564 (9)
C11—H11B0.97C31—Cl1i1.635 (9)
C12—C131.543 (5)C31—Cl31.779 (11)
C12—H12A0.97C31—Cl41.903 (12)
C12—H12B0.97C31—Cl21.920 (12)
C13—C141.538 (5)C31—H31A0.96
C13—C261.558 (5)C31—H31B0.96
C14—C151.484 (5)Cl1—C31i1.635 (9)
C15—C161.525 (6)Cl1—H31B1.6921
C15—H15A0.97Cl2—C31i1.920 (12)
C15—H15B0.97Cl3—C31i1.526 (10)
C16—C171.527 (5)Cl4—C31i1.460 (13)
C16—H16A0.97Cl4—Cl4i1.91 (2)
C16—H16B0.97
C23—O1—H1109.5H16A—C16—H16B108.2
C21—O3—H3109.5C16—C17—C27112.4 (3)
C14—C1—C2121.4 (3)C16—C17—C18109.4 (3)
C14—C1—C18122.3 (3)C27—C17—C18114.7 (3)
C2—C1—C18115.8 (3)C16—C17—H17A106.6
C1—C2—C3116.9 (3)C27—C17—H17A106.6
C1—C2—H2A108.1C18—C17—H17A106.6
C3—C2—H2A108.1C30—C18—C19105.9 (3)
C1—C2—H2B108.1C30—C18—C1108.2 (3)
C3—C2—H2B108.1C19—C18—C1111.4 (3)
H2A—C2—H2B107.3C30—C18—C17111.8 (3)
C2—C3—C4113.3 (3)C19—C18—C17110.1 (3)
C2—C3—H3A108.9C1—C18—C17109.3 (3)
C4—C3—H3A108.9C20—C19—C18116.4 (3)
C2—C3—H3B108.9C20—C19—H19A108.2
C4—C3—H3B108.9C18—C19—H19A108.2
H3A—C3—H3B107.7C20—C19—H19B108.2
C3—C4—C22107.0 (3)C18—C19—H19B108.2
C3—C4—C13106.8 (3)H19A—C19—H19B107.3
C22—C4—C13110.4 (3)C21—C20—C19108.8 (4)
C3—C4—C5109.0 (3)C21—C20—H20A109.9
C22—C4—C5113.5 (3)C19—C20—H20A109.9
C13—C4—C5109.9 (3)C21—C20—H20B109.9
C6—C5—C4116.8 (3)C19—C20—H20B109.9
C6—C5—C10110.7 (3)H20A—C20—H20B108.3
C4—C5—C10116.6 (3)O4—C21—O3123.9 (5)
C6—C5—H5A103.5O4—C21—C20120.7 (5)
C4—C5—H5A103.5O3—C21—C20115.4 (4)
C10—C5—H5A103.5C4—C22—H22A109.5
C7—C6—C5120.4 (3)C4—C22—H22B109.5
C7—C6—H6A107.2H22A—C22—H22B109.5
C5—C6—H6A107.2C4—C22—H22C109.5
C7—C6—H6B107.2H22A—C22—H22C109.5
C5—C6—H6B107.2H22B—C22—H22C109.5
H6A—C6—H6B106.9O2—C23—O1123.4 (4)
C23—C7—C8111.1 (4)O2—C23—C7123.2 (4)
C23—C7—C6112.5 (3)O1—C23—C7113.3 (4)
C8—C7—C6111.3 (3)C7—C24—H24A109.5
C23—C7—C24104.0 (3)C7—C24—H24B109.5
C8—C7—C24109.5 (3)H24A—C24—H24B109.5
C6—C7—C24108.2 (4)C7—C24—H24C109.5
C9—C8—C7113.8 (3)H24A—C24—H24C109.5
C9—C8—H8A108.8H24B—C24—H24C109.5
C7—C8—H8A108.8C10—C25—H25A109.5
C9—C8—H8B108.8C10—C25—H25B109.5
C7—C8—H8B108.8H25A—C25—H25B109.5
H8A—C8—H8B107.7C10—C25—H25C109.5
C8—C9—C10114.6 (4)H25A—C25—H25C109.5
C8—C9—H9A108.6H25B—C25—H25C109.5
C10—C9—H9A108.6C13—C26—H26A109.5
C8—C9—H9B108.6C13—C26—H26B109.5
C10—C9—H9B108.6H26A—C26—H26B109.5
H9A—C9—H9B107.6C13—C26—H26C109.5
C9—C10—C25108.5 (3)H26A—C26—H26C109.5
C9—C10—C11109.3 (3)H26B—C26—H26C109.5
C25—C10—C11106.8 (3)C28—C27—C29120.2 (4)
C9—C10—C5110.8 (3)C28—C27—C17121.7 (4)
C25—C10—C5108.7 (3)C29—C27—C17118.0 (4)
C11—C10—C5112.6 (3)C27—C28—H28A120.0
C12—C11—C10117.1 (3)C27—C28—H28B120.0
C12—C11—H11A108.0H28A—C28—H28B120.0
C10—C11—H11A108.0C27—C29—H29A109.5
C12—C11—H11B108.0C27—C29—H29B109.5
C10—C11—H11B108.0H29A—C29—H29B109.5
H11A—C11—H11B107.3C27—C29—H29C109.5
C11—C12—C13110.8 (3)H29A—C29—H29C109.5
C11—C12—H12A109.5H29B—C29—H29C109.5
C13—C12—H12A109.5C18—C30—H30A109.5
C11—C12—H12B109.5C18—C30—H30B109.5
C13—C12—H12B109.5H30A—C30—H30B109.5
H12A—C12—H12B108.1C18—C30—H30C109.5
C14—C13—C12112.8 (3)H30A—C30—H30C109.5
C14—C13—C26103.9 (3)H30B—C30—H30C109.5
C12—C13—C26109.0 (3)Cl4i—C31—Cl3i135.2 (9)
C14—C13—C4112.0 (3)Cl1—C31—Cl1i129.0 (8)
C12—C13—C4106.7 (3)Cl4i—C31—Cl399.6 (7)
C26—C13—C4112.5 (3)Cl3i—C31—Cl3123.0 (9)
C1—C14—C15122.4 (3)Cl4i—C31—Cl467.6 (10)
C1—C14—C13121.2 (3)Cl3i—C31—Cl492.0 (6)
C15—C14—C13116.2 (3)Cl3—C31—Cl497.1 (6)
C14—C15—C16115.7 (3)Cl1—C31—Cl2105.1 (6)
C14—C15—H15A108.3Cl1i—C31—Cl2102.3 (6)
C16—C15—H15A108.3Cl1—C31—H31A105.8
C14—C15—H15B108.3Cl1i—C31—H31A106.8
C16—C15—H15B108.3Cl2—C31—H31A106.1
H15A—C15—H15B107.4Cl4i—C31—H31B50.8
C15—C16—C17110.0 (3)Cl3i—C31—H31B114.2
C15—C16—H16A109.7Cl3—C31—H31B112.6
C17—C16—H16A109.7Cl4—C31—H31B114.0
C15—C16—H16B109.7Cl2—C31—H31B125.2
C17—C16—H16B109.7
C14—C1—C2—C31.8 (6)C15—C16—C17—C1862.5 (4)
C18—C1—C2—C3169.8 (3)C14—C1—C18—C3097.3 (4)
C1—C2—C3—C432.3 (5)C2—C1—C18—C3074.3 (4)
C2—C3—C4—C2260.6 (4)C14—C1—C18—C19146.7 (4)
C2—C3—C4—C1357.6 (4)C2—C1—C18—C1941.7 (5)
C2—C3—C4—C5176.3 (3)C14—C1—C18—C1724.7 (5)
C3—C4—C5—C660.2 (4)C2—C1—C18—C17163.7 (3)
C22—C4—C5—C658.9 (4)C16—C17—C18—C3066.4 (4)
C13—C4—C5—C6176.9 (3)C27—C17—C18—C3061.0 (4)
C3—C4—C5—C10165.8 (3)C16—C17—C18—C19176.2 (3)
C22—C4—C5—C1075.1 (4)C27—C17—C18—C1956.5 (4)
C13—C4—C5—C1049.1 (4)C16—C17—C18—C153.4 (4)
C4—C5—C6—C794.0 (4)C27—C17—C18—C1179.2 (3)
C10—C5—C6—C742.5 (4)C30—C18—C19—C20178.2 (4)
C5—C6—C7—C2385.3 (4)C1—C18—C19—C2060.8 (5)
C5—C6—C7—C840.2 (5)C17—C18—C19—C2060.7 (5)
C5—C6—C7—C24160.5 (3)C18—C19—C20—C21177.8 (4)
C23—C7—C8—C982.4 (4)C19—C20—C21—O464.4 (7)
C6—C7—C8—C943.8 (5)C19—C20—C21—O3113.9 (5)
C24—C7—C8—C9163.3 (3)C8—C7—C23—O26.2 (5)
C7—C8—C9—C1055.0 (5)C6—C7—C23—O2131.8 (4)
C8—C9—C10—C2563.0 (4)C24—C7—C23—O2111.5 (5)
C8—C9—C10—C11179.1 (3)C8—C7—C23—O1177.5 (3)
C8—C9—C10—C556.3 (4)C6—C7—C23—O152.0 (5)
C6—C5—C10—C947.5 (4)C24—C7—C23—O164.8 (4)
C4—C5—C10—C989.1 (4)C16—C17—C27—C2837.4 (5)
C6—C5—C10—C2571.6 (4)C18—C17—C27—C2888.4 (5)
C4—C5—C10—C25151.8 (3)C16—C17—C27—C29139.0 (4)
C6—C5—C10—C11170.3 (3)C18—C17—C27—C2995.2 (4)
C4—C5—C10—C1133.6 (4)Cl4i—C31—Cl1—C31i116.2 (8)
C9—C10—C11—C1288.7 (4)Cl3i—C31—Cl1—C31i23 (4)
C25—C10—C11—C12154.1 (4)Cl1i—C31—Cl1—C31i48.8 (10)
C5—C10—C11—C1234.9 (5)Cl3—C31—Cl1—C31i58.6 (5)
C10—C11—C12—C1352.2 (5)Cl4—C31—Cl1—C31i48.8 (6)
C11—C12—C13—C14171.7 (3)Cl2—C31—Cl1—C31i71.3 (5)
C11—C12—C13—C2656.9 (4)Cl4i—C31—Cl2—C31i90 (3)
C11—C12—C13—C464.9 (4)Cl3i—C31—Cl2—C31i95.7 (11)
C3—C4—C13—C1455.0 (4)Cl1—C31—Cl2—C31i72.3 (11)
C22—C4—C13—C1460.9 (4)Cl1i—C31—Cl2—C31i64.2 (9)
C5—C4—C13—C14173.1 (3)Cl3—C31—Cl2—C31i62.1 (10)
C3—C4—C13—C12178.9 (3)Cl4—C31—Cl2—C31i18.6 (7)
C22—C4—C13—C1263.0 (4)Cl4i—C31—Cl3—C31i99.5 (8)
C5—C4—C13—C1263.0 (4)Cl3i—C31—Cl3—C31i65.9 (11)
C3—C4—C13—C2661.7 (4)Cl1—C31—Cl3—C31i103.9 (6)
C22—C4—C13—C26177.6 (3)Cl1i—C31—Cl3—C31i6.6 (11)
C5—C4—C13—C2656.4 (4)Cl4—C31—Cl3—C31i31.2 (7)
C2—C1—C14—C15174.5 (3)Cl2—C31—Cl3—C31i90.1 (6)
C18—C1—C14—C153.5 (6)Cl4i—C31—Cl4—C31i134.0 (15)
C2—C1—C14—C130.2 (6)Cl3i—C31—Cl4—C31i87.1 (11)
C18—C1—C14—C13170.9 (3)Cl1—C31—Cl4—C31i79.0 (12)
C12—C13—C14—C1148.5 (4)Cl1i—C31—Cl4—C31i101.0 (12)
C26—C13—C14—C193.6 (4)Cl3—C31—Cl4—C31i36.5 (11)
C4—C13—C14—C128.1 (5)Cl2—C31—Cl4—C31i24.5 (8)
C12—C13—C14—C1536.8 (4)C31i—C31—Cl4—Cl4i134.0 (15)
C26—C13—C14—C1581.0 (4)Cl3i—C31—Cl4—Cl4i138.9 (10)
C4—C13—C14—C15157.2 (3)Cl1—C31—Cl4—Cl4i55.0 (7)
C1—C14—C15—C1611.2 (5)Cl1i—C31—Cl4—Cl4i125.0 (10)
C13—C14—C15—C16163.4 (3)Cl3—C31—Cl4—Cl4i97.5 (8)
C14—C15—C16—C1740.8 (5)Cl2—C31—Cl4—Cl4i158.5 (9)
C15—C16—C17—C27168.9 (3)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.812.621 (6)168
O3—H3···O2i0.821.852.670 (4)176
C22—H22B···O10.962.563.380 (5)144
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC30H46O4·0.5CHCl3
Mr530.35
Crystal system, space groupOrthorhombic, P21212
Temperature (K)100
a, b, c (Å)12.8950 (3), 33.7309 (8), 6.5307 (1)
V3)2840.59 (10)
Z4
Radiation typeCu Kα
µ (mm1)1.88
Crystal size (mm)0.34 × 0.28 × 0.11
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.567, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
26063, 4654, 4467
Rint0.031
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.169, 1.09
No. of reflections4654
No. of parameters357
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.68
Absolute structureFlack (1983), 1876 Friedel pairs
Absolute structure parameter0.08 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.812.621 (6)168
O3—H3···O2i0.821.852.670 (4)176
C22—H22B···O10.962.563.380 (5)144
Symmetry code: (i) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

ZDN, AFAA and AMSAM thank Universiti Sains Malaysia (USM) for FRGS grant No. 203/PFARMASI/671154, the research University (RU) grant No. 1001/PFARMASI/81144 and the Malaysian Ministry of Science, Technology and Innovation (MOSTI) grant No. 305/PFARMASI/613219: E Science fund. ZDN, AFAA and CSY would like to acknowledge USM for the USM Fellowship. HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012).

References

First citationAisha, A. F. A., Alrokayan, S. A., Abu-Salah, K. M., Darwis, Y. & Abdul Majid, A. M. S. (2009). Int. J. Cancer Res. 5, 123–129.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIsmail, I. S., Ito, H., Mukainaka, T., Higashihara, H., Enjo, F., Tokuda, H., Nishino, H. & Yoshida, T. (2003). Biol. Pharm. Bull. 26, 1351–1353.  CrossRef PubMed CAS Google Scholar
First citationKaneda, N., Pezzuto, J. M., Kinghorn, D. & Fransworth, N. R. (1992). J. Nat. Prod. 55, 654–659.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRasadah, M. A., Khozirah, S., Aznie, A. A. & Nik, M. M. (2004). Phytomedicine, 11, 261–263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Starck, S. R., Locke, E. P. & Hecht, S. M. (1999). J. Nat. Prod. 62, 1110–1113.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds