organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3,4-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 April 2010; accepted 26 April 2010; online 8 May 2010)

In the title compound, C14H14ClNO2S, the angle between the sulfonyl and aniline benzene rings is 65.5 (1)°. The crystal structure features inversion dimers linked by pairs of N—H⋯O hydrogen bonds. The dimethyl­phenyl ring is disordered over two different orientations approximately related by a 180° rotation about the C—N bond, with occupancies of 0.643 (6) and 0.357 (6).

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Private communication (refcode CCDC 773498). CCDC, Union Road, Cambridge, England.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Monoclinic, P 21 /c

  • a = 13.5000 (9) Å

  • b = 12.4039 (8) Å

  • c = 8.7436 (7) Å

  • β = 104.492 (7)°

  • V = 1417.55 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.44 × 0.34 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.839, Tmax = 0.915

  • 5943 measured reflections

  • 2890 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.07

  • 2890 reflections

  • 194 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.10 (1) 2.949 (2) 174 (2)
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), in the present work, the structure of 4-chloro-N-(3,4-dimethylphenyl)benzenesulfonamide, (I), has been determined (Fig. 1). The N1—C7 bond in the C—SO2—NH—C segment is gauche [C7—N1—S1—O2 = 64.1 (2)°] with respect to the S1O1 bond and anti with respect to the S1O2 bond [C7—N1—S1—O1 = -167.36 (18)°]. The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of -51.6 (2)°, compared to the value of -61.8 (2)° in 4-methyl-N-(3,4-dimethylphenyl)- benzenesulfonamide (II) (Gowda et al., 2009) and 57.8 (2)° in N-(3,4-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2010)

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 65.5 (1)°, compared to the values of 47.8 (1)° in (II) and 65.4 (2)° (disordered sulfonyl ring A) and 57.8 (2)° (disordered sulfonyl ring B) in (III). The remaining bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The crystal packing of molecules in (I) through pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the preparation of the title compound, see: Shetty & Gowda (2005). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

A solution of p-chlorobenzene (10 g) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 4-chloro-N-(3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and refined with a distance restraint of N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The dimethylphenyl ring is disordered such that atom C13 moves between atoms C9 and C11. Atoms C13 and C14 were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.643 (6) and 0.357 (6)]. The corresponding bond distances in the disordered groups were restrained to be equal. The Uij parameters of these atoms were restrained to an approximate isotropic behavoir. Attempts to introduce disorder of the atoms C9, C10 and C11 were unsuccessful.

Structure description top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), in the present work, the structure of 4-chloro-N-(3,4-dimethylphenyl)benzenesulfonamide, (I), has been determined (Fig. 1). The N1—C7 bond in the C—SO2—NH—C segment is gauche [C7—N1—S1—O2 = 64.1 (2)°] with respect to the S1O1 bond and anti with respect to the S1O2 bond [C7—N1—S1—O1 = -167.36 (18)°]. The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of -51.6 (2)°, compared to the value of -61.8 (2)° in 4-methyl-N-(3,4-dimethylphenyl)- benzenesulfonamide (II) (Gowda et al., 2009) and 57.8 (2)° in N-(3,4-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2010)

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 65.5 (1)°, compared to the values of 47.8 (1)° in (II) and 65.4 (2)° (disordered sulfonyl ring A) and 57.8 (2)° (disordered sulfonyl ring B) in (III). The remaining bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The crystal packing of molecules in (I) through pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

For the preparation of the title compound, see: Shetty & Gowda (2005). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(3,4-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 616
Mr = 295.77Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2451 reflections
a = 13.5000 (9) Åθ = 2.4–27.3°
b = 12.4039 (8) ŵ = 0.41 mm1
c = 8.7436 (7) ÅT = 100 K
β = 104.492 (7)°Prism, colourless
V = 1417.55 (17) Å30.44 × 0.34 × 0.22 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2890 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using θ and φ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1616
Tmin = 0.839, Tmax = 0.915k = 1513
5943 measured reflectionsl = 610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.6002P]
where P = (Fo2 + 2Fc2)/3
2890 reflections(Δ/σ)max = 0.045
194 parametersΔρmax = 0.31 e Å3
28 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H14ClNO2SV = 1417.55 (17) Å3
Mr = 295.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5000 (9) ŵ = 0.41 mm1
b = 12.4039 (8) ÅT = 100 K
c = 8.7436 (7) Å0.44 × 0.34 × 0.22 mm
β = 104.492 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2890 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2309 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.915Rint = 0.015
5943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03928 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
2890 reflectionsΔρmin = 0.24 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.90057 (14)0.96543 (15)0.2942 (2)0.0261 (4)
C20.91759 (15)1.07570 (16)0.2922 (2)0.0321 (4)
H20.95921.10470.22910.039*
C30.87384 (16)1.14279 (16)0.3821 (2)0.0327 (5)
H30.88561.21830.38320.039*
C40.81360 (15)1.09927 (17)0.4694 (2)0.0318 (4)
C50.79804 (19)0.98936 (18)0.4760 (3)0.0414 (5)
H50.75750.96090.54090.050*
C60.84233 (17)0.92178 (17)0.3870 (2)0.0361 (5)
H60.83270.84600.38970.043*
C70.75973 (16)0.8915 (2)0.0415 (3)0.0441 (6)
C80.69977 (19)0.9665 (3)0.1406 (3)0.0586 (7)
H80.73171.02330.18330.070*
C90.5922 (2)0.9596 (3)0.1791 (4)0.0778 (10)
H90.55241.01040.24990.093*0.357 (6)
C100.5445 (2)0.8797 (4)0.1148 (5)0.0887 (13)
C110.6051 (3)0.8072 (3)0.0163 (5)0.0808 (12)
H110.57280.75180.02870.097*0.643 (6)
C120.7124 (2)0.8098 (2)0.0221 (3)0.0588 (8)
H120.75160.75700.08990.071*
C13A0.5254 (3)1.0313 (5)0.2823 (6)0.0755 (17)0.643 (6)
H13A0.45431.01000.29060.091*0.643 (6)
H13B0.53921.02860.38700.091*0.643 (6)
H13C0.53641.10480.24050.091*0.643 (6)
C14A0.4264 (5)0.8913 (8)0.1730 (11)0.098 (3)0.643 (6)
H14A0.40560.88310.28810.117*0.643 (6)
H14B0.40570.96260.14390.117*0.643 (6)
H14C0.39330.83540.12380.117*0.643 (6)
N10.86904 (13)0.89945 (15)0.0097 (2)0.0360 (4)
H1N0.8902 (18)0.9510 (14)0.057 (3)0.043*
O11.04407 (10)0.92002 (12)0.15306 (17)0.0381 (4)
O20.93722 (13)0.77276 (12)0.2139 (2)0.0474 (4)
Cl10.75301 (5)1.18581 (5)0.57252 (7)0.04891 (19)
S10.94625 (4)0.88149 (4)0.16631 (6)0.03178 (16)
C13B0.5471 (7)0.7346 (8)0.0226 (12)0.081 (3)0.357 (6)
H13D0.58950.68220.09380.097*0.357 (6)
H13E0.50830.69760.07270.097*0.357 (6)
H13F0.49960.76900.07590.097*0.357 (6)
C14B0.4335 (8)0.8452 (11)0.1288 (16)0.068 (3)0.357 (6)
H14D0.39820.83630.24050.082*0.357 (6)
H14E0.39860.90050.08160.082*0.357 (6)
H14F0.43280.77670.07330.082*0.357 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0273 (9)0.0242 (9)0.0267 (9)0.0021 (7)0.0063 (7)0.0004 (8)
C20.0347 (10)0.0279 (10)0.0360 (11)0.0018 (8)0.0132 (9)0.0033 (8)
C30.0381 (11)0.0227 (10)0.0354 (11)0.0013 (8)0.0057 (9)0.0001 (8)
C40.0360 (11)0.0337 (11)0.0246 (9)0.0057 (8)0.0058 (8)0.0054 (8)
C50.0579 (14)0.0374 (12)0.0368 (12)0.0042 (10)0.0265 (11)0.0021 (10)
C60.0519 (13)0.0252 (10)0.0359 (11)0.0019 (9)0.0201 (10)0.0013 (9)
C70.0324 (11)0.0642 (16)0.0390 (12)0.0098 (10)0.0153 (9)0.0290 (12)
C80.0390 (13)0.096 (2)0.0401 (13)0.0017 (13)0.0079 (11)0.0184 (14)
C90.0402 (15)0.130 (3)0.0553 (17)0.0094 (18)0.0033 (13)0.028 (2)
C100.0359 (15)0.141 (4)0.089 (2)0.026 (2)0.0145 (17)0.056 (3)
C110.0532 (18)0.102 (3)0.099 (3)0.0467 (19)0.0412 (18)0.059 (2)
C120.0484 (14)0.0672 (18)0.0686 (18)0.0250 (13)0.0292 (13)0.0355 (15)
C13A0.043 (2)0.114 (4)0.065 (3)0.005 (2)0.005 (2)0.016 (3)
C14A0.043 (3)0.123 (6)0.114 (6)0.017 (4)0.003 (3)0.029 (5)
N10.0312 (9)0.0456 (11)0.0351 (10)0.0043 (8)0.0158 (7)0.0083 (8)
O10.0279 (7)0.0451 (9)0.0442 (9)0.0049 (6)0.0146 (6)0.0041 (7)
O20.0592 (10)0.0260 (8)0.0676 (11)0.0074 (7)0.0355 (9)0.0023 (8)
Cl10.0579 (4)0.0490 (4)0.0418 (3)0.0103 (3)0.0163 (3)0.0153 (3)
S10.0315 (3)0.0293 (3)0.0384 (3)0.0036 (2)0.0160 (2)0.0004 (2)
C13B0.065 (5)0.084 (6)0.097 (6)0.031 (4)0.026 (4)0.016 (5)
C14B0.036 (5)0.094 (7)0.075 (6)0.032 (5)0.016 (4)0.012 (5)
Geometric parameters (Å, º) top
C1—C61.374 (3)C10—C14A1.554 (7)
C1—C21.388 (3)C11—C13B1.293 (8)
C1—S11.7490 (19)C11—C121.403 (4)
C2—C31.376 (3)C11—H110.95
C2—H20.95C12—H120.95
C3—C41.358 (3)C13A—H13A0.98
C3—H30.95C13A—H13B0.98
C4—C51.383 (3)C13A—H13C0.98
C4—Cl11.733 (2)C14A—H14A0.98
C5—C61.378 (3)C14A—H14B0.98
C5—H50.95C14A—H14C0.98
C6—H60.95N1—S11.6439 (19)
C7—C81.385 (4)N1—H1N0.849 (10)
C7—C121.387 (4)O1—S11.4360 (14)
C7—N11.435 (3)O2—S11.4255 (16)
C8—C91.409 (4)C13B—H13D0.98
C8—H80.95C13B—H13E0.98
C9—C101.377 (6)C13B—H13F0.98
C9—C13A1.418 (5)C14B—H14D0.98
C9—H90.95C14B—H14E0.98
C10—C111.367 (6)C14B—H14F0.98
C10—C14B1.533 (10)
C6—C1—C2121.11 (18)C12—C11—H11118.1
C6—C1—S1119.21 (15)C7—C12—C11118.2 (3)
C2—C1—S1119.53 (15)C7—C12—H12120.9
C3—C2—C1119.54 (19)C11—C12—H12120.9
C3—C2—H2120.2C9—C13A—H13A109.5
C1—C2—H2120.2C9—C13A—H13B109.5
C4—C3—C2118.92 (19)H13A—C13A—H13B109.5
C4—C3—H3120.5C9—C13A—H13C109.5
C2—C3—H3120.5H13A—C13A—H13C109.5
C3—C4—C5122.28 (19)H13B—C13A—H13C109.5
C3—C4—Cl1118.22 (16)C10—C14A—H14A109.5
C5—C4—Cl1119.49 (17)C10—C14A—H14B109.5
C6—C5—C4118.9 (2)H14A—C14A—H14B109.5
C6—C5—H5120.5C10—C14A—H14C109.5
C4—C5—H5120.5H14A—C14A—H14C109.5
C1—C6—C5119.14 (19)H14B—C14A—H14C109.5
C1—C6—H6120.4C7—N1—S1123.52 (15)
C5—C6—H6120.4C7—N1—H1N114.3 (17)
C8—C7—C12119.1 (2)S1—N1—H1N110.2 (17)
C8—C7—N1119.1 (2)O2—S1—O1119.07 (10)
C12—C7—N1121.8 (2)O2—S1—N1108.71 (11)
C7—C8—C9121.0 (3)O1—S1—N1105.06 (9)
C7—C8—H8119.5O2—S1—C1107.89 (9)
C9—C8—H8119.5O1—S1—C1109.38 (9)
C10—C9—C8120.4 (3)N1—S1—C1105.98 (9)
C10—C9—C13A115.0 (3)C11—C13B—H13D109.5
C8—C9—C13A124.6 (4)C11—C13B—H13E109.5
C10—C9—H9119.8H13D—C13B—H13E109.5
C8—C9—H9119.8C11—C13B—H13F109.5
C11—C10—C9117.6 (3)H13D—C13B—H13F109.5
C11—C10—C14B106.6 (6)H13E—C13B—H13F109.5
C9—C10—C14B135.8 (6)C10—C14B—H14D109.5
C11—C10—C14A132.1 (5)C10—C14B—H14E109.5
C9—C10—C14A110.3 (5)H14D—C14B—H14E109.5
C13B—C11—C10108.5 (6)C10—C14B—H14F109.5
C13B—C11—C12127.6 (6)H14D—C14B—H14F109.5
C10—C11—C12123.7 (3)H14E—C14B—H14F109.5
C10—C11—H11118.1
C6—C1—C2—C31.3 (3)C14B—C10—C11—C13B2.7 (9)
S1—C1—C2—C3174.13 (15)C14A—C10—C11—C13B4.3 (8)
C1—C2—C3—C40.9 (3)C9—C10—C11—C120.1 (5)
C2—C3—C4—C52.7 (3)C14B—C10—C11—C12178.0 (7)
C2—C3—C4—Cl1176.19 (15)C14A—C10—C11—C12179.6 (5)
C3—C4—C5—C62.2 (3)C8—C7—C12—C110.5 (3)
Cl1—C4—C5—C6176.64 (17)N1—C7—C12—C11179.3 (2)
C2—C1—C6—C51.8 (3)C13B—C11—C12—C7175.4 (7)
S1—C1—C6—C5173.69 (17)C10—C11—C12—C71.0 (4)
C4—C5—C6—C10.0 (3)C8—C7—N1—S1138.1 (2)
C12—C7—C8—C91.0 (4)C12—C7—N1—S143.0 (3)
N1—C7—C8—C9177.9 (2)C7—N1—S1—O264.1 (2)
C7—C8—C9—C101.9 (4)C7—N1—S1—O1167.36 (18)
C7—C8—C9—C13A178.5 (4)C7—N1—S1—C151.6 (2)
C8—C9—C10—C111.4 (5)C6—C1—S1—O216.05 (19)
C13A—C9—C10—C11179.0 (4)C2—C1—S1—O2168.43 (16)
C8—C9—C10—C14B178.7 (9)C6—C1—S1—O1146.96 (16)
C13A—C9—C10—C14B1.7 (10)C2—C1—S1—O137.52 (18)
C8—C9—C10—C14A178.8 (4)C6—C1—S1—N1100.26 (17)
C13A—C9—C10—C14A0.8 (6)C2—C1—S1—N175.27 (17)
C9—C10—C11—C13B175.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.10 (1)2.949 (2)174 (2)
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.5000 (9), 12.4039 (8), 8.7436 (7)
β (°) 104.492 (7)
V3)1417.55 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.44 × 0.34 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.839, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
5943, 2890, 2309
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.07
No. of reflections2890
No. of parameters194
No. of restraints28
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.10 (1)2.949 (2)174 (2)
Symmetry code: (i) x+2, y+2, z.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Private communication (refcode CCDC 773498). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds