metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[2-(iso­propyl­ammonio)ethyl­imino­meth­yl]-5-meth­oxy­phenolato}copper(II) bis­­(perchlorate)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China, and bCollege of Chemical Engineering, Nanjing Forestry University, Nangjing 210037, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 18 April 2010; accepted 12 May 2010; online 19 May 2010)

In the title compound, [Cu(C13H20N2O2)2](ClO4)2, the CuII atom in the complex dication is chelated by two phenolate O atoms and two imine N atoms from two zwitterionic 2-[2-(isopropyl­ammonio)ethyl­imino­meth­yl]-5-methoxy­phenolate ligands, forming a distorted square-planar geometry. One of the perchlorate anions is disordered over two sites with occupancies of 0.611 (15) and 0.389 (15). Intra­molecular N—H⋯O hydrogen bonds are observed in the complex dication. In the crystal structure, the perchlorate anions are linked to complex dications by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to CuII complexes, see: Collinson & Fenton (1996[Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19-40.]); Hossain et al. (1996[Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207-213.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.]); Musie et al. (2003[Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69-74.]); García-Raso et al. (2003[García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403-409.]); Reddy et al. (2000[Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322-324.]); Ray et al. (2003[Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617-624.]); Arnold et al. (2003[Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143-149.]); Raptopoulou et al. (1998[Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283-290.]). For related structures, see: Wang et al. (2009a[Wang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem. 39, 78-82.],b[Wang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem. 62, 2164-2171.], 2010[Wang, C.-Y., Li, J.-F. & Cao, F. (2010). Acta Cryst. E66, m445-m446.]); Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]). For bond lengths and angles in related CuII complexes, see: Hebbachi & Benali-Cherif (2005[Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.]); Butcher et al. (2003[Butcher, R. J., Mockler, G. M. & McKern, O. (2003). Acta Cryst. E59, m1104-m1106.]); Elmali et al. (2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]); Warda et al. (1997[Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50-54.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H20N2O2)2](ClO4)2

  • Mr = 735.06

  • Orthorhombic, P b c a

  • a = 17.4415 (13) Å

  • b = 14.009 (1) Å

  • c = 26.350 (2) Å

  • V = 6438.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.839, Tmax = 0.861

  • 36964 measured reflections

  • 7004 independent reflections

  • 3260 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.182

  • S = 1.01

  • 7004 reflections

  • 449 parameters

  • 94 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.925 (3)
Cu1—O3 1.933 (3)
Cu1—N3 1.969 (4)
Cu1—N1 1.970 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1 0.90 1.86 2.705 (5) 156
N4—H4A⋯O12 0.90 2.04 2.930 (13) 171
N2—H2B⋯O3 0.90 2.23 2.849 (5) 125
N2—H2A⋯O6 0.90 2.20 3.070 (9) 163

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, copper(II) complexes have received much attention for their interesting biological activities and versatile structures (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002; Musie et al., 2003; García-Raso et al., 2003). Considerable effort has been made to construct a variety of copper(II) complexes in an attempt to model the physical and chemical behaviour of copper-containing metalloenzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As part of our investigations into novel urease inhibitors (Wang et al., 2009a,b,2010; Wang, 2009), the title compound, a new CuII complex, has been synthesized, and its crystal structure is reported here.

The asymmetric units contains one mononuclear copper(II) complex dication, and two perchlorate anions (Fig. 1). The CuII atom in the dication is chelated by two phenolate O atoms and two imine N atoms from two 2-[(2-isopropylammonioethylimino)methyl]-5-methoxyphenolate ligands, forming a square-planar geometry. The coordinate bond lengths (Table 1) and angles are typical and are comparable with those observed in other related copper(II) complexes (Hebbachi & Benali-Cherif, 2005; Butcher et al., 2003; Elmali et al., 2000; Warda et al., 1997). There are two intramolecular N—H···O hydrogen bonds in the complex dication.

In the crystal structure, the perchlorate anions are linked to the complex dications by intermolecular N—H···O hydrogen bonds (Table 2 and Fig. 2).

Related literature top

For general background to CuII complexes, see: Collinson & Fenton (1996); Hossain et al. (1996); Tarafder et al. (2002); Musie et al. (2003); García-Raso et al. (2003); Reddy et al. (2000); Ray et al. (2003); Arnold et al. (2003); Raptopoulou et al. (1998). For related structures, see: Wang et al. (2009a,b, 2010); Wang (2009). For bond lengths and angles in related CuII complexes, see: Hebbachi & Benali-Cherif (2005); Butcher et al. (2003); Elmali et al. (2000); Warda et al. (1997).

Experimental top

4-Methoxysalicylaldehyde (1.0 mmol, 152 mg), N-isopropyl-1,2-diaminoethane (1.0 mmol, 102 mg) and Cu(ClO4)2.6H2O (1.0 mmol, 370 mg) were dissolved in methanol (80 ml). The mixture was stirred at room temperature for about 1 h to give a blue solution. After keeping the solution in air for a few days, blue block-like crystals were formed.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.98 Å, N—H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). One of the perchlorate anions is disordered over two distinct sites with occupancies of 0.611 (15) and 0.389 (15). The positional and Uij parameters of disordered atoms Cl2 and Cl2' were constrained to be the same. The Cl···O and O···O distances in the disorder components were restrained to 1.42 (1) and 2.35 (2) Å, respectively. The Uij parameters of disordered O atoms were restrained to an approximate isotropic behaviour. The C10—C11 and C10—C12 distances were restrained to 1.540 (8) Å.

Structure description top

In recent years, copper(II) complexes have received much attention for their interesting biological activities and versatile structures (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002; Musie et al., 2003; García-Raso et al., 2003). Considerable effort has been made to construct a variety of copper(II) complexes in an attempt to model the physical and chemical behaviour of copper-containing metalloenzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As part of our investigations into novel urease inhibitors (Wang et al., 2009a,b,2010; Wang, 2009), the title compound, a new CuII complex, has been synthesized, and its crystal structure is reported here.

The asymmetric units contains one mononuclear copper(II) complex dication, and two perchlorate anions (Fig. 1). The CuII atom in the dication is chelated by two phenolate O atoms and two imine N atoms from two 2-[(2-isopropylammonioethylimino)methyl]-5-methoxyphenolate ligands, forming a square-planar geometry. The coordinate bond lengths (Table 1) and angles are typical and are comparable with those observed in other related copper(II) complexes (Hebbachi & Benali-Cherif, 2005; Butcher et al., 2003; Elmali et al., 2000; Warda et al., 1997). There are two intramolecular N—H···O hydrogen bonds in the complex dication.

In the crystal structure, the perchlorate anions are linked to the complex dications by intermolecular N—H···O hydrogen bonds (Table 2 and Fig. 2).

For general background to CuII complexes, see: Collinson & Fenton (1996); Hossain et al. (1996); Tarafder et al. (2002); Musie et al. (2003); García-Raso et al. (2003); Reddy et al. (2000); Ray et al. (2003); Arnold et al. (2003); Raptopoulou et al. (1998). For related structures, see: Wang et al. (2009a,b, 2010); Wang (2009). For bond lengths and angles in related CuII complexes, see: Hebbachi & Benali-Cherif (2005); Butcher et al. (2003); Elmali et al. (2000); Warda et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity. Only the major disorder component of one of the perchlorate anions is shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular N—H···O hydrogen bonds are drawn as dashed lines.
Bis{2-[2-(isopropylammonio)ethyliminomethyl]-5-methoxyphenolato}copper(II) bis(perchlorate) top
Crystal data top
[Cu(C13H20N2O2)2](ClO4)2F(000) = 3064
Mr = 735.06Dx = 1.517 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2387 reflections
a = 17.4415 (13) Åθ = 2.4–24.5°
b = 14.009 (1) ŵ = 0.91 mm1
c = 26.350 (2) ÅT = 298 K
V = 6438.2 (8) Å3Block, blue
Z = 80.20 × 0.18 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7004 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
ω scanθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2220
Tmin = 0.839, Tmax = 0.861k = 1717
36964 measured reflectionsl = 2933
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.2786P]
where P = (Fo2 + 2Fc2)/3
7004 reflections(Δ/σ)max = 0.001
449 parametersΔρmax = 0.67 e Å3
94 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C13H20N2O2)2](ClO4)2V = 6438.2 (8) Å3
Mr = 735.06Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.4415 (13) ŵ = 0.91 mm1
b = 14.009 (1) ÅT = 298 K
c = 26.350 (2) Å0.20 × 0.18 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3260 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.861Rint = 0.117
36964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05994 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.01Δρmax = 0.67 e Å3
7004 reflectionsΔρmin = 0.39 e Å3
449 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.20772 (3)0.30739 (5)0.29436 (2)0.0430 (2)
Cl10.35617 (10)0.50449 (12)0.29759 (6)0.0669 (5)
N10.2829 (2)0.2199 (3)0.32521 (16)0.0443 (11)
N20.3178 (3)0.3382 (3)0.41567 (18)0.0574 (13)
H2A0.32980.36180.38490.069*
H2B0.26760.34970.42070.069*
N30.1097 (2)0.3435 (3)0.26267 (15)0.0417 (10)
N40.1766 (2)0.4031 (3)0.15898 (16)0.0528 (12)
H4A0.19100.36760.13210.063*
H4B0.20560.38510.18560.063*
O10.2543 (2)0.2985 (3)0.22831 (13)0.0514 (10)
O20.4443 (2)0.2600 (3)0.10520 (15)0.0643 (11)
O30.17867 (19)0.3576 (2)0.35993 (12)0.0444 (9)
O40.0587 (2)0.5763 (3)0.47332 (14)0.0559 (10)
O50.3648 (3)0.5847 (5)0.3286 (3)0.147 (2)
O60.3925 (4)0.4248 (5)0.3208 (3)0.159 (3)
O70.3923 (3)0.5183 (5)0.2529 (2)0.148 (2)
O80.2780 (3)0.4867 (4)0.2923 (3)0.135 (2)
Cl2'0.17958 (9)0.25224 (11)0.03722 (6)0.0601 (4)0.389 (15)
O9'0.1570 (12)0.2204 (11)0.0869 (4)0.129 (7)0.389 (15)
O10'0.2039 (11)0.1768 (11)0.0069 (7)0.122 (8)0.389 (15)
O11'0.1144 (9)0.3020 (11)0.0192 (8)0.141 (8)0.389 (15)
O12'0.2391 (10)0.3202 (14)0.0434 (8)0.132 (10)0.389 (15)
Cl20.17958 (9)0.25224 (11)0.03722 (6)0.0601 (4)0.611 (15)
O90.1079 (6)0.2451 (11)0.0606 (6)0.164 (6)0.611 (15)
O100.2095 (8)0.1581 (7)0.0317 (6)0.145 (6)0.611 (15)
O110.1749 (9)0.2871 (9)0.0129 (3)0.157 (6)0.611 (15)
O120.2292 (6)0.3064 (10)0.0667 (5)0.133 (6)0.611 (15)
C10.3633 (3)0.2031 (3)0.2500 (2)0.0433 (13)
C20.3208 (3)0.2609 (4)0.21648 (19)0.0419 (12)
C30.3518 (3)0.2759 (4)0.1675 (2)0.0496 (14)
H30.32430.31210.14410.060*
C40.4217 (3)0.2383 (4)0.1535 (2)0.0466 (13)
C50.4627 (3)0.1818 (4)0.1865 (2)0.0510 (14)
H50.50960.15570.17690.061*
C60.4335 (3)0.1650 (4)0.2330 (2)0.0510 (15)
H60.46110.12620.25500.061*
C70.3393 (3)0.1828 (4)0.3006 (2)0.0447 (13)
H70.36780.13720.31800.054*
C80.2723 (3)0.1865 (4)0.3781 (2)0.0536 (15)
H8A0.27910.11780.37930.064*
H8B0.22050.20080.38900.064*
C90.3286 (4)0.2335 (4)0.4139 (2)0.0597 (16)
H9A0.32200.20730.44770.072*
H9B0.38050.21940.40290.072*
C100.3603 (4)0.3919 (5)0.4532 (3)0.084 (2)
H100.34010.36830.48560.101*
C110.4435 (4)0.3724 (7)0.4567 (4)0.151 (4)
H11A0.46740.38620.42470.182*
H11B0.45150.30650.46510.182*
H11C0.46570.41200.48260.182*
C120.3397 (4)0.4960 (4)0.4536 (3)0.085 (2)
H12A0.36560.52710.48120.102*
H12B0.28530.50280.45780.102*
H12C0.35510.52470.42220.102*
C130.5160 (3)0.2259 (5)0.0871 (3)0.0691 (18)
H13A0.55540.24160.11110.083*
H13B0.52740.25520.05510.083*
H13C0.51360.15790.08300.083*
C140.0646 (3)0.4398 (4)0.33394 (18)0.0391 (12)
C150.1234 (3)0.4187 (4)0.36975 (19)0.0397 (12)
C160.1200 (3)0.4628 (4)0.41700 (19)0.0416 (13)
H160.15660.44720.44130.050*
C170.0644 (3)0.5287 (4)0.4289 (2)0.0457 (13)
C180.0072 (3)0.5516 (4)0.3937 (2)0.0482 (14)
H180.02990.59710.40120.058*
C190.0073 (3)0.5055 (4)0.3478 (2)0.0472 (14)
H190.03210.51810.32500.057*
C200.0594 (3)0.3960 (4)0.28523 (19)0.0438 (13)
H200.01400.40650.26750.053*
C210.0873 (3)0.3067 (4)0.2121 (2)0.0573 (16)
H21A0.03450.28530.21340.069*
H21B0.11910.25200.20390.069*
C220.0957 (3)0.3814 (5)0.1706 (2)0.0640 (18)
H22A0.07060.35860.14010.077*
H22B0.07010.43950.18120.077*
C230.1938 (4)0.5072 (4)0.1473 (2)0.0620 (17)
H230.17420.54620.17530.074*
C240.2780 (4)0.5209 (5)0.1442 (3)0.093 (2)
H24A0.30180.49410.17380.112*
H24B0.28940.58780.14240.112*
H24C0.29730.48950.11440.112*
C250.1517 (4)0.5364 (5)0.0988 (2)0.082 (2)
H25A0.17380.50370.07030.098*
H25B0.15640.60410.09400.098*
H25C0.09850.51980.10170.098*
C260.1108 (4)0.5532 (4)0.5135 (2)0.0648 (17)
H26A0.10470.48730.52260.078*
H26B0.10010.59270.54240.078*
H26C0.16240.56400.50230.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0412 (4)0.0492 (4)0.0387 (4)0.0057 (3)0.0002 (3)0.0029 (3)
Cl10.0691 (11)0.0669 (11)0.0649 (11)0.0151 (9)0.0239 (9)0.0104 (9)
N10.053 (3)0.037 (2)0.043 (3)0.003 (2)0.005 (2)0.005 (2)
N20.051 (3)0.063 (3)0.058 (3)0.015 (2)0.012 (2)0.012 (2)
N30.039 (2)0.049 (3)0.037 (3)0.001 (2)0.000 (2)0.001 (2)
N40.051 (3)0.074 (4)0.034 (3)0.017 (3)0.001 (2)0.006 (2)
O10.046 (2)0.064 (3)0.044 (2)0.019 (2)0.0036 (18)0.0074 (18)
O20.057 (3)0.074 (3)0.061 (3)0.010 (2)0.015 (2)0.002 (2)
O30.041 (2)0.051 (2)0.041 (2)0.0093 (18)0.0017 (16)0.0019 (17)
O40.062 (3)0.059 (3)0.046 (2)0.002 (2)0.005 (2)0.0064 (19)
O50.115 (4)0.140 (5)0.186 (6)0.023 (4)0.009 (4)0.075 (5)
O60.172 (6)0.147 (5)0.159 (6)0.045 (5)0.010 (5)0.046 (5)
O70.124 (4)0.236 (6)0.083 (4)0.000 (4)0.044 (3)0.022 (4)
O80.081 (4)0.112 (4)0.211 (6)0.031 (3)0.039 (4)0.051 (4)
Cl2'0.0687 (10)0.0550 (10)0.0566 (10)0.0030 (9)0.0040 (8)0.0000 (8)
O9'0.144 (11)0.142 (10)0.100 (9)0.017 (8)0.020 (8)0.043 (8)
O10'0.141 (11)0.119 (11)0.105 (10)0.003 (8)0.013 (8)0.047 (8)
O11'0.116 (11)0.145 (11)0.161 (12)0.028 (8)0.040 (9)0.030 (8)
O12'0.128 (12)0.126 (12)0.142 (13)0.047 (8)0.004 (9)0.015 (9)
Cl20.0687 (10)0.0550 (10)0.0566 (10)0.0030 (9)0.0040 (8)0.0000 (8)
O90.108 (8)0.204 (10)0.179 (10)0.006 (7)0.050 (7)0.008 (8)
O100.188 (9)0.102 (7)0.144 (9)0.044 (6)0.028 (8)0.011 (6)
O110.179 (10)0.187 (10)0.105 (8)0.003 (7)0.018 (7)0.049 (6)
O120.082 (7)0.208 (14)0.109 (10)0.044 (7)0.002 (7)0.089 (9)
C10.043 (3)0.039 (3)0.047 (3)0.005 (3)0.006 (3)0.003 (3)
C20.038 (3)0.043 (3)0.045 (3)0.005 (3)0.003 (2)0.003 (2)
C30.046 (3)0.057 (4)0.046 (3)0.014 (3)0.002 (3)0.002 (3)
C40.046 (3)0.050 (3)0.044 (3)0.007 (3)0.005 (3)0.006 (3)
C50.039 (3)0.050 (4)0.064 (4)0.007 (3)0.002 (3)0.008 (3)
C60.045 (3)0.052 (4)0.056 (4)0.013 (3)0.010 (3)0.004 (3)
C70.057 (3)0.035 (3)0.042 (3)0.004 (3)0.011 (3)0.000 (2)
C80.072 (4)0.040 (3)0.049 (3)0.008 (3)0.001 (3)0.011 (3)
C90.073 (4)0.062 (4)0.045 (3)0.013 (3)0.009 (3)0.007 (3)
C100.084 (5)0.103 (6)0.065 (5)0.010 (5)0.020 (4)0.003 (4)
C110.112 (6)0.167 (8)0.175 (8)0.016 (6)0.071 (6)0.036 (6)
C120.094 (5)0.077 (5)0.084 (5)0.018 (4)0.006 (4)0.024 (4)
C130.050 (4)0.077 (5)0.080 (5)0.003 (3)0.021 (3)0.015 (4)
C140.038 (3)0.046 (3)0.033 (3)0.002 (3)0.007 (2)0.004 (2)
C150.043 (3)0.038 (3)0.038 (3)0.003 (2)0.006 (2)0.009 (2)
C160.041 (3)0.050 (3)0.034 (3)0.004 (3)0.002 (2)0.007 (2)
C170.053 (3)0.042 (3)0.042 (3)0.005 (3)0.012 (3)0.003 (3)
C180.043 (3)0.044 (3)0.058 (4)0.008 (3)0.008 (3)0.001 (3)
C190.036 (3)0.054 (4)0.052 (4)0.003 (3)0.006 (3)0.011 (3)
C200.032 (3)0.059 (4)0.041 (3)0.004 (3)0.002 (2)0.013 (3)
C210.044 (3)0.081 (4)0.047 (4)0.006 (3)0.009 (3)0.006 (3)
C220.053 (4)0.105 (5)0.034 (3)0.016 (4)0.010 (3)0.002 (3)
C230.078 (5)0.059 (4)0.049 (4)0.017 (4)0.003 (3)0.002 (3)
C240.095 (6)0.078 (5)0.107 (6)0.004 (4)0.007 (5)0.019 (4)
C250.110 (6)0.079 (5)0.056 (4)0.033 (4)0.004 (4)0.012 (4)
C260.081 (5)0.068 (4)0.045 (4)0.004 (4)0.003 (3)0.008 (3)
Geometric parameters (Å, º) top
Cu1—O11.925 (3)C8—H8B0.97
Cu1—O31.933 (3)C9—H9A0.97
Cu1—N31.969 (4)C9—H9B0.97
Cu1—N11.970 (4)C10—C111.479 (7)
Cl1—O71.349 (5)C10—C121.502 (6)
Cl1—O81.393 (5)C10—H100.98
Cl1—O51.398 (6)C11—H11A0.96
Cl1—O61.422 (6)C11—H11B0.96
N1—C71.287 (6)C11—H11C0.96
N1—C81.481 (6)C12—H12A0.96
N2—C101.447 (7)C12—H12B0.96
N2—C91.480 (7)C12—H12C0.96
N2—H2A0.90C13—H13A0.96
N2—H2B0.90C13—H13B0.96
N3—C201.290 (6)C13—H13C0.96
N3—C211.480 (6)C14—C191.407 (7)
N4—C221.476 (7)C14—C151.424 (7)
N4—C231.520 (7)C14—C201.426 (7)
N4—H4A0.90C15—C161.391 (7)
N4—H4B0.90C16—C171.375 (7)
O1—C21.312 (6)C16—H160.93
O2—C41.366 (6)C17—C181.400 (7)
O2—C131.421 (6)C18—C191.370 (7)
O3—C151.315 (6)C18—H180.93
O4—C171.351 (6)C19—H190.93
O4—C261.431 (6)C20—H200.93
Cl2'—O10'1.391 (8)C21—C221.521 (8)
Cl2'—O11'1.416 (8)C21—H21A0.97
Cl2'—O12'1.418 (9)C21—H21B0.97
Cl2'—O9'1.437 (8)C22—H22A0.97
C1—C21.409 (7)C22—H22B0.97
C1—C61.410 (7)C23—C241.484 (8)
C1—C71.427 (7)C23—C251.529 (8)
C2—C31.416 (7)C23—H230.98
C3—C41.379 (7)C24—H24A0.96
C3—H30.93C24—H24B0.96
C4—C51.376 (7)C24—H24C0.96
C5—C61.348 (7)C25—H25A0.96
C5—H50.93C25—H25B0.96
C6—H60.93C25—H25C0.96
C7—H70.93C26—H26A0.96
C8—C91.513 (8)C26—H26B0.96
C8—H8A0.97C26—H26C0.96
O1—Cu1—O3160.46 (15)C11—C10—H10103.6
O1—Cu1—N389.97 (16)C12—C10—H10103.6
O3—Cu1—N393.31 (16)C10—C11—H11A109.5
O1—Cu1—N192.98 (16)C10—C11—H11B109.5
O3—Cu1—N191.84 (16)H11A—C11—H11B109.5
N3—Cu1—N1155.90 (17)C10—C11—H11C109.5
O7—Cl1—O8113.3 (4)H11A—C11—H11C109.5
O7—Cl1—O5110.2 (5)H11B—C11—H11C109.5
O8—Cl1—O5107.9 (4)C10—C12—H12A109.5
O7—Cl1—O6106.2 (4)C10—C12—H12B109.5
O8—Cl1—O6109.8 (4)H12A—C12—H12B109.5
O5—Cl1—O6109.4 (5)C10—C12—H12C109.5
C7—N1—C8116.1 (4)H12A—C12—H12C109.5
C7—N1—Cu1123.5 (4)H12B—C12—H12C109.5
C8—N1—Cu1120.1 (3)O2—C13—H13A109.5
C10—N2—C9118.1 (5)O2—C13—H13B109.5
C10—N2—H2A107.8H13A—C13—H13B109.5
C9—N2—H2A107.8O2—C13—H13C109.5
C10—N2—H2B107.8H13A—C13—H13C109.5
C9—N2—H2B107.8H13B—C13—H13C109.5
H2A—N2—H2B107.1C19—C14—C15118.4 (5)
C20—N3—C21115.7 (4)C19—C14—C20118.0 (5)
C20—N3—Cu1122.8 (3)C15—C14—C20123.6 (5)
C21—N3—Cu1121.4 (3)O3—C15—C16119.7 (5)
C22—N4—C23115.3 (5)O3—C15—C14122.2 (5)
C22—N4—H4A108.4C16—C15—C14118.1 (5)
C23—N4—H4A108.4C17—C16—C15122.1 (5)
C22—N4—H4B108.4C17—C16—H16118.9
C23—N4—H4B108.4C15—C16—H16118.9
H4A—N4—H4B107.5O4—C17—C16125.5 (5)
C2—O1—Cu1127.9 (3)O4—C17—C18114.1 (5)
C4—O2—C13119.4 (5)C16—C17—C18120.4 (5)
C15—O3—Cu1127.2 (3)C19—C18—C17118.4 (5)
C17—O4—C26118.8 (4)C19—C18—H18120.8
O10'—Cl2'—O11'115.3 (10)C17—C18—H18120.8
O10'—Cl2'—O12'110.6 (10)C18—C19—C14122.5 (5)
O11'—Cl2'—O12'107.2 (11)C18—C19—H19118.7
O10'—Cl2'—O9'111.7 (10)C14—C19—H19118.7
O11'—Cl2'—O9'103.8 (9)N3—C20—C14128.1 (5)
O12'—Cl2'—O9'107.7 (10)N3—C20—H20116.0
C2—C1—C6118.4 (5)C14—C20—H20116.0
C2—C1—C7123.2 (5)N3—C21—C22112.4 (5)
C6—C1—C7118.5 (5)N3—C21—H21A109.1
O1—C2—C1123.1 (5)C22—C21—H21A109.1
O1—C2—C3119.7 (5)N3—C21—H21B109.1
C1—C2—C3117.2 (5)C22—C21—H21B109.1
C4—C3—C2121.6 (5)H21A—C21—H21B107.8
C4—C3—H3119.2N4—C22—C21112.6 (4)
C2—C3—H3119.2N4—C22—H22A109.1
O2—C4—C5124.5 (5)C21—C22—H22A109.1
O2—C4—C3114.7 (5)N4—C22—H22B109.1
C5—C4—C3120.7 (5)C21—C22—H22B109.1
C6—C5—C4118.6 (5)H22A—C22—H22B107.8
C6—C5—H5120.7C24—C23—N4109.2 (5)
C4—C5—H5120.7C24—C23—C25113.2 (6)
C5—C6—C1123.5 (5)N4—C23—C25109.3 (5)
C5—C6—H6118.3C24—C23—H23108.3
C1—C6—H6118.3N4—C23—H23108.3
N1—C7—C1127.8 (5)C25—C23—H23108.3
N1—C7—H7116.1C23—C24—H24A109.5
C1—C7—H7116.1C23—C24—H24B109.5
N1—C8—C9111.6 (5)H24A—C24—H24B109.5
N1—C8—H8A109.3C23—C24—H24C109.5
C9—C8—H8A109.3H24A—C24—H24C109.5
N1—C8—H8B109.3H24B—C24—H24C109.5
C9—C8—H8B109.3C23—C25—H25A109.5
H8A—C8—H8B108.0C23—C25—H25B109.5
N2—C9—C8111.6 (4)H25A—C25—H25B109.5
N2—C9—H9A109.3C23—C25—H25C109.5
C8—C9—H9A109.3H25A—C25—H25C109.5
N2—C9—H9B109.3H25B—C25—H25C109.5
C8—C9—H9B109.3O4—C26—H26A109.5
H9A—C9—H9B108.0O4—C26—H26B109.5
N2—C10—C11116.8 (6)H26A—C26—H26B109.5
N2—C10—C12112.8 (5)O4—C26—H26C109.5
C11—C10—C12114.4 (7)H26A—C26—H26C109.5
N2—C10—H10103.6H26B—C26—H26C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O10.901.862.705 (5)156
N4—H4A···O120.902.042.930 (13)171
N2—H2B···O30.902.232.849 (5)125
N2—H2A···O60.902.203.070 (9)163

Experimental details

Crystal data
Chemical formula[Cu(C13H20N2O2)2](ClO4)2
Mr735.06
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)17.4415 (13), 14.009 (1), 26.350 (2)
V3)6438.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.839, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
36964, 7004, 3260
Rint0.117
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 1.01
No. of reflections7004
No. of parameters449
No. of restraints94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.925 (3)Cu1—N31.969 (4)
Cu1—O31.933 (3)Cu1—N11.970 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O10.901.862.705 (5)156
N4—H4A···O120.902.042.930 (13)171
N2—H2B···O30.902.232.849 (5)125
N2—H2A···O60.902.203.070 (9)163
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (grant No. 30771696), the Zhejiang Provincial Natural Science Foundation of China (grant No. Y407318), and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

References

First citationArnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Mockler, G. M. & McKern, O. (2003). Acta Cryst. E59, m1104–m1106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCollinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19–40.  CrossRef CAS Web of Science Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409.  Web of Science CSD CrossRef Google Scholar
First citationHebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.  CSD CrossRef CAS Web of Science Google Scholar
First citationMusie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290.  Web of Science CSD CrossRef CAS Google Scholar
First citationRay, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322–324.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y., Li, J.-F. & Cao, F. (2010). Acta Cryst. E66, m445–m446.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem. 39, 78–82.  CAS Google Scholar
First citationWang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem. 62, 2164–2171.  Web of Science CSD CrossRef CAS Google Scholar
First citationWarda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds