organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(4-Chloro­benz­yl­oxy)-2-phenyl­ethyl]-1H-benzotriazole

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 22 April 2010; accepted 28 April 2010; online 8 May 2010)

The asymmetric unit of the title compound, C21H18ClN3O, contains two crystallographically independent mol­ecules which differ slightly in the orientations of chloro­benz­yloxy units. In one of the mol­ecules, the phenyl and chloro­phenyl rings are oriented at dihedral angles of 38.09 (6) and 42.15 (6)°, respectively, with respect to the benzotriazole ring [43.23 (6) and 29.80 (6)° in the other mol­ecule]. The dihedral angle between the phenyl and chloro­phenyl rings is 77.63 (6)° in one of the mol­ecules and 72.97 (6)° in the other. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973-1978.]); Yu et al. (2003[Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141-2144.]); Kopanska et al. (2004[Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617-2624.]). For related structures, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Katritzky et al. (2001[Katritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807-2809.]); Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.], 2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.],b[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496-o1497.],c[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1914-o1915.], 2010[Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.]); Peeters et al. (1979a[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Acta Cryst. B35, 2461-2464.],b[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Bull. Soc. Chim. Belg. 88, 265-272.], 1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]); Swamy et al. (2006[Swamy, S. N., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999-1004.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18ClN3O

  • Mr = 363.83

  • Monoclinic, P 21 /c

  • a = 7.2163 (2) Å

  • b = 36.8545 (9) Å

  • c = 13.3019 (3) Å

  • β = 91.529 (1)°

  • V = 3536.42 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.14 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.966

  • 26731 measured reflections

  • 7993 independent reflections

  • 5918 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.189

  • S = 1.07

  • 7993 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are centroids of the C9–C14, C9′–C14′ and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg2i 0.95 2.62 3.515 (2) 157
C11′—H11′⋯Cg1ii 0.95 2.79 3.635 (2) 149
C14—H14⋯Cg2iii 0.95 2.64 3.584 (2) 172
C14′—H14′⋯Cg1iv 0.95 2.81 3.755 (2) 172
C18′—H18′⋯Cg3v 0.95 2.83 3.502 (2) 129
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z-1; (iii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (v) x, y, z-1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, there has been increasing interest in the syntheses of heterocyclic compounds that have biological and commercial importance. Clotrimazole, miconazole, econazole, ketonazole, itraconazole and fluconazole are well-known imidazoles. 1H-1,2,4-Triazole ring containing azole derivatives have been developed for clinical uses as antifungal agents. Recently, structures containing benzimidazole ring in place of miconazole and econazole have been reported, and these molecules have been shown more antibacterial activity than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of miconazole (Peeters et al., 1979a), ketonazole (Peeters et al., 1979b), econazole (Freer et al., 1986), itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) have been reported. Recently, we reported crystal structures of related compounds (Özel Güven et al., 2008a,b,c). Benzotriazole derivatives also exhibit a good degree of analgesic, antiinflammatory, diuretic, antiviral and antihypertensive activities (Hirokawa et al., 1998; Yu et al., 2003; Kopanska et al., 2004). Crystal structures of benzotriazole ring possessing compounds have been reported (Katritzky et al., 2001; Swamy et al., 2006; Özel Güven et al., 2010). Now, we report herein the crystal structure of the title benzotriazole derivative.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules which differ slightly in the orientations of the chlorobenzyloxy units. The bond lengths and angles are generally within normal ranges. In each molecule, the planar benzotriazole rings [A (N1-N3/C1-C6) and A' (N1'-N3'/C1'-C6')] are oriented with respect to the phenyl [B (C9-C14) and B' (C9'-C14')] and benzene [C (C16-C21)] and C' (C16'-C21')] rings at dihedral angles of A/B = 37.98 (9), A/C = 42.27 (9) ° and A'/B' = 43.20 (9), A'/C' = 29.82 (9)°. The dihedral angles between phenyl and benzene rings are B/C = 77.63 (6) and B'/C' = 72.97 (6) °. Atoms C7 and C7' are -0.012 (2) and -0.112 (2) Å away from the planes of the benzotriazole rings, respectively.

In the crystal structure, molecules are stacked along the a-axis (Fig. 2). Weak C—H···π interactions (Table 1) involving the C9-C14, C9'-C14' and C16-C21 rings stabilize the structure.

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Caira et al. (2004); Freer et al. (1986); Katritzky et al. (2001); Özel Güven et al. (2007a,b, 2008a,b,c, 2010); Peeters et al. (1979a,b, 1996); Swamy et al. (2006).

Experimental top

The title compound was synthesized by the reaction of 2-(1H-benzotriazol-1-yl)-1-phenylethanol (Özel Güven et al., 2010) with aryl halide using NaH. 2-(1H-Benzotriazol-1-yl)-1-phenylethanol (200 mg, 0.84 mmol) was dissolved in DMF (4 ml). NaH (33 mg, 0.84 mmol) was added to the solution portionwise. After stirring the mixture a few minutes, 4-chlorobenzyl bromide (171.8 mg, 0.84 mmol) was added dropwise. Then, the reaction mixture was stirred additional 3 h at room temperature. The reaction was stopped by adding methanol (5 ml). After evaporation of the solvent, dichloromethane was added to the reaction mixture and extracted with water. Then, the organic phase was separated, dried, filtered and evaporated. The precipitate formed was purified by column chromatography using chloroform and crystallized from iso-propanol to obtain colorless crystals suitable for X-ray analysis (yield; 137 mg, 46%).

Refinement top

H atoms were positioned geometrically with C-H = 0.95, 1.00 and 0.99 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, there has been increasing interest in the syntheses of heterocyclic compounds that have biological and commercial importance. Clotrimazole, miconazole, econazole, ketonazole, itraconazole and fluconazole are well-known imidazoles. 1H-1,2,4-Triazole ring containing azole derivatives have been developed for clinical uses as antifungal agents. Recently, structures containing benzimidazole ring in place of miconazole and econazole have been reported, and these molecules have been shown more antibacterial activity than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of miconazole (Peeters et al., 1979a), ketonazole (Peeters et al., 1979b), econazole (Freer et al., 1986), itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) have been reported. Recently, we reported crystal structures of related compounds (Özel Güven et al., 2008a,b,c). Benzotriazole derivatives also exhibit a good degree of analgesic, antiinflammatory, diuretic, antiviral and antihypertensive activities (Hirokawa et al., 1998; Yu et al., 2003; Kopanska et al., 2004). Crystal structures of benzotriazole ring possessing compounds have been reported (Katritzky et al., 2001; Swamy et al., 2006; Özel Güven et al., 2010). Now, we report herein the crystal structure of the title benzotriazole derivative.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules which differ slightly in the orientations of the chlorobenzyloxy units. The bond lengths and angles are generally within normal ranges. In each molecule, the planar benzotriazole rings [A (N1-N3/C1-C6) and A' (N1'-N3'/C1'-C6')] are oriented with respect to the phenyl [B (C9-C14) and B' (C9'-C14')] and benzene [C (C16-C21)] and C' (C16'-C21')] rings at dihedral angles of A/B = 37.98 (9), A/C = 42.27 (9) ° and A'/B' = 43.20 (9), A'/C' = 29.82 (9)°. The dihedral angles between phenyl and benzene rings are B/C = 77.63 (6) and B'/C' = 72.97 (6) °. Atoms C7 and C7' are -0.012 (2) and -0.112 (2) Å away from the planes of the benzotriazole rings, respectively.

In the crystal structure, molecules are stacked along the a-axis (Fig. 2). Weak C—H···π interactions (Table 1) involving the C9-C14, C9'-C14' and C16-C21 rings stabilize the structure.

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Caira et al. (2004); Freer et al. (1986); Katritzky et al. (2001); Özel Güven et al. (2007a,b, 2008a,b,c, 2010); Peeters et al. (1979a,b, 1996); Swamy et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The two independent molecules of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along the a axis. H atoms have been omitted for clarity.
1-[2-(4-Chlorobenzyloxy)-2-phenylethyl]-1H-benzotriazole top
Crystal data top
C21H18ClN3OF(000) = 1520
Mr = 363.83Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 26277 reflections
a = 7.2163 (2) Åθ = 2.9–27.5°
b = 36.8545 (9) ŵ = 0.23 mm1
c = 13.3019 (3) ÅT = 120 K
β = 91.529 (1)°Slab, colourless
V = 3536.42 (15) Å30.40 × 0.40 × 0.14 mm
Z = 8
Data collection top
Nonius Kappa CCD
diffractometer
7993 independent reflections
Radiation source: fine-focus sealed tube5918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.910, Tmax = 0.966k = 4743
26731 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1171P)2 + 0.2599P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7993 reflectionsΔρmax = 0.64 e Å3
470 parametersΔρmin = 0.69 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (2)
Crystal data top
C21H18ClN3OV = 3536.42 (15) Å3
Mr = 363.83Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.2163 (2) ŵ = 0.23 mm1
b = 36.8545 (9) ÅT = 120 K
c = 13.3019 (3) Å0.40 × 0.40 × 0.14 mm
β = 91.529 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
7993 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
5918 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.966Rint = 0.051
26731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.07Δρmax = 0.64 e Å3
7993 reflectionsΔρmin = 0.69 e Å3
470 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22475 (9)0.476481 (18)0.55416 (6)0.0416 (2)
O10.3382 (2)0.34725 (4)0.40142 (11)0.0230 (3)
N10.3727 (3)0.38511 (5)0.07784 (14)0.0288 (5)
N20.4375 (3)0.35556 (5)0.12052 (14)0.0269 (4)
N30.4929 (3)0.36393 (5)0.21634 (13)0.0228 (4)
C10.3846 (3)0.41288 (6)0.14623 (17)0.0250 (5)
C20.3361 (3)0.44961 (7)0.13830 (19)0.0327 (6)
H20.27990.45910.07850.039*
C30.3729 (3)0.47135 (7)0.2200 (2)0.0330 (6)
H30.34180.49640.21660.040*
C40.4559 (3)0.45739 (7)0.30917 (19)0.0313 (5)
H40.48210.47340.36360.038*
C50.4999 (3)0.42131 (6)0.31946 (17)0.0264 (5)
H50.55270.41180.38010.032*
C60.4626 (3)0.39944 (6)0.23575 (16)0.0222 (5)
C70.5705 (3)0.33638 (6)0.28229 (17)0.0250 (5)
H7A0.66740.34740.32660.030*
H7B0.62990.31740.24140.030*
C80.4235 (3)0.31891 (6)0.34680 (16)0.0239 (5)
H80.32780.30740.30140.029*
C90.5062 (3)0.29013 (6)0.41518 (15)0.0209 (5)
C100.6548 (3)0.29873 (6)0.48017 (16)0.0234 (5)
H100.70220.32280.48210.028*
C110.7333 (3)0.27231 (6)0.54186 (16)0.0259 (5)
H110.83580.27820.58510.031*
C120.6629 (3)0.23736 (6)0.54066 (16)0.0254 (5)
H120.71660.21930.58330.030*
C130.5145 (3)0.22873 (6)0.47732 (16)0.0248 (5)
H130.46540.20480.47690.030*
C140.4368 (3)0.25505 (6)0.41408 (16)0.0233 (5)
H140.33590.24890.37000.028*
C150.1497 (3)0.33957 (7)0.4250 (2)0.0360 (6)
H15A0.14590.32120.47910.043*
H15B0.08310.32970.36490.043*
C160.0583 (3)0.37382 (6)0.45829 (18)0.0265 (5)
C170.0463 (3)0.40358 (7)0.39399 (17)0.0273 (5)
H170.09660.40200.32880.033*
C180.0374 (3)0.43532 (6)0.42360 (18)0.0291 (5)
H180.04300.45570.37990.035*
C190.1137 (3)0.43699 (6)0.51846 (18)0.0278 (5)
C200.1040 (3)0.40812 (6)0.58310 (18)0.0276 (5)
H200.15530.40970.64800.033*
C210.0178 (3)0.37633 (6)0.55244 (18)0.0272 (5)
H210.01130.35610.59670.033*
Cl1'0.19246 (9)0.026883 (16)0.22027 (5)0.0384 (2)
O1'0.8366 (2)0.15017 (4)0.30657 (11)0.0248 (4)
N1'0.9026 (3)0.12718 (5)0.65649 (14)0.0294 (5)
N2'0.9650 (3)0.15280 (5)0.59942 (14)0.0274 (4)
N3'0.9881 (3)0.13952 (5)0.50553 (13)0.0225 (4)
C1'0.8871 (3)0.09601 (6)0.59982 (17)0.0247 (5)
C2'0.8299 (3)0.06087 (7)0.62520 (19)0.0307 (5)
H2'0.79280.05510.69130.037*
C3'0.8297 (3)0.03530 (6)0.5510 (2)0.0320 (6)
H3'0.78970.01140.56580.038*
C4'0.8873 (3)0.04340 (6)0.45265 (19)0.0296 (5)
H4'0.88680.02470.40350.036*
C5'0.9438 (3)0.07756 (6)0.42656 (17)0.0253 (5)
H5'0.98180.08310.36050.030*
C6'0.9424 (3)0.10373 (6)0.50228 (16)0.0211 (4)
C7'1.0704 (3)0.16200 (6)0.42962 (16)0.0235 (5)
H7C1.15580.14710.38980.028*
H7D1.14420.18140.46290.028*
C8'0.9260 (3)0.17904 (6)0.35944 (16)0.0226 (5)
H8'0.83220.19170.40100.027*
C9'1.0112 (3)0.20660 (6)0.29009 (15)0.0207 (4)
C10'1.1563 (3)0.19730 (6)0.22767 (17)0.0241 (5)
H10'1.20230.17310.22780.029*
C11'1.2337 (3)0.22296 (7)0.16565 (17)0.0290 (5)
H11'1.33320.21650.12390.035*
C12'1.1663 (3)0.25810 (6)0.16425 (16)0.0262 (5)
H12'1.21870.27570.12120.031*
C13'1.0226 (3)0.26762 (6)0.22557 (16)0.0243 (5)
H13'0.97630.29170.22440.029*
C14'0.9455 (3)0.24203 (6)0.28896 (16)0.0228 (5)
H14'0.84770.24880.33160.027*
C15'0.6640 (3)0.16060 (6)0.25888 (18)0.0287 (5)
H15C0.68640.17140.19220.034*
H15D0.60060.17880.30050.034*
C16'0.5460 (3)0.12733 (6)0.24718 (17)0.0246 (5)
C17'0.4741 (3)0.11645 (7)0.15453 (17)0.0265 (5)
H17'0.49850.13050.09650.032*
C18'0.3671 (3)0.08540 (6)0.14502 (18)0.0267 (5)
H18'0.31890.07800.08110.032*
C19'0.3319 (3)0.06545 (6)0.23027 (18)0.0272 (5)
C20'0.4002 (3)0.07576 (7)0.32357 (18)0.0303 (5)
H20'0.37380.06170.38140.036*
C21'0.5076 (3)0.10674 (7)0.33240 (17)0.0268 (5)
H21'0.55530.11400.39650.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0341 (4)0.0352 (4)0.0555 (5)0.0105 (3)0.0044 (3)0.0115 (3)
O10.0185 (8)0.0235 (8)0.0271 (8)0.0002 (6)0.0016 (6)0.0028 (6)
N10.0275 (11)0.0344 (11)0.0244 (10)0.0009 (9)0.0033 (8)0.0026 (9)
N20.0290 (11)0.0310 (11)0.0205 (10)0.0007 (8)0.0004 (8)0.0020 (8)
N30.0245 (10)0.0243 (9)0.0197 (9)0.0029 (7)0.0006 (7)0.0003 (7)
C10.0201 (11)0.0300 (12)0.0249 (11)0.0002 (9)0.0007 (9)0.0042 (9)
C20.0273 (13)0.0369 (14)0.0339 (13)0.0034 (10)0.0004 (10)0.0076 (11)
C30.0301 (13)0.0263 (12)0.0428 (15)0.0051 (10)0.0040 (11)0.0040 (11)
C40.0260 (12)0.0310 (13)0.0371 (14)0.0006 (10)0.0045 (10)0.0057 (11)
C50.0234 (12)0.0318 (12)0.0241 (11)0.0007 (9)0.0035 (9)0.0004 (9)
C60.0182 (10)0.0247 (11)0.0239 (11)0.0010 (9)0.0018 (9)0.0026 (9)
C70.0236 (11)0.0264 (11)0.0252 (11)0.0053 (9)0.0034 (9)0.0025 (9)
C80.0219 (11)0.0268 (11)0.0229 (11)0.0025 (9)0.0012 (9)0.0021 (9)
C90.0185 (11)0.0250 (11)0.0193 (10)0.0029 (8)0.0031 (8)0.0047 (9)
C100.0246 (11)0.0241 (11)0.0215 (11)0.0014 (9)0.0025 (9)0.0010 (9)
C110.0256 (12)0.0306 (12)0.0215 (11)0.0004 (9)0.0023 (9)0.0023 (9)
C120.0280 (12)0.0278 (12)0.0205 (11)0.0059 (9)0.0038 (9)0.0013 (9)
C130.0251 (12)0.0247 (11)0.0248 (11)0.0002 (9)0.0058 (9)0.0023 (9)
C140.0198 (11)0.0282 (11)0.0219 (11)0.0007 (9)0.0012 (8)0.0048 (9)
C150.0226 (12)0.0290 (13)0.0569 (17)0.0013 (10)0.0100 (11)0.0076 (12)
C160.0157 (11)0.0286 (12)0.0350 (13)0.0019 (9)0.0002 (9)0.0056 (10)
C170.0203 (11)0.0381 (13)0.0237 (11)0.0015 (10)0.0027 (9)0.0016 (10)
C180.0254 (12)0.0308 (12)0.0310 (13)0.0051 (10)0.0034 (10)0.0038 (10)
C190.0186 (11)0.0300 (12)0.0348 (13)0.0012 (9)0.0003 (9)0.0056 (10)
C200.0201 (11)0.0342 (13)0.0285 (12)0.0028 (9)0.0032 (9)0.0037 (10)
C210.0193 (11)0.0288 (12)0.0336 (13)0.0038 (9)0.0023 (9)0.0026 (10)
Cl1'0.0379 (4)0.0285 (3)0.0483 (4)0.0063 (3)0.0066 (3)0.0003 (3)
O1'0.0202 (8)0.0246 (8)0.0295 (9)0.0014 (6)0.0015 (6)0.0010 (7)
N1'0.0327 (11)0.0292 (10)0.0267 (10)0.0066 (9)0.0044 (8)0.0024 (8)
N2'0.0342 (11)0.0265 (10)0.0216 (10)0.0032 (8)0.0005 (8)0.0014 (8)
N3'0.0248 (10)0.0205 (9)0.0220 (9)0.0007 (7)0.0009 (7)0.0005 (7)
C1'0.0231 (11)0.0235 (11)0.0275 (12)0.0040 (9)0.0028 (9)0.0016 (9)
C2'0.0249 (12)0.0323 (13)0.0351 (13)0.0054 (10)0.0068 (10)0.0099 (11)
C3'0.0243 (12)0.0230 (11)0.0489 (15)0.0012 (9)0.0029 (11)0.0054 (11)
C4'0.0264 (12)0.0226 (11)0.0398 (14)0.0019 (9)0.0020 (10)0.0054 (10)
C5'0.0222 (11)0.0261 (12)0.0276 (12)0.0023 (9)0.0015 (9)0.0019 (9)
C6'0.0180 (10)0.0200 (10)0.0253 (11)0.0013 (8)0.0003 (8)0.0018 (9)
C7'0.0221 (11)0.0245 (11)0.0240 (11)0.0042 (9)0.0012 (9)0.0044 (9)
C8'0.0201 (11)0.0236 (11)0.0239 (11)0.0009 (9)0.0014 (9)0.0005 (9)
C9'0.0188 (10)0.0241 (11)0.0191 (10)0.0010 (8)0.0031 (8)0.0007 (9)
C10'0.0225 (11)0.0244 (11)0.0254 (11)0.0015 (9)0.0003 (9)0.0029 (9)
C11'0.0234 (12)0.0401 (14)0.0238 (12)0.0014 (10)0.0050 (9)0.0011 (10)
C12'0.0270 (12)0.0324 (12)0.0191 (11)0.0086 (10)0.0023 (9)0.0053 (9)
C13'0.0274 (12)0.0237 (11)0.0217 (11)0.0026 (9)0.0049 (9)0.0002 (9)
C14'0.0227 (11)0.0255 (11)0.0202 (11)0.0002 (9)0.0014 (8)0.0017 (9)
C15'0.0226 (12)0.0334 (13)0.0298 (12)0.0030 (10)0.0054 (9)0.0052 (10)
C16'0.0166 (10)0.0295 (12)0.0277 (12)0.0022 (9)0.0008 (9)0.0035 (10)
C17'0.0186 (11)0.0360 (13)0.0250 (12)0.0022 (9)0.0001 (9)0.0057 (10)
C18'0.0211 (11)0.0325 (12)0.0264 (11)0.0035 (9)0.0022 (9)0.0038 (10)
C19'0.0210 (11)0.0260 (11)0.0346 (13)0.0010 (9)0.0015 (10)0.0023 (10)
C20'0.0265 (12)0.0382 (14)0.0264 (12)0.0035 (10)0.0015 (9)0.0063 (10)
C21'0.0214 (11)0.0355 (13)0.0233 (11)0.0013 (9)0.0012 (9)0.0010 (10)
Geometric parameters (Å, º) top
Cl1—C191.734 (2)Cl1'—C19'1.745 (2)
O1—C81.422 (3)O1'—C8'1.421 (3)
O1—C151.432 (3)O1'—C15'1.435 (3)
N1—N21.309 (3)N1'—N2'1.299 (3)
N1—C11.371 (3)N1'—C1'1.377 (3)
N2—N31.361 (2)N2'—N3'1.356 (3)
N3—C61.353 (3)N3'—C6'1.360 (3)
N3—C71.445 (3)N3'—C7'1.446 (3)
C1—C61.394 (3)C1'—C6'1.397 (3)
C1—C21.401 (3)C1'—C2'1.403 (3)
C2—C31.371 (4)C2'—C3'1.365 (4)
C2—H20.95C2'—H2'0.95
C3—C41.411 (3)C3'—C4'1.415 (3)
C3—H30.95C3'—H3'0.95
C4—C51.373 (3)C4'—C5'1.371 (3)
C4—H40.95C4'—H4'0.95
C5—C61.395 (3)C5'—C6'1.395 (3)
C5—H50.95C5'—H5'0.9500
C7—C81.525 (3)C7'—C8'1.516 (3)
C7—H7A0.99C7'—H7C0.99
C7—H7B0.99C7'—H7D0.99
C8—C91.510 (3)C8'—C9'1.514 (3)
C8—H81.00C8'—H8'1.00
C9—C141.387 (3)C9'—C14'1.389 (3)
C9—C101.396 (3)C9'—C10'1.397 (3)
C10—C111.385 (3)C10'—C11'1.382 (3)
C10—H100.95C10'—H10'0.95
C11—C121.385 (3)C11'—C12'1.383 (3)
C11—H110.95C11'—H11'0.95
C12—C131.382 (3)C12'—C13'1.381 (3)
C12—H120.95C12'—H12'0.95
C13—C141.392 (3)C13'—C14'1.391 (3)
C13—H130.95C13'—H13'0.95
C14—H140.95C14'—H14'0.95
C15—C161.497 (3)C15'—C16'1.498 (3)
C15—H15A0.99C15'—H15C0.99
C15—H15B0.99C15'—H15D0.99
C16—C211.384 (3)C16'—C17'1.384 (3)
C16—C171.392 (3)C16'—C21'1.398 (3)
C17—C181.379 (3)C17'—C18'1.384 (3)
C17—H170.95C17'—H17'0.95
C18—C191.391 (3)C18'—C19'1.380 (3)
C18—H180.95C18'—H18'0.95
C19—C201.369 (3)C19'—C20'1.377 (3)
C20—C211.393 (3)C20'—C21'1.383 (3)
C20—H200.95C20'—H20'0.95
C21—H210.95C21'—H21'0.95
C8—O1—C15113.13 (17)C8'—O1'—C15'113.31 (17)
N2—N1—C1108.55 (18)N2'—N1'—C1'108.11 (18)
N1—N2—N3108.07 (18)N1'—N2'—N3'109.20 (18)
C6—N3—N2110.69 (17)N2'—N3'—C6'110.10 (18)
C6—N3—C7128.75 (18)N2'—N3'—C7'119.96 (18)
N2—N3—C7120.56 (18)C6'—N3'—C7'129.59 (19)
N1—C1—C6108.6 (2)N1'—C1'—C6'108.51 (19)
N1—C1—C2131.3 (2)N1'—C1'—C2'131.2 (2)
C6—C1—C2120.1 (2)C6'—C1'—C2'120.3 (2)
C3—C2—C1117.5 (2)C3'—C2'—C1'117.2 (2)
C3—C2—H2121.2C3'—C2'—H2'121.4
C1—C2—H2121.2C1'—C2'—H2'121.4
C2—C3—C4121.5 (2)C2'—C3'—C4'121.9 (2)
C2—C3—H3119.3C2'—C3'—H3'119.0
C4—C3—H3119.3C4'—C3'—H3'119.0
C5—C4—C3121.9 (2)C5'—C4'—C3'121.6 (2)
C5—C4—H4119.0C5'—C4'—H4'119.2
C3—C4—H4119.0C3'—C4'—H4'119.2
C4—C5—C6116.2 (2)C4'—C5'—C6'116.4 (2)
C4—C5—H5121.9C4'—C5'—H5'121.8
C6—C5—H5121.9C6'—C5'—H5'121.8
N3—C6—C1104.13 (19)N3'—C6'—C5'133.4 (2)
N3—C6—C5133.0 (2)N3'—C6'—C1'104.07 (19)
C1—C6—C5122.8 (2)C5'—C6'—C1'122.5 (2)
N3—C7—C8111.97 (18)N3'—C7'—C8'112.26 (18)
N3—C7—H7A109.2N3'—C7'—H7C109.2
C8—C7—H7A109.2C8'—C7'—H7C109.2
N3—C7—H7B109.2N3'—C7'—H7D109.2
C8—C7—H7B109.2C8'—C7'—H7D109.2
H7A—C7—H7B107.9H7C—C7'—H7D107.9
O1—C8—C9112.19 (17)O1'—C8'—C9'112.79 (17)
O1—C8—C7107.12 (17)O1'—C8'—C7'106.87 (17)
C9—C8—C7111.46 (18)C9'—C8'—C7'111.70 (18)
O1—C8—H8108.7O1'—C8'—H8'108.4
C9—C8—H8108.7C9'—C8'—H8'108.4
C7—C8—H8108.7C7'—C8'—H8'108.4
C14—C9—C10119.3 (2)C14'—C9'—C10'119.0 (2)
C14—C9—C8120.78 (19)C14'—C9'—C8'119.57 (19)
C10—C9—C8119.91 (19)C10'—C9'—C8'121.38 (19)
C11—C10—C9120.2 (2)C11'—C10'—C9'120.5 (2)
C11—C10—H10119.9C11'—C10'—H10'119.7
C9—C10—H10119.9C9'—C10'—H10'119.7
C12—C11—C10120.2 (2)C10'—C11'—C12'120.1 (2)
C12—C11—H11119.9C10'—C11'—H11'120.0
C10—C11—H11119.9C12'—C11'—H11'120.0
C13—C12—C11120.0 (2)C13'—C12'—C11'119.9 (2)
C13—C12—H12120.0C13'—C12'—H12'120.0
C11—C12—H12120.0C11'—C12'—H12'120.0
C12—C13—C14120.1 (2)C12'—C13'—C14'120.3 (2)
C12—C13—H13120.0C12'—C13'—H13'119.9
C14—C13—H13120.0C14'—C13'—H13'119.9
C9—C14—C13120.3 (2)C9'—C14'—C13'120.1 (2)
C9—C14—H14119.9C9'—C14'—H14'119.9
C13—C14—H14119.9C13'—C14'—H14'119.9
O1—C15—C16109.06 (18)O1'—C15'—C16'108.11 (18)
O1—C15—H15A109.9O1'—C15'—H15C110.1
C16—C15—H15A109.9C16'—C15'—H15C110.1
O1—C15—H15B109.9O1'—C15'—H15D110.1
C16—C15—H15B109.9C16'—C15'—H15D110.1
H15A—C15—H15B108.3H15C—C15'—H15D108.4
C21—C16—C17118.9 (2)C17'—C16'—C21'119.1 (2)
C21—C16—C15120.9 (2)C17'—C16'—C15'121.9 (2)
C17—C16—C15120.2 (2)C21'—C16'—C15'119.0 (2)
C18—C17—C16120.9 (2)C16'—C17'—C18'121.1 (2)
C18—C17—H17119.6C16'—C17'—H17'119.5
C16—C17—H17119.6C18'—C17'—H17'119.5
C17—C18—C19118.9 (2)C19'—C18'—C17'118.6 (2)
C17—C18—H18120.5C19'—C18'—H18'120.7
C19—C18—H18120.5C17'—C18'—H18'120.7
C20—C19—C18121.4 (2)C20'—C19'—C18'121.6 (2)
C20—C19—Cl1119.79 (18)C20'—C19'—Cl1'119.05 (18)
C18—C19—Cl1118.85 (19)C18'—C19'—Cl1'119.30 (18)
C19—C20—C21119.1 (2)C19'—C20'—C21'119.4 (2)
C19—C20—H20120.5C19'—C20'—H20'120.3
C21—C20—H20120.5C21'—C20'—H20'120.3
C16—C21—C20120.8 (2)C20'—C21'—C16'120.1 (2)
C16—C21—H21119.6C20'—C21'—H21'119.9
C20—C21—H21119.6C16'—C21'—H21'119.9
C1—N1—N2—N30.4 (2)C1'—N1'—N2'—N3'1.1 (2)
N1—N2—N3—C60.2 (2)N1'—N2'—N3'—C6'1.2 (2)
N1—N2—N3—C7179.79 (19)N1'—N2'—N3'—C7'175.07 (19)
N2—N1—C1—C60.4 (3)N2'—N1'—C1'—C6'0.6 (3)
N2—N1—C1—C2179.3 (2)N2'—N1'—C1'—C2'178.9 (2)
N1—C1—C2—C3177.2 (2)N1'—C1'—C2'—C3'179.9 (2)
C6—C1—C2—C31.7 (3)C6'—C1'—C2'—C3'0.5 (3)
C1—C2—C3—C40.2 (4)C1'—C2'—C3'—C4'1.0 (4)
C2—C3—C4—C51.6 (4)C2'—C3'—C4'—C5'1.0 (4)
C3—C4—C5—C61.7 (3)C3'—C4'—C5'—C6'0.4 (3)
N2—N3—C6—C10.1 (2)N2'—N3'—C6'—C5'178.8 (2)
C7—N3—C6—C1179.5 (2)C7'—N3'—C6'—C5'5.7 (4)
N2—N3—C6—C5177.4 (2)N2'—N3'—C6'—C1'0.8 (2)
C7—N3—C6—C53.0 (4)C7'—N3'—C6'—C1'173.9 (2)
N1—C1—C6—N30.3 (2)C4'—C5'—C6'—N3'179.7 (2)
C2—C1—C6—N3179.4 (2)C4'—C5'—C6'—C1'0.1 (3)
N1—C1—C6—C5177.6 (2)N1'—C1'—C6'—N3'0.2 (2)
C2—C1—C6—C51.5 (3)C2'—C1'—C6'—N3'179.7 (2)
C4—C5—C6—N3176.9 (2)N1'—C1'—C6'—C5'179.5 (2)
C4—C5—C6—C10.2 (3)C2'—C1'—C6'—C5'0.0 (3)
C6—N3—C7—C885.9 (3)N2'—N3'—C7'—C8'99.2 (2)
N2—N3—C7—C893.6 (2)C6'—N3'—C7'—C8'88.3 (3)
C15—O1—C8—C986.2 (2)C15'—O1'—C8'—C9'73.5 (2)
C15—O1—C8—C7151.18 (19)C15'—O1'—C8'—C7'163.40 (18)
N3—C7—C8—O157.0 (2)N3'—C7'—C8'—O1'64.4 (2)
N3—C7—C8—C9179.89 (17)N3'—C7'—C8'—C9'171.82 (18)
O1—C8—C9—C14115.0 (2)O1'—C8'—C9'—C14'116.4 (2)
C7—C8—C9—C14124.9 (2)C7'—C8'—C9'—C14'123.2 (2)
O1—C8—C9—C1065.3 (2)O1'—C8'—C9'—C10'64.3 (3)
C7—C8—C9—C1054.9 (3)C7'—C8'—C9'—C10'56.1 (3)
C14—C9—C10—C110.8 (3)C14'—C9'—C10'—C11'0.0 (3)
C8—C9—C10—C11178.91 (19)C8'—C9'—C10'—C11'179.3 (2)
C9—C10—C11—C121.1 (3)C9'—C10'—C11'—C12'0.6 (3)
C10—C11—C12—C130.4 (3)C10'—C11'—C12'—C13'0.6 (3)
C11—C12—C13—C140.6 (3)C11'—C12'—C13'—C14'0.1 (3)
C10—C9—C14—C130.1 (3)C10'—C9'—C14'—C13'0.7 (3)
C8—C9—C14—C13179.87 (19)C8'—C9'—C14'—C13'179.99 (19)
C12—C13—C14—C90.8 (3)C12'—C13'—C14'—C9'0.8 (3)
C8—O1—C15—C16165.84 (19)C8'—O1'—C15'—C16'154.90 (18)
O1—C15—C16—C21121.1 (2)O1'—C15'—C16'—C17'124.1 (2)
O1—C15—C16—C1759.8 (3)O1'—C15'—C16'—C21'55.9 (3)
C21—C16—C17—C180.9 (3)C21'—C16'—C17'—C18'0.8 (3)
C15—C16—C17—C18180.0 (2)C15'—C16'—C17'—C18'179.2 (2)
C16—C17—C18—C191.3 (4)C16'—C17'—C18'—C19'0.5 (3)
C17—C18—C19—C201.2 (4)C17'—C18'—C19'—C20'0.1 (3)
C17—C18—C19—Cl1178.19 (18)C17'—C18'—C19'—Cl1'178.37 (17)
C18—C19—C20—C210.8 (4)C18'—C19'—C20'—C21'0.3 (4)
Cl1—C19—C20—C21178.61 (17)Cl1'—C19'—C20'—C21'178.62 (18)
C17—C16—C21—C200.5 (3)C19'—C20'—C21'—C16'0.0 (4)
C15—C16—C21—C20179.5 (2)C17'—C16'—C21'—C20'0.5 (3)
C19—C20—C21—C160.4 (3)C15'—C16'—C21'—C20'179.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are centroids of the C9–C14, C9'–C14' and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg2i0.952.623.515 (2)157
C11—H11···Cg1ii0.952.793.635 (2)149
C14—H14···Cg2iii0.952.643.584 (2)172
C14—H14···Cg1iv0.952.813.755 (2)172
C18—H18···Cg3v0.952.833.502 (2)129
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z1; (iii) x1, y1/2, z1/2; (iv) x, y1/2, z3/2; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H18ClN3O
Mr363.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)7.2163 (2), 36.8545 (9), 13.3019 (3)
β (°) 91.529 (1)
V3)3536.42 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.40 × 0.14
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.910, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
26731, 7993, 5918
Rint0.051
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.189, 1.07
No. of reflections7993
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.69

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are centroids of the C9–C14, C9'–C14' and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg2i0.952.623.515 (2)157
C11'—H11'···Cg1ii0.952.793.635 (2)149
C14—H14···Cg2iii0.952.643.584 (2)172
C14'—H14'···Cg1iv0.952.813.755 (2)172
C18'—H18'···Cg3v0.952.833.502 (2)129
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z1; (iii) x1, y1/2, z1/2; (iv) x, y1/2, z3/2; (v) x, y, z1.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund for support.

References

First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973–1978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807–2809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1914–o1915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Bull. Soc. Chim. Belg. 88, 265–272.  CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, S. N., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.  PubMed CAS Google Scholar
First citationYu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds