organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3-chloro­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 May 2010; accepted 9 May 2010; online 15 May 2010)

The asymmetric unit of the title compound, C13H9Cl2NO3S, contains two independent mol­ecules. The conformation of the C=O bond is anti to the meta-Cl group in the chloro­benzoyl group of one of the mol­ecules and syn in the other. The dihedral angles between the sulfonyl and benzoyl benzene rings are 77.8 (1) and 83.5 (1)°. In the crystal structure, two pairs of independent mol­ecules are linked into a tetra­mer by N—H⋯O hydrogen bonds.

Related literature

For background literature and related structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433.]); Suchetan et al. (2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1040.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1292.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO3S

  • Mr = 330.17

  • Triclinic, [P \overline 1]

  • a = 7.4399 (6) Å

  • b = 11.679 (1) Å

  • c = 17.138 (2) Å

  • α = 75.346 (7)°

  • β = 83.188 (8)°

  • γ = 77.732 (7)°

  • V = 1404.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 299 K

  • 0.20 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.887, Tmax = 0.952

  • 9768 measured reflections

  • 5694 independent reflections

  • 4267 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.04

  • 5694 reflections

  • 367 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.84 (2) 2.02 (2) 2.836 (4) 162 (4)
N2—H2N⋯O5i 0.85 (2) 2.10 (2) 2.937 (4) 173 (4)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and the side chain substitutions on the crystal structures of N-aryl sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010a,b), the structure of 2-chloro-N-(3-chlorobenzoyl)-benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules. In the C—SO2—NH—C(O) segments, the N—H bonds are anti to the CO bonds (Fig.1), similar to those observed in 2-chloro-N- (3-methylbenzoyl)-benzenesulfonamide (II) (Suchetan et al., 2010b), 2-methyl-N-(3-methylbenzoyl)-benzenesulfonamide (III) (Gowda et al., 2010), 2-chloro-N-(2-chlorobenzoyl)- benzenesulfonamide (IV)(Suchetan et al., 2010a), N-(benzoyl)-benzenesulfonamide (V) (Gowda et al., 2009).

The conformation of the CO bond is anti to the meta-Cl group in the benzoyl ring of one of the molecules and syn in the other, compared to the anti conformation observed between CO bond and meta- methyl group in the benzoyl ring of (II).

The chlorobenzoyl and sulfonyl-bound chlorophenyl units in the two molecules of (I) are twisted with respect to the S—N bond, with torsional angles of -62.6 (3)° [C7—N1—S1—C1] and -62.6 (3)° [C20—N2—S2—C14], compared to those of -66.5 (2)° in (II), -66.2 (3)° in (III), -66.5 (2)° in (IV) and -66.9 (3)° in (V). The dihedral angles between the sulfonyl and the benzoyl- bound benzene rings are 77.8 (1)° (molecule 1) and 83.5 (1)° (molecule 2), compared to the values of 74.7 (1)° in (II), 74.8 (1)° in (III), 76.9 (1) in (IV) and 80.3 (1)° in (V).

Related literature top

For background literature and related structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010a,b).

Experimental top

The title compound was prepared by refluxing a mixture of 3-chlorobenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and refined with the a N–H distance restraint of 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å.

All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The residual electron-density features are located in the region of H25 and Cl4. The highest peak is 0.98 Å from H25 and the deepest hole is 0.68 Å from Cl4.

Structure description top

As a part of studying the effect of ring and the side chain substitutions on the crystal structures of N-aryl sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010a,b), the structure of 2-chloro-N-(3-chlorobenzoyl)-benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules. In the C—SO2—NH—C(O) segments, the N—H bonds are anti to the CO bonds (Fig.1), similar to those observed in 2-chloro-N- (3-methylbenzoyl)-benzenesulfonamide (II) (Suchetan et al., 2010b), 2-methyl-N-(3-methylbenzoyl)-benzenesulfonamide (III) (Gowda et al., 2010), 2-chloro-N-(2-chlorobenzoyl)- benzenesulfonamide (IV)(Suchetan et al., 2010a), N-(benzoyl)-benzenesulfonamide (V) (Gowda et al., 2009).

The conformation of the CO bond is anti to the meta-Cl group in the benzoyl ring of one of the molecules and syn in the other, compared to the anti conformation observed between CO bond and meta- methyl group in the benzoyl ring of (II).

The chlorobenzoyl and sulfonyl-bound chlorophenyl units in the two molecules of (I) are twisted with respect to the S—N bond, with torsional angles of -62.6 (3)° [C7—N1—S1—C1] and -62.6 (3)° [C20—N2—S2—C14], compared to those of -66.5 (2)° in (II), -66.2 (3)° in (III), -66.5 (2)° in (IV) and -66.9 (3)° in (V). The dihedral angles between the sulfonyl and the benzoyl- bound benzene rings are 77.8 (1)° (molecule 1) and 83.5 (1)° (molecule 2), compared to the values of 74.7 (1)° in (II), 74.8 (1)° in (III), 76.9 (1) in (IV) and 80.3 (1)° in (V).

For background literature and related structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010a,b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-Chloro-N-(3-chlorobenzoyl)benzenesulfonamide top
Crystal data top
C13H9Cl2NO3SZ = 4
Mr = 330.17F(000) = 672
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4399 (6) ÅCell parameters from 3572 reflections
b = 11.679 (1) Åθ = 2.5–27.8°
c = 17.138 (2) ŵ = 0.62 mm1
α = 75.346 (7)°T = 299 K
β = 83.188 (8)°Rod, colourless
γ = 77.732 (7)°0.20 × 0.14 × 0.08 mm
V = 1404.5 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5694 independent reflections
Radiation source: fine-focus sealed tube4267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 95
Tmin = 0.887, Tmax = 0.952k = 1414
9768 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0682P)2 + 1.64P]
where P = (Fo2 + 2Fc2)/3
5694 reflections(Δ/σ)max = 0.014
367 parametersΔρmax = 1.10 e Å3
2 restraintsΔρmin = 0.50 e Å3
Crystal data top
C13H9Cl2NO3Sγ = 77.732 (7)°
Mr = 330.17V = 1404.5 (2) Å3
Triclinic, P1Z = 4
a = 7.4399 (6) ÅMo Kα radiation
b = 11.679 (1) ŵ = 0.62 mm1
c = 17.138 (2) ÅT = 299 K
α = 75.346 (7)°0.20 × 0.14 × 0.08 mm
β = 83.188 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5694 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4267 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.952Rint = 0.018
9768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.10 e Å3
5694 reflectionsΔρmin = 0.50 e Å3
367 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2455 (4)1.0034 (3)0.13610 (19)0.0380 (7)
C20.4149 (4)1.0391 (3)0.1159 (2)0.0432 (8)
C30.4422 (5)1.1225 (3)0.0442 (2)0.0543 (9)
H30.55561.14640.03040.065*
C40.3009 (6)1.1700 (4)0.0067 (2)0.0594 (10)
H40.31991.22580.05480.071*
C50.1320 (5)1.1358 (3)0.0128 (2)0.0564 (10)
H50.03721.16900.02170.068*
C60.1041 (5)1.0522 (3)0.0839 (2)0.0473 (8)
H60.00951.02830.09700.057*
C70.3347 (4)0.7053 (3)0.1700 (2)0.0421 (7)
C80.4322 (4)0.5771 (3)0.1922 (2)0.0403 (7)
C90.5166 (5)0.5225 (3)0.1304 (2)0.0488 (8)
H90.51570.56590.07680.059*
C100.6012 (5)0.4034 (4)0.1500 (3)0.0539 (9)
C110.5995 (5)0.3361 (4)0.2282 (3)0.0596 (10)
H110.65490.25500.23990.072*
C120.5148 (6)0.3901 (4)0.2892 (3)0.0614 (10)
H120.51350.34500.34240.074*
C130.4315 (5)0.5106 (3)0.2723 (2)0.0487 (8)
H130.37570.54680.31380.058*
N10.3355 (4)0.7713 (2)0.22646 (18)0.0434 (7)
H1N0.423 (4)0.755 (3)0.2573 (19)0.052*
O10.0127 (3)0.8835 (2)0.22699 (17)0.0600 (7)
O20.2495 (4)0.9355 (2)0.29433 (14)0.0529 (6)
O30.2575 (4)0.7488 (2)0.10731 (15)0.0548 (6)
S10.19546 (11)0.90062 (8)0.22791 (5)0.0418 (2)
Cl10.59757 (13)0.98058 (10)0.17710 (6)0.0621 (3)
Cl20.71150 (19)0.33696 (12)0.07272 (9)0.0864 (4)
C140.7395 (4)0.7963 (3)0.4444 (2)0.0418 (7)
C150.9034 (5)0.8353 (3)0.4444 (2)0.0469 (8)
C160.9072 (6)0.9573 (4)0.4233 (2)0.0573 (10)
H161.01620.98380.42400.069*
C170.7485 (7)1.0391 (4)0.4014 (3)0.0648 (11)
H170.75101.12110.38750.078*
C180.5875 (6)1.0018 (4)0.3996 (3)0.0633 (11)
H180.48161.05820.38410.076*
C190.5817 (5)0.8804 (3)0.4208 (2)0.0506 (9)
H190.47220.85500.41930.061*
C200.7982 (5)0.6143 (3)0.3232 (2)0.0473 (8)
C210.9079 (5)0.5420 (3)0.2688 (2)0.0470 (8)
C220.9803 (5)0.4209 (3)0.2962 (2)0.0511 (9)
H220.96810.38310.35070.061*
C231.0719 (5)0.3567 (4)0.2401 (3)0.0597 (10)
C241.0906 (6)0.4131 (5)0.1593 (3)0.0659 (11)
H241.15110.36910.12250.079*
C251.0212 (6)0.5326 (5)0.1332 (3)0.0721 (12)
H251.03630.57030.07880.087*
C260.9289 (5)0.5978 (4)0.1869 (2)0.0587 (10)
H260.88030.67930.16870.070*
N20.8416 (4)0.5803 (3)0.40323 (18)0.0477 (7)
H2N0.946 (3)0.537 (3)0.415 (2)0.057*
O40.5315 (3)0.6379 (3)0.4726 (2)0.0700 (8)
O50.8139 (3)0.5845 (2)0.54567 (15)0.0547 (6)
O60.6750 (4)0.6993 (2)0.30102 (18)0.0620 (8)
S20.71956 (11)0.64315 (8)0.47362 (6)0.0466 (2)
Cl31.10996 (13)0.73583 (10)0.46678 (7)0.0686 (3)
Cl41.1539 (2)0.20474 (11)0.27335 (10)0.0915 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (16)0.0328 (16)0.0392 (17)0.0003 (13)0.0070 (13)0.0059 (13)
C20.0401 (18)0.0421 (18)0.0462 (19)0.0046 (14)0.0122 (14)0.0067 (15)
C30.054 (2)0.054 (2)0.053 (2)0.0187 (18)0.0060 (17)0.0012 (17)
C40.075 (3)0.048 (2)0.049 (2)0.0125 (19)0.0116 (19)0.0042 (17)
C50.058 (2)0.050 (2)0.053 (2)0.0010 (18)0.0241 (18)0.0023 (17)
C60.0389 (18)0.0459 (19)0.055 (2)0.0031 (15)0.0151 (15)0.0060 (16)
C70.0380 (17)0.0400 (18)0.0467 (19)0.0116 (14)0.0031 (14)0.0040 (14)
C80.0340 (16)0.0381 (17)0.0496 (19)0.0107 (13)0.0064 (14)0.0067 (14)
C90.050 (2)0.048 (2)0.051 (2)0.0133 (16)0.0048 (16)0.0118 (16)
C100.047 (2)0.051 (2)0.069 (3)0.0105 (17)0.0015 (18)0.0247 (19)
C110.054 (2)0.042 (2)0.078 (3)0.0032 (17)0.006 (2)0.0086 (19)
C120.063 (2)0.047 (2)0.062 (3)0.0045 (19)0.003 (2)0.0032 (19)
C130.0467 (19)0.0434 (19)0.052 (2)0.0079 (15)0.0009 (16)0.0050 (16)
N10.0409 (15)0.0375 (15)0.0500 (17)0.0019 (12)0.0174 (12)0.0052 (13)
O10.0351 (13)0.0638 (17)0.0706 (18)0.0073 (12)0.0041 (12)0.0016 (13)
O20.0630 (16)0.0529 (15)0.0388 (13)0.0027 (12)0.0037 (11)0.0104 (11)
O30.0632 (16)0.0486 (14)0.0504 (15)0.0082 (12)0.0212 (12)0.0019 (11)
S10.0359 (4)0.0405 (4)0.0432 (5)0.0018 (3)0.0037 (3)0.0033 (3)
Cl10.0421 (5)0.0781 (7)0.0618 (6)0.0153 (4)0.0194 (4)0.0017 (5)
Cl20.0947 (9)0.0792 (8)0.0946 (9)0.0088 (7)0.0062 (7)0.0494 (7)
C140.0397 (17)0.0442 (18)0.0381 (17)0.0008 (14)0.0055 (13)0.0082 (14)
C150.0420 (18)0.058 (2)0.0384 (18)0.0080 (16)0.0051 (14)0.0075 (16)
C160.063 (2)0.062 (2)0.051 (2)0.022 (2)0.0014 (18)0.0133 (18)
C170.087 (3)0.046 (2)0.059 (2)0.008 (2)0.006 (2)0.0116 (18)
C180.066 (3)0.052 (2)0.067 (3)0.008 (2)0.017 (2)0.014 (2)
C190.0440 (19)0.052 (2)0.056 (2)0.0047 (16)0.0138 (16)0.0199 (17)
C200.0471 (19)0.0395 (18)0.059 (2)0.0079 (15)0.0202 (16)0.0107 (16)
C210.0423 (18)0.0457 (19)0.056 (2)0.0091 (15)0.0205 (16)0.0082 (16)
C220.052 (2)0.046 (2)0.058 (2)0.0081 (16)0.0127 (17)0.0133 (17)
C230.051 (2)0.051 (2)0.083 (3)0.0113 (18)0.012 (2)0.022 (2)
C240.057 (2)0.086 (3)0.066 (3)0.024 (2)0.001 (2)0.032 (2)
C250.072 (3)0.086 (3)0.060 (3)0.027 (3)0.006 (2)0.010 (2)
C260.056 (2)0.060 (2)0.060 (2)0.0166 (19)0.0180 (19)0.0027 (19)
N20.0421 (16)0.0456 (17)0.0520 (18)0.0066 (13)0.0206 (13)0.0100 (13)
O40.0343 (13)0.0585 (17)0.112 (2)0.0072 (12)0.0075 (14)0.0100 (16)
O50.0500 (14)0.0572 (15)0.0441 (14)0.0009 (12)0.0030 (11)0.0020 (11)
O60.0612 (16)0.0461 (15)0.0787 (19)0.0104 (12)0.0416 (14)0.0149 (13)
S20.0334 (4)0.0445 (5)0.0555 (5)0.0009 (3)0.0062 (4)0.0041 (4)
Cl30.0357 (5)0.0757 (7)0.0822 (7)0.0091 (4)0.0112 (4)0.0057 (5)
Cl40.1048 (10)0.0482 (6)0.1177 (11)0.0030 (6)0.0070 (8)0.0277 (7)
Geometric parameters (Å, º) top
C1—C21.389 (5)C14—C191.388 (5)
C1—C61.394 (4)C14—C151.390 (5)
C1—S11.775 (3)C14—S21.765 (4)
C2—C31.386 (5)C15—C161.384 (5)
C2—Cl11.730 (3)C15—Cl31.736 (4)
C3—C41.377 (5)C16—C171.375 (6)
C3—H30.93C16—H160.93
C4—C51.377 (6)C17—C181.365 (6)
C4—H40.93C17—H170.93
C5—C61.381 (5)C18—C191.380 (6)
C5—H50.93C18—H180.93
C6—H60.93C19—H190.93
C7—O31.220 (4)C20—O61.214 (4)
C7—N11.382 (4)C20—N21.384 (5)
C7—C81.493 (5)C20—C211.475 (5)
C8—C91.391 (5)C21—C221.382 (5)
C8—C131.396 (5)C21—C261.396 (5)
C9—C101.374 (5)C22—C231.393 (6)
C9—H90.93C22—H220.93
C10—C111.372 (6)C23—C241.379 (6)
C10—Cl21.738 (4)C23—Cl41.719 (4)
C11—C121.377 (6)C24—C251.359 (7)
C11—H110.93C24—H240.93
C12—C131.383 (5)C25—C261.371 (6)
C12—H120.93C25—H250.93
C13—H130.93C26—H260.93
N1—S11.647 (3)N2—S21.650 (3)
N1—H1N0.845 (18)N2—H2N0.846 (19)
O1—S11.418 (3)O4—S21.416 (3)
O2—S11.427 (3)O5—S21.435 (3)
C2—C1—C6119.5 (3)C19—C14—C15119.4 (3)
C2—C1—S1123.1 (2)C19—C14—S2117.3 (3)
C6—C1—S1117.3 (3)C15—C14—S2123.2 (3)
C3—C2—C1119.9 (3)C16—C15—C14120.0 (3)
C3—C2—Cl1118.1 (3)C16—C15—Cl3117.6 (3)
C1—C2—Cl1122.0 (3)C14—C15—Cl3122.4 (3)
C4—C3—C2119.9 (4)C17—C16—C15119.5 (4)
C4—C3—H3120.1C17—C16—H16120.2
C2—C3—H3120.1C15—C16—H16120.2
C5—C4—C3120.8 (4)C18—C17—C16121.0 (4)
C5—C4—H4119.6C18—C17—H17119.5
C3—C4—H4119.6C16—C17—H17119.5
C4—C5—C6119.7 (3)C17—C18—C19120.0 (4)
C4—C5—H5120.1C17—C18—H18120.0
C6—C5—H5120.1C19—C18—H18120.0
C5—C6—C1120.2 (3)C18—C19—C14120.0 (4)
C5—C6—H6119.9C18—C19—H19120.0
C1—C6—H6119.9C14—C19—H19120.0
O3—C7—N1122.1 (3)O6—C20—N2120.3 (3)
O3—C7—C8122.8 (3)O6—C20—C21123.3 (3)
N1—C7—C8115.0 (3)N2—C20—C21116.4 (3)
C9—C8—C13120.1 (3)C22—C21—C26120.2 (4)
C9—C8—C7118.4 (3)C22—C21—C20121.8 (3)
C13—C8—C7121.4 (3)C26—C21—C20117.9 (3)
C10—C9—C8118.8 (4)C21—C22—C23118.5 (4)
C10—C9—H9120.6C21—C22—H22120.8
C8—C9—H9120.6C23—C22—H22120.8
C9—C10—C11121.9 (4)C24—C23—C22120.6 (4)
C9—C10—Cl2118.5 (3)C24—C23—Cl4120.8 (4)
C11—C10—Cl2119.6 (3)C22—C23—Cl4118.6 (3)
C12—C11—C10119.2 (4)C25—C24—C23120.5 (4)
C12—C11—H11120.4C25—C24—H24119.7
C10—C11—H11120.4C23—C24—H24119.7
C11—C12—C13120.8 (4)C24—C25—C26120.2 (4)
C11—C12—H12119.6C24—C25—H25119.9
C13—C12—H12119.6C26—C25—H25119.9
C12—C13—C8119.2 (4)C25—C26—C21120.1 (4)
C12—C13—H13120.4C25—C26—H26119.9
C8—C13—H13120.4C21—C26—H26119.9
C7—N1—S1123.8 (2)C20—N2—S2122.5 (2)
C7—N1—H1N121 (3)C20—N2—H2N119 (3)
S1—N1—H1N114 (3)S2—N2—H2N117 (3)
O1—S1—O2120.43 (17)O4—S2—O5119.14 (18)
O1—S1—N1107.77 (16)O4—S2—N2109.45 (18)
O2—S1—N1103.83 (15)O5—S2—N2104.14 (15)
O1—S1—C1107.48 (16)O4—S2—C14107.70 (16)
O2—S1—C1109.82 (15)O5—S2—C14110.08 (16)
N1—S1—C1106.73 (15)N2—S2—C14105.52 (16)
C6—C1—C2—C30.2 (5)C19—C14—C15—C162.0 (5)
S1—C1—C2—C3178.1 (3)S2—C14—C15—C16177.8 (3)
C6—C1—C2—Cl1179.0 (3)C19—C14—C15—Cl3175.8 (3)
S1—C1—C2—Cl13.1 (4)S2—C14—C15—Cl34.5 (4)
C1—C2—C3—C40.2 (6)C14—C15—C16—C171.0 (6)
Cl1—C2—C3—C4179.1 (3)Cl3—C15—C16—C17176.9 (3)
C2—C3—C4—C50.2 (6)C15—C16—C17—C180.4 (6)
C3—C4—C5—C60.6 (6)C16—C17—C18—C190.6 (7)
C4—C5—C6—C10.7 (6)C17—C18—C19—C140.4 (6)
C2—C1—C6—C50.3 (5)C15—C14—C19—C181.7 (5)
S1—C1—C6—C5177.7 (3)S2—C14—C19—C18178.1 (3)
O3—C7—C8—C931.9 (5)O6—C20—C21—C22149.0 (4)
N1—C7—C8—C9149.0 (3)N2—C20—C21—C2230.7 (5)
O3—C7—C8—C13144.7 (4)O6—C20—C21—C2627.5 (5)
N1—C7—C8—C1334.4 (4)N2—C20—C21—C26152.8 (3)
C13—C8—C9—C101.1 (5)C26—C21—C22—C230.7 (5)
C7—C8—C9—C10177.8 (3)C20—C21—C22—C23175.8 (3)
C8—C9—C10—C112.2 (6)C21—C22—C23—C240.4 (6)
C8—C9—C10—Cl2178.3 (3)C21—C22—C23—Cl4177.4 (3)
C9—C10—C11—C121.7 (6)C22—C23—C24—C250.5 (6)
Cl2—C10—C11—C12178.8 (3)Cl4—C23—C24—C25178.3 (3)
C10—C11—C12—C130.2 (6)C23—C24—C25—C261.1 (7)
C11—C12—C13—C80.8 (6)C24—C25—C26—C210.8 (6)
C9—C8—C13—C120.3 (5)C22—C21—C26—C250.1 (5)
C7—C8—C13—C12176.3 (3)C20—C21—C26—C25176.5 (3)
O3—C7—N1—S115.6 (5)O6—C20—N2—S25.7 (5)
C8—C7—N1—S1163.5 (2)C21—C20—N2—S2173.9 (2)
C7—N1—S1—O152.6 (3)C20—N2—S2—O453.1 (3)
C7—N1—S1—O2178.6 (3)C20—N2—S2—O5178.5 (3)
C7—N1—S1—C162.6 (3)C20—N2—S2—C1462.6 (3)
C2—C1—S1—O1178.8 (3)C19—C14—S2—O44.5 (3)
C6—C1—S1—O13.3 (3)C15—C14—S2—O4175.2 (3)
C2—C1—S1—O248.6 (3)C19—C14—S2—O5135.9 (3)
C6—C1—S1—O2129.4 (3)C15—C14—S2—O543.9 (3)
C2—C1—S1—N163.4 (3)C19—C14—S2—N2112.3 (3)
C6—C1—S1—N1118.7 (3)C15—C14—S2—N267.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.84 (2)2.02 (2)2.836 (4)162 (4)
N2—H2N···O5i0.85 (2)2.10 (2)2.937 (4)173 (4)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO3S
Mr330.17
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.4399 (6), 11.679 (1), 17.138 (2)
α, β, γ (°)75.346 (7), 83.188 (8), 77.732 (7)
V3)1404.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.20 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.887, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
9768, 5694, 4267
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.04
No. of reflections5694
No. of parameters367
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.10, 0.50

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.84 (2)2.02 (2)2.836 (4)162 (4)
N2—H2N···O5i0.85 (2)2.10 (2)2.937 (4)173 (4)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1292.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds