organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-phenyl-1,2,3,3a,4,4a,5,12c-octa­hydro­naphtho[1′,2′:3,2]furo[5,4-b]pyrrolizine-4a-carboxyl­ate

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 4 May 2010; accepted 11 May 2010; online 15 May 2010)

In the title compound, C26H25NO3, both pyrrolidine rings adopt envelope conformations, whereas the dihydro­pyran ring adopts a half-chair conformation. The phenyl ring is oriented at an angle of 27.9 (1)° with respect to the naphthalene ring system. An intra­molecular C—H⋯O hydrogen bond is observed. The crystal packing is stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to pyrrolizine derivatives, see: Barsoum & Nawar (2003[Barsoum, F. F. & Nawar, N. N. (2003). Boll. Chim. Farm. 142, 160-166.]); Abbas et al. (2010[Abbas, S. E., Awadallah, F. M., Ibrahim, N. A. & Gouda, A. M. (2010). Eur. J. Med. Chem. 45, 482-491.]); Anderson & Corey (1977[Anderson, W. K. & Corey, P. F. (1977). J. Med. Chem. 20, 812-818.]); Makoni & Sugden (1980[Makoni, S. H. & Sugden, J. K. (1980). Arzneimittelforschung, 30, 1135-1137.]); Laufer et al. (1997[Laufer, S., Striegel, H. G., Neher, K., Zechmeister, P., Donat, C., Stolingwa, K., Baur, S., Tries, S., Kammermeier, T., Dannhardt, G. & Kiefer, W. (1997). Arch. Pharm. (Weinheim), 330, 307-312.]). For a related structure, see: Nirmala et al. (2009[Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1938.]). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NO3

  • Mr = 399.47

  • Orthorhombic, P b c a

  • a = 15.0117 (12) Å

  • b = 13.3421 (11) Å

  • c = 20.0242 (16) Å

  • V = 4010.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 43738 measured reflections

  • 4779 independent reflections

  • 3892 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.04

  • 4779 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O2 0.93 2.59 3.388 (2) 145
C7—H7⋯Cg2i 0.93 2.82 3.6435 (17) 148
C17—H17ACg2ii 0.97 2.78 3.7065 (17) 159
C21—H21⋯Cg1iii 0.93 2.49 3.4174 (18) 175
C26—H26BCg1iv 0.96 2.58 3.477 (2) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Pyrrolizine derivatives posses antimicrobial (Barsoum & Nawar, 2003), anti- inflammatory (Abbas et al., 2010) and antileukemic (Anderson & Corey, 1977) activities. These derivatives are used as inhibitors of blood platelet aggregation (Makoni & Sugden, 1980), dual cyclooxygenase-1 and 5-lipooxygenase (Laufer et al., 1997). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolizine derivative, and the results are presented here.

The geometry of the pyrrolizine and naphthalene ring system is comparable with that observed in a related structure (Nirmala et al., 2009). The sum of the angles (337.1°) around atom N1 is in accordance with sp3 hybridization. There is a short contact (2.19 Å) between atoms H12A and H24, which results in the widening of the C24—C19—C14 angle [124.1 (1)°] from the ideal value of 120°.

The naphthalene ring system (C2–C11) and the phenyl ring (C19–C24) are oriented at an angle of 27.9 (1)°. In the pyrrolizine ring system, both the pyrrolidine rings N1/C1/C13–C15 and N1/C15–C18 adopt envelope conformations; the puckering parameters (Cremer & Pople, 1975) are : q2 = 0.396 (1) Å and φ = -107.2 (2)° for N1/C1/C13–C15 ring, and q2 = 0.383 (2) Å and φ = -79.1 (2)° for N1/C15–C18 ring. In the N1/C1/C13–C15 ring, atom C13 deviates by 0.620 (1) Å from the least-squares plane through the remaining four atoms, whereas in the ring N1/C15—C18, atom C17 deviates by -0.583 (2) Å from the plane through the remaining four atoms. The dihydropyran ring of the chromene unit adopts a half-chair conformation, with the lowest asymmetry parameter ΔC2(C2–C11) of 3.8 (2)° (Nardelli, 1983).

The molecular structure is influenced by an intramolecular C—H···O hydrogen bond. The crystal packing is stabilized by weak intermolecular C—H···π interactions ((Table 1).

Related literature top

For general background to pyrrolizine derivatives, see: Barsoum & Nawar (2003); Abbas et al. (2010); Anderson & Corey (1977); Makoni & Sugden (1980); Laufer et al. (1997). For a related structure, see: Nirmala et al. (2009). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of (Z)-methyl-2[(1-formylnaphthalen-2-yloxy)methyl]-3-(4-phenyl) acrylate (20 mmol) and proline (30 mmol) was refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Single crystals were grown by slow evapoartion of a chloroform-methanol (1:1) soution.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Structure description top

Pyrrolizine derivatives posses antimicrobial (Barsoum & Nawar, 2003), anti- inflammatory (Abbas et al., 2010) and antileukemic (Anderson & Corey, 1977) activities. These derivatives are used as inhibitors of blood platelet aggregation (Makoni & Sugden, 1980), dual cyclooxygenase-1 and 5-lipooxygenase (Laufer et al., 1997). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolizine derivative, and the results are presented here.

The geometry of the pyrrolizine and naphthalene ring system is comparable with that observed in a related structure (Nirmala et al., 2009). The sum of the angles (337.1°) around atom N1 is in accordance with sp3 hybridization. There is a short contact (2.19 Å) between atoms H12A and H24, which results in the widening of the C24—C19—C14 angle [124.1 (1)°] from the ideal value of 120°.

The naphthalene ring system (C2–C11) and the phenyl ring (C19–C24) are oriented at an angle of 27.9 (1)°. In the pyrrolizine ring system, both the pyrrolidine rings N1/C1/C13–C15 and N1/C15–C18 adopt envelope conformations; the puckering parameters (Cremer & Pople, 1975) are : q2 = 0.396 (1) Å and φ = -107.2 (2)° for N1/C1/C13–C15 ring, and q2 = 0.383 (2) Å and φ = -79.1 (2)° for N1/C15–C18 ring. In the N1/C1/C13–C15 ring, atom C13 deviates by 0.620 (1) Å from the least-squares plane through the remaining four atoms, whereas in the ring N1/C15—C18, atom C17 deviates by -0.583 (2) Å from the plane through the remaining four atoms. The dihydropyran ring of the chromene unit adopts a half-chair conformation, with the lowest asymmetry parameter ΔC2(C2–C11) of 3.8 (2)° (Nardelli, 1983).

The molecular structure is influenced by an intramolecular C—H···O hydrogen bond. The crystal packing is stabilized by weak intermolecular C—H···π interactions ((Table 1).

For general background to pyrrolizine derivatives, see: Barsoum & Nawar (2003); Abbas et al. (2010); Anderson & Corey (1977); Makoni & Sugden (1980); Laufer et al. (1997). For a related structure, see: Nirmala et al. (2009). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
Methyl 4-phenyl-1,2,3,3a,4,4a,5,12c- octahydronaphtho[1',2':3,2]furo[5,4-b]pyrrolizine-4a-carboxylate top
Crystal data top
C26H25NO3F(000) = 1696
Mr = 399.47Dx = 1.323 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31182 reflections
a = 15.0117 (12) Åθ = 2.1–27.3°
b = 13.3421 (11) ŵ = 0.09 mm1
c = 20.0242 (16) ÅT = 292 K
V = 4010.6 (6) Å3Block, colourless
Z = 80.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ω scansh = 1919
43738 measured reflectionsk = 1717
4779 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.9686P]
where P = (Fo2 + 2Fc2)/3
4779 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C26H25NO3V = 4010.6 (6) Å3
Mr = 399.47Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.0117 (12) ŵ = 0.09 mm1
b = 13.3421 (11) ÅT = 292 K
c = 20.0242 (16) Å0.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3892 reflections with I > 2σ(I)
43738 measured reflectionsRint = 0.030
4779 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
4779 reflectionsΔρmin = 0.14 e Å3
272 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10550 (8)0.01484 (8)0.07769 (6)0.0520 (3)
O20.00482 (7)0.17668 (10)0.09040 (6)0.0580 (3)
O30.10217 (7)0.27234 (10)0.14444 (6)0.0557 (3)
C10.23953 (8)0.13141 (9)0.11484 (6)0.0320 (3)
H10.24270.18490.14830.038*
C110.15871 (10)0.02986 (10)0.13242 (7)0.0416 (3)
C100.13883 (12)0.11691 (11)0.17021 (9)0.0519 (4)
H100.09200.15830.15740.062*
C90.18806 (12)0.13999 (11)0.22501 (8)0.0498 (4)
H90.17410.19710.24950.060*
C80.26021 (10)0.07888 (10)0.24562 (7)0.0403 (3)
C70.31301 (12)0.10157 (12)0.30224 (7)0.0488 (4)
H70.30090.15920.32670.059*
C60.38112 (12)0.04072 (13)0.32157 (8)0.0524 (4)
H60.41440.05620.35940.063*
C50.40078 (11)0.04538 (12)0.28425 (8)0.0477 (4)
H50.44790.08640.29710.057*
C40.35132 (10)0.06990 (10)0.22891 (7)0.0400 (3)
H40.36550.12720.20470.048*
C30.27917 (9)0.00946 (9)0.20814 (6)0.0346 (3)
C20.22530 (9)0.03416 (9)0.15139 (6)0.0348 (3)
C130.16187 (8)0.15725 (9)0.06619 (6)0.0330 (3)
C120.13359 (10)0.06083 (11)0.03088 (7)0.0415 (3)
H12A0.08500.07550.00040.050*
H12B0.18310.03540.00480.050*
N10.32208 (7)0.13550 (8)0.07478 (5)0.0347 (3)
C180.36312 (10)0.04152 (11)0.05115 (8)0.0438 (3)
H18A0.31890.01110.04710.053*
H18B0.40950.01950.08150.053*
C170.40179 (10)0.06837 (12)0.01673 (8)0.0450 (3)
H17A0.40720.00950.04490.054*
H17B0.45980.09960.01220.054*
C160.33354 (10)0.14184 (12)0.04488 (7)0.0431 (3)
H16A0.28270.10690.06370.052*
H16B0.35980.18440.07890.052*
C150.30691 (9)0.20250 (10)0.01671 (6)0.0349 (3)
H150.34680.26040.02050.042*
C140.20917 (8)0.23942 (10)0.02349 (6)0.0327 (3)
H140.21240.29830.05270.039*
C250.08026 (9)0.20086 (10)0.10127 (6)0.0362 (3)
C260.02975 (12)0.32140 (15)0.17845 (10)0.0615 (5)
H26A0.01400.34230.14640.092*
H26B0.05190.37890.20200.092*
H26C0.00310.27570.20960.092*
C190.16797 (9)0.27750 (9)0.04106 (6)0.0336 (3)
C240.07883 (9)0.26452 (10)0.05833 (7)0.0398 (3)
H240.04240.22520.03140.048*
C230.04346 (11)0.30931 (11)0.11511 (8)0.0469 (4)
H230.01650.30080.12530.056*
C220.09672 (12)0.36633 (12)0.15645 (8)0.0505 (4)
H220.07330.39520.19490.061*
C210.18522 (11)0.38012 (12)0.14008 (8)0.0493 (4)
H210.22150.41870.16760.059*
C200.22020 (10)0.33690 (11)0.08297 (7)0.0415 (3)
H200.27970.34770.07230.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0578 (7)0.0420 (5)0.0561 (6)0.0168 (5)0.0144 (5)0.0024 (5)
O20.0359 (6)0.0730 (8)0.0650 (7)0.0104 (5)0.0103 (5)0.0186 (6)
O30.0384 (5)0.0666 (7)0.0622 (7)0.0043 (5)0.0008 (5)0.0281 (6)
C10.0346 (6)0.0304 (6)0.0311 (6)0.0025 (5)0.0002 (5)0.0001 (5)
C110.0473 (8)0.0343 (7)0.0432 (8)0.0044 (6)0.0007 (6)0.0009 (6)
C100.0575 (9)0.0356 (7)0.0628 (10)0.0137 (7)0.0014 (8)0.0002 (7)
C90.0633 (10)0.0324 (7)0.0539 (9)0.0039 (6)0.0109 (8)0.0079 (6)
C80.0518 (8)0.0320 (6)0.0369 (7)0.0056 (6)0.0111 (6)0.0022 (5)
C70.0648 (10)0.0430 (8)0.0387 (7)0.0134 (7)0.0112 (7)0.0103 (6)
C60.0618 (10)0.0594 (10)0.0359 (7)0.0139 (8)0.0014 (7)0.0064 (7)
C50.0513 (9)0.0525 (8)0.0394 (7)0.0014 (7)0.0040 (6)0.0010 (6)
C40.0466 (7)0.0383 (7)0.0351 (7)0.0005 (6)0.0011 (6)0.0016 (5)
C30.0422 (7)0.0312 (6)0.0304 (6)0.0028 (5)0.0058 (5)0.0002 (5)
C20.0402 (7)0.0302 (6)0.0339 (6)0.0019 (5)0.0032 (5)0.0004 (5)
C130.0328 (6)0.0348 (6)0.0315 (6)0.0014 (5)0.0021 (5)0.0005 (5)
C120.0456 (8)0.0404 (7)0.0386 (7)0.0044 (6)0.0037 (6)0.0041 (6)
N10.0342 (6)0.0349 (5)0.0349 (6)0.0015 (4)0.0014 (4)0.0029 (4)
C180.0453 (8)0.0398 (7)0.0463 (8)0.0088 (6)0.0031 (6)0.0005 (6)
C170.0402 (7)0.0503 (8)0.0444 (8)0.0085 (6)0.0025 (6)0.0061 (6)
C160.0393 (7)0.0547 (8)0.0352 (7)0.0064 (6)0.0037 (6)0.0012 (6)
C150.0321 (6)0.0379 (7)0.0347 (6)0.0006 (5)0.0012 (5)0.0031 (5)
C140.0322 (6)0.0326 (6)0.0334 (6)0.0015 (5)0.0018 (5)0.0005 (5)
C250.0346 (7)0.0416 (7)0.0322 (6)0.0029 (5)0.0038 (5)0.0030 (5)
C260.0476 (9)0.0748 (12)0.0619 (10)0.0107 (8)0.0039 (8)0.0265 (9)
C190.0362 (7)0.0320 (6)0.0326 (6)0.0033 (5)0.0018 (5)0.0001 (5)
C240.0375 (7)0.0402 (7)0.0418 (7)0.0004 (5)0.0008 (6)0.0021 (6)
C230.0458 (8)0.0465 (8)0.0483 (8)0.0014 (6)0.0112 (6)0.0031 (6)
C220.0647 (10)0.0488 (8)0.0379 (7)0.0054 (7)0.0101 (7)0.0055 (6)
C210.0567 (9)0.0477 (8)0.0436 (8)0.0007 (7)0.0060 (7)0.0121 (6)
C200.0390 (7)0.0426 (7)0.0429 (7)0.0002 (6)0.0021 (6)0.0055 (6)
Geometric parameters (Å, º) top
O1—C111.3708 (18)C12—H12B0.97
O1—C121.4408 (18)N1—C181.4751 (18)
O2—C251.1974 (17)N1—C151.4842 (16)
O3—C251.3285 (17)C18—C171.521 (2)
O3—C261.4402 (18)C18—H18A0.97
C1—N11.4771 (16)C18—H18B0.97
C1—C21.5049 (17)C17—C161.526 (2)
C1—C131.5578 (18)C17—H17A0.97
C1—H10.98C17—H17B0.97
C11—C21.3686 (19)C16—C151.5283 (19)
C11—C101.418 (2)C16—H16A0.97
C10—C91.358 (2)C16—H16B0.97
C10—H100.93C15—C141.5538 (18)
C9—C81.417 (2)C15—H150.98
C9—H90.93C14—C191.5202 (17)
C8—C71.416 (2)C14—H140.98
C8—C31.4261 (18)C26—H26A0.96
C7—C61.362 (3)C26—H26B0.96
C7—H70.93C26—H26C0.96
C6—C51.402 (2)C19—C241.3931 (19)
C6—H60.93C19—C201.3953 (19)
C5—C41.373 (2)C24—C231.390 (2)
C5—H50.93C24—H240.93
C4—C31.413 (2)C23—C221.380 (2)
C4—H40.93C23—H230.93
C3—C21.4331 (19)C22—C211.381 (2)
C13—C251.5274 (18)C22—H220.93
C13—C121.5281 (18)C21—C201.384 (2)
C13—C141.5612 (17)C21—H210.93
C12—H12A0.97C20—H200.93
C11—O1—C12116.86 (11)C17—C18—H18A110.9
C25—O3—C26116.55 (12)N1—C18—H18B110.9
N1—C1—C2114.52 (10)C17—C18—H18B110.9
N1—C1—C13106.26 (10)H18A—C18—H18B108.9
C2—C1—C13112.87 (10)C18—C17—C16103.01 (11)
N1—C1—H1107.6C18—C17—H17A111.2
C2—C1—H1107.6C16—C17—H17A111.2
C13—C1—H1107.6C18—C17—H17B111.2
C2—C11—O1123.80 (13)C16—C17—H17B111.2
C2—C11—C10121.12 (14)H17A—C17—H17B109.1
O1—C11—C10115.07 (13)C17—C16—C15102.57 (11)
C9—C10—C11120.15 (15)C17—C16—H16A111.3
C9—C10—H10119.9C15—C16—H16A111.3
C11—C10—H10119.9C17—C16—H16B111.3
C10—C9—C8121.38 (13)C15—C16—H16B111.3
C10—C9—H9119.3H16A—C16—H16B109.2
C8—C9—H9119.3N1—C15—C16105.85 (11)
C7—C8—C9122.55 (13)N1—C15—C14105.50 (10)
C7—C8—C3119.10 (14)C16—C15—C14119.04 (11)
C9—C8—C3118.34 (13)N1—C15—H15108.7
C6—C7—C8121.36 (14)C16—C15—H15108.7
C6—C7—H7119.3C14—C15—H15108.7
C8—C7—H7119.3C19—C14—C15114.57 (10)
C7—C6—C5119.67 (15)C19—C14—C13121.02 (10)
C7—C6—H6120.2C15—C14—C13104.76 (10)
C5—C6—H6120.2C19—C14—H14105.0
C4—C5—C6120.76 (15)C15—C14—H14105.0
C4—C5—H5119.6C13—C14—H14105.0
C6—C5—H5119.6O2—C25—O3123.08 (13)
C5—C4—C3121.07 (13)O2—C25—C13124.91 (13)
C5—C4—H4119.5O3—C25—C13111.97 (11)
C3—C4—H4119.5O3—C26—H26A109.5
C4—C3—C8118.02 (12)O3—C26—H26B109.5
C4—C3—C2122.33 (12)H26A—C26—H26B109.5
C8—C3—C2119.66 (13)O3—C26—H26C109.5
C11—C2—C3119.25 (12)H26A—C26—H26C109.5
C11—C2—C1120.45 (12)H26B—C26—H26C109.5
C3—C2—C1120.25 (12)C24—C19—C20117.45 (12)
C25—C13—C12108.10 (11)C24—C19—C14124.08 (12)
C25—C13—C1113.39 (10)C20—C19—C14118.20 (12)
C12—C13—C1108.12 (10)C23—C24—C19121.11 (13)
C25—C13—C14110.43 (10)C23—C24—H24119.4
C12—C13—C14117.65 (11)C19—C24—H24119.4
C1—C13—C1499.06 (9)C22—C23—C24120.44 (14)
O1—C12—C13111.73 (11)C22—C23—H23119.8
O1—C12—H12A109.3C24—C23—H23119.8
C13—C12—H12A109.3C23—C22—C21119.25 (14)
O1—C12—H12B109.3C23—C22—H22120.4
C13—C12—H12B109.3C21—C22—H22120.4
H12A—C12—H12B107.9C22—C21—C20120.38 (14)
C18—N1—C1119.55 (11)C22—C21—H21119.8
C18—N1—C15108.94 (10)C20—C21—H21119.8
C1—N1—C15108.61 (10)C21—C20—C19121.36 (14)
N1—C18—C17104.24 (11)C21—C20—H20119.3
N1—C18—H18A110.9C19—C20—H20119.3
C12—O1—C11—C213.1 (2)C2—C1—N1—C15149.91 (11)
C12—O1—C11—C10168.32 (13)C13—C1—N1—C1524.60 (13)
C2—C11—C10—C92.3 (3)C1—N1—C18—C17145.27 (12)
O1—C11—C10—C9179.13 (15)C15—N1—C18—C1719.65 (15)
C11—C10—C9—C80.4 (3)N1—C18—C17—C1636.07 (15)
C10—C9—C8—C7179.52 (15)C18—C17—C16—C1538.40 (15)
C10—C9—C8—C31.3 (2)C18—N1—C15—C164.57 (14)
C9—C8—C7—C6178.96 (15)C1—N1—C15—C16127.17 (11)
C3—C8—C7—C60.2 (2)C18—N1—C15—C14131.61 (11)
C8—C7—C6—C51.1 (2)C1—N1—C15—C140.13 (13)
C7—C6—C5—C40.9 (2)C17—C16—C15—N126.71 (14)
C6—C5—C4—C30.2 (2)C17—C16—C15—C14145.10 (12)
C5—C4—C3—C81.2 (2)N1—C15—C14—C19159.08 (10)
C5—C4—C3—C2178.77 (14)C16—C15—C14—C1940.51 (16)
C7—C8—C3—C40.96 (19)N1—C15—C14—C1324.14 (13)
C9—C8—C3—C4179.87 (13)C16—C15—C14—C1394.43 (13)
C7—C8—C3—C2178.97 (12)C25—C13—C14—C1972.42 (14)
C9—C8—C3—C20.20 (19)C12—C13—C14—C1952.29 (16)
O1—C11—C2—C3177.76 (13)C1—C13—C14—C19168.34 (11)
C10—C11—C2—C33.8 (2)C25—C13—C14—C15156.27 (11)
O1—C11—C2—C14.7 (2)C12—C13—C14—C1579.02 (14)
C10—C11—C2—C1173.79 (13)C1—C13—C14—C1537.03 (12)
C4—C3—C2—C11177.36 (13)C26—O3—C25—O20.3 (2)
C8—C3—C2—C112.7 (2)C26—O3—C25—C13177.64 (14)
C4—C3—C2—C15.09 (19)C12—C13—C25—O215.40 (19)
C8—C3—C2—C1174.83 (11)C1—C13—C25—O2135.26 (15)
N1—C1—C2—C11110.51 (14)C14—C13—C25—O2114.60 (16)
C13—C1—C2—C1111.26 (18)C12—C13—C25—O3166.74 (12)
N1—C1—C2—C371.97 (15)C1—C13—C25—O346.88 (15)
C13—C1—C2—C3166.26 (11)C14—C13—C25—O363.26 (14)
N1—C1—C13—C25154.82 (10)C15—C14—C19—C24144.48 (13)
C2—C1—C13—C2578.87 (13)C13—C14—C19—C2417.48 (19)
N1—C1—C13—C1285.34 (12)C15—C14—C19—C2041.57 (16)
C2—C1—C13—C1240.98 (14)C13—C14—C19—C20168.57 (12)
N1—C1—C13—C1437.80 (12)C20—C19—C24—C230.1 (2)
C2—C1—C13—C14164.12 (10)C14—C19—C24—C23173.86 (13)
C11—O1—C12—C1345.96 (17)C19—C24—C23—C221.2 (2)
C25—C13—C12—O164.37 (14)C24—C23—C22—C211.3 (2)
C1—C13—C12—O158.76 (15)C23—C22—C21—C200.2 (2)
C14—C13—C12—O1169.77 (11)C22—C21—C20—C190.9 (2)
C2—C1—N1—C1824.13 (16)C24—C19—C20—C210.9 (2)
C13—C1—N1—C18101.18 (13)C14—C19—C20—C21175.28 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···O20.932.593.388 (2)145
C7—H7···Cg2i0.932.823.6435 (17)148
C17—H17A···Cg2ii0.972.783.7065 (17)159
C21—H21···Cg1iii0.932.493.4174 (18)175
C26—H26B···Cg1iv0.962.583.477 (2)156
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H25NO3
Mr399.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)15.0117 (12), 13.3421 (11), 20.0242 (16)
V3)4010.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
43738, 4779, 3892
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.04
No. of reflections4779
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···O20.932.593.388 (2)145
C7—H7···Cg2i0.932.823.6435 (17)148
C17—H17A···Cg2ii0.972.783.7065 (17)159
C21—H21···Cg1iii0.932.493.4174 (18)175
C26—H26B···Cg1iv0.962.583.477 (2)156
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationAbbas, S. E., Awadallah, F. M., Ibrahim, N. A. & Gouda, A. M. (2010). Eur. J. Med. Chem. 45, 482–491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAnderson, W. K. & Corey, P. F. (1977). J. Med. Chem. 20, 812–818.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBarsoum, F. F. & Nawar, N. N. (2003). Boll. Chim. Farm. 142, 160–166.  PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLaufer, S., Striegel, H. G., Neher, K., Zechmeister, P., Donat, C., Stolingwa, K., Baur, S., Tries, S., Kammermeier, T., Dannhardt, G. & Kiefer, W. (1997). Arch. Pharm. (Weinheim), 330, 307–312.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMakoni, S. H. & Sugden, J. K. (1980). Arzneimittelforschung, 30, 1135–1137.  CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds