organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(p-Phenyl­enedi­methyl­ene)di-1H-imidazol-1-ium bis­­(4-nitro­benzoate)–4-nitro­benzoic acid (1/2)

aCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, bCollege of Light Industry, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhangcu@126.com

(Received 4 May 2010; accepted 23 May 2010; online 29 May 2010)

The asymmetric unit of the title compound, C14H16N42+·2C7H4NO4·2C7H5NO4, comprises one-half of the 3,3′-(p-phenyl­enedimethyl­ene)di-1H-imidazol-1-ium dication, which lies on an inversion centre, one 4-nitro­benzoate anion and one 4-nitro­benzoic acid mol­ecule. In the crystal, the components are linked into a two-dimensional network parallel to (110) by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the synthesis of 1,4-bis­(imidazol-1-ylmeth­yl)benzene, see: Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952-2953.]). For a related structure, see: Chen et al. (2010[Chen, H., Zhu, K., Liu, G. H. & Ren, X. M. (2010). Chin. J. Struct. Chem. 29, 347-352.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N42+·2C7H4NO4−·2C7H5NO4

  • Mr = 906.77

  • Triclinic, [P \overline 1]

  • a = 7.2659 (15) Å

  • b = 12.689 (3) Å

  • c = 13.028 (3) Å

  • α = 112.94 (3)°

  • β = 102.49 (3)°

  • γ = 101.94 (3)°

  • V = 1021.8 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.971

  • 8835 measured reflections

  • 3590 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.191

  • S = 1.19

  • 3590 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2A⋯O3i 0.85 2.57 3.167 (5) 128
O7—H2A⋯O4i 0.85 1.65 2.494 (5) 173
N4—H4A⋯O8 0.86 2.03 2.690 (5) 133
C15—H15⋯O3 0.93 2.23 3.073 (7) 150
C17—H17⋯O5ii 0.93 2.46 3.228 (7) 140
C21—H21⋯O3iii 0.93 2.46 3.321 (6) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z-1; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past few years, efforts have been focused on the investigation of coordination polymers with flexible ligands. Di-imidazole flexbile ligands such as 1,4-bis(1H-imidazol-1-yl)methylbenzene (bix) find numerous applications in constructing metal-organic coordination polymers as they can rotate freely about methylene carbon atoms to adjust to the coordination environment. We report here the crystal structure of the title compound.

The asymmetric unit comprises one-half of a bix2+ dication lying on an inversion centre, one 4-nitrobenzoate anion and one neutral 4-nitrobenzoic acid molecule (Fig. 1). Bond distances and angles are normal (Chen et al., 2010).

In the crystal structure, the dications, anions and neutral 4-nitrobenzoic acid molecule are interlinked by O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a two-dimensional hydrogen-bonded network parallel to the (110).

Related literature top

For the synthesis of 1,4-bis(imidazol-1-ylmethyl)benzene, see: Hoskins et al. (1997). For a related structure, see: Chen et al. (2010).

Experimental top

1,4-Bis(imidazol-1-ylmethyl)benzene (bix) was prepared according to a literature method (Hoskins et al., 1997). 1:4 molar amounts of bix (23.8 mg, 0.1 mmol) and 4-nitrobenzoic acid (66.9 mg , 0.4 mmol) were dissolved in 95% ethanol (30 ml). The mixture was stirred and refluxed for 1 h and then filtered. The resulting colourless solution was allowed to stand in air for two weeks. Colourless crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution.

Refinement top

H atoms were positioned geometrically [O–H = 0.85 Å, N–H = 0.86 Å and C–H = 0.93 or 0.97 Å] and refined using a riding model, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C,N).

Structure description top

Over the past few years, efforts have been focused on the investigation of coordination polymers with flexible ligands. Di-imidazole flexbile ligands such as 1,4-bis(1H-imidazol-1-yl)methylbenzene (bix) find numerous applications in constructing metal-organic coordination polymers as they can rotate freely about methylene carbon atoms to adjust to the coordination environment. We report here the crystal structure of the title compound.

The asymmetric unit comprises one-half of a bix2+ dication lying on an inversion centre, one 4-nitrobenzoate anion and one neutral 4-nitrobenzoic acid molecule (Fig. 1). Bond distances and angles are normal (Chen et al., 2010).

In the crystal structure, the dications, anions and neutral 4-nitrobenzoic acid molecule are interlinked by O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a two-dimensional hydrogen-bonded network parallel to the (110).

For the synthesis of 1,4-bis(imidazol-1-ylmethyl)benzene, see: Hoskins et al. (1997). For a related structure, see: Chen et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation (-x, 1-y, -z).
3,3'-(p-Phenylenedimethylene)di-1H-imidazol-1-ium bis(4-nitrobenzoate)–4-nitrobenzoic acid (1/2) top
Crystal data top
C14H16N42+·2C7H4NO4·2C7H5NO4Z = 1
Mr = 906.77F(000) = 470
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2659 (15) ÅCell parameters from 3889 reflections
b = 12.689 (3) Åθ = 4.6–22.7°
c = 13.028 (3) ŵ = 0.12 mm1
α = 112.94 (3)°T = 295 K
β = 102.49 (3)°Prism, colourless
γ = 101.94 (3)°0.20 × 0.20 × 0.20 mm
V = 1021.8 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3590 independent reflections
Radiation source: fine–focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.968, Tmax = 0.971k = 1515
8835 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.2399P]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H16N42+·2C7H4NO4·2C7H5NO4γ = 101.94 (3)°
Mr = 906.77V = 1021.8 (6) Å3
Triclinic, P1Z = 1
a = 7.2659 (15) ÅMo Kα radiation
b = 12.689 (3) ŵ = 0.12 mm1
c = 13.028 (3) ÅT = 295 K
α = 112.94 (3)°0.20 × 0.20 × 0.20 mm
β = 102.49 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3590 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2019 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.971Rint = 0.066
8835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.19Δρmax = 0.42 e Å3
3590 reflectionsΔρmin = 0.24 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.1748 (5)0.3773 (3)0.6201 (3)0.0628 (9)
O80.2413 (5)0.4626 (3)0.5069 (3)0.0636 (9)
N40.2722 (5)0.3310 (3)0.2960 (3)0.0468 (9)
H4A0.25960.33280.36070.056*
N30.3203 (4)0.3884 (3)0.1672 (3)0.0341 (8)
C110.2099 (5)0.5846 (3)0.6892 (3)0.0346 (10)
C120.1960 (6)0.5971 (4)0.7973 (3)0.0378 (10)
H120.17870.53050.81240.045*
C200.0546 (6)0.4031 (4)0.0614 (3)0.0417 (11)
H200.09100.33710.10310.050*
C100.2349 (6)0.6835 (4)0.6673 (4)0.0454 (11)
H100.24470.67530.59470.054*
C210.1173 (6)0.4176 (4)0.1146 (4)0.0417 (11)
H210.19520.36210.19180.050*
C130.2074 (6)0.7074 (4)0.8830 (4)0.0426 (11)
H130.19810.71600.95580.051*
C170.2842 (6)0.2657 (4)0.1182 (4)0.0397 (10)
H170.28080.21610.04270.048*
C80.2328 (6)0.8040 (4)0.8581 (4)0.0423 (11)
C140.2070 (6)0.4663 (4)0.5962 (4)0.0417 (11)
C190.1743 (6)0.4850 (4)0.0531 (3)0.0359 (10)
C90.2457 (6)0.7939 (4)0.7505 (4)0.0510 (12)
H90.26120.86030.73510.061*
N20.2409 (6)0.9230 (4)0.9474 (4)0.0642 (12)
C150.3111 (6)0.4252 (4)0.2754 (4)0.0405 (10)
H150.32910.50440.32790.049*
O60.2194 (6)0.9302 (3)1.0400 (3)0.0946 (14)
C160.2548 (6)0.2308 (4)0.1995 (4)0.0445 (11)
H160.22770.15250.19130.053*
O50.2639 (7)1.0065 (3)0.9231 (4)0.1088 (16)
C180.3622 (6)0.4672 (4)0.1113 (4)0.0472 (11)
H18A0.42260.43180.05250.057*
H18B0.45670.54520.17060.057*
C40.4933 (6)0.8837 (3)0.5529 (3)0.0360 (10)
O30.4409 (5)0.7026 (3)0.3853 (3)0.0731 (11)
O20.4178 (6)1.2399 (3)0.8522 (3)0.0791 (11)
O40.7429 (5)0.7925 (3)0.5183 (3)0.0700 (10)
C10.3648 (7)1.0618 (4)0.6869 (4)0.0423 (11)
N10.2961 (7)1.1562 (4)0.7606 (4)0.0616 (11)
C50.6275 (6)0.9830 (3)0.6549 (3)0.0417 (11)
H50.76100.98870.67790.050*
C30.2940 (6)0.8758 (4)0.5190 (3)0.0432 (11)
H30.20410.80990.45030.052*
C20.2281 (7)0.9650 (4)0.5863 (4)0.0473 (11)
H20.09470.95960.56420.057*
C60.5638 (7)1.0733 (4)0.7224 (4)0.0451 (11)
H60.65331.14030.79030.054*
C70.5608 (8)0.7845 (4)0.4785 (4)0.0470 (11)
O10.1202 (7)1.1467 (4)0.7276 (4)0.1083 (15)
H2A0.21070.32060.57730.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.086 (3)0.0432 (19)0.072 (2)0.0297 (18)0.0469 (19)0.0238 (18)
O80.086 (3)0.065 (2)0.0381 (19)0.0274 (19)0.0290 (18)0.0162 (17)
N40.048 (2)0.062 (3)0.035 (2)0.0202 (19)0.0143 (17)0.025 (2)
N30.035 (2)0.038 (2)0.032 (2)0.0177 (16)0.0105 (15)0.0157 (17)
C110.028 (2)0.039 (2)0.032 (2)0.0081 (18)0.0080 (18)0.013 (2)
C120.039 (3)0.042 (3)0.041 (3)0.016 (2)0.019 (2)0.023 (2)
C200.049 (3)0.041 (3)0.043 (3)0.023 (2)0.018 (2)0.021 (2)
C100.058 (3)0.047 (3)0.034 (3)0.017 (2)0.017 (2)0.019 (2)
C210.049 (3)0.038 (3)0.032 (2)0.013 (2)0.008 (2)0.013 (2)
C130.041 (3)0.053 (3)0.034 (2)0.017 (2)0.016 (2)0.016 (2)
C170.045 (3)0.034 (2)0.037 (3)0.020 (2)0.012 (2)0.011 (2)
C80.038 (3)0.036 (2)0.041 (3)0.013 (2)0.009 (2)0.007 (2)
C140.029 (2)0.045 (3)0.042 (3)0.009 (2)0.008 (2)0.013 (2)
C190.036 (3)0.040 (2)0.037 (3)0.008 (2)0.011 (2)0.025 (2)
C90.064 (3)0.043 (3)0.053 (3)0.019 (2)0.020 (2)0.026 (3)
N20.065 (3)0.050 (3)0.059 (3)0.022 (2)0.013 (2)0.008 (3)
C150.033 (3)0.040 (3)0.035 (3)0.015 (2)0.0044 (19)0.006 (2)
O60.138 (4)0.083 (3)0.046 (2)0.055 (3)0.026 (2)0.006 (2)
C160.046 (3)0.034 (3)0.050 (3)0.014 (2)0.010 (2)0.018 (2)
O50.177 (5)0.046 (2)0.115 (4)0.046 (3)0.072 (3)0.029 (2)
C180.041 (3)0.054 (3)0.053 (3)0.015 (2)0.014 (2)0.032 (2)
C40.053 (3)0.025 (2)0.032 (2)0.012 (2)0.015 (2)0.0134 (19)
O30.082 (3)0.047 (2)0.051 (2)0.0251 (18)0.0019 (19)0.0063 (17)
O20.091 (3)0.054 (2)0.066 (2)0.023 (2)0.032 (2)0.001 (2)
O40.057 (2)0.047 (2)0.076 (2)0.0193 (17)0.0156 (19)0.0005 (18)
C10.056 (3)0.036 (2)0.046 (3)0.021 (2)0.025 (2)0.021 (2)
N10.067 (3)0.049 (3)0.065 (3)0.023 (2)0.035 (3)0.015 (2)
C50.044 (3)0.033 (2)0.042 (3)0.010 (2)0.010 (2)0.014 (2)
C30.050 (3)0.036 (3)0.033 (2)0.009 (2)0.004 (2)0.013 (2)
C20.047 (3)0.044 (3)0.043 (3)0.013 (2)0.011 (2)0.016 (2)
C60.059 (3)0.033 (2)0.034 (2)0.012 (2)0.014 (2)0.009 (2)
C70.066 (4)0.028 (2)0.042 (3)0.012 (2)0.015 (3)0.014 (2)
O10.072 (3)0.086 (3)0.129 (4)0.040 (2)0.037 (3)0.003 (3)
Geometric parameters (Å, º) top
O7—C141.274 (5)C8—N21.484 (5)
O7—H2A0.85C19—C21i1.387 (5)
O8—C141.227 (5)C19—C181.519 (5)
N4—C151.313 (5)C9—H90.93
N4—C161.354 (5)N2—O51.210 (5)
N4—H4A0.86N2—O61.220 (5)
N3—C151.324 (5)C15—H150.93
N3—C171.373 (5)C16—H160.93
N3—C181.469 (5)C18—H18A0.97
C11—C101.378 (5)C18—H18B0.97
C11—C121.383 (5)C4—C51.389 (5)
C11—C141.510 (5)C4—C31.389 (5)
C12—C131.380 (5)C4—C71.509 (6)
C12—H120.93O3—C71.224 (5)
C20—C211.376 (5)O2—N11.225 (5)
C20—C191.385 (5)O4—C71.279 (5)
C20—H200.93C1—C21.374 (6)
C10—C91.370 (6)C1—C61.377 (6)
C10—H100.93C1—N11.472 (5)
C21—C19i1.387 (5)N1—O11.221 (5)
C21—H210.93C5—C61.382 (5)
C13—C81.373 (5)C5—H50.93
C13—H130.93C3—C21.382 (5)
C17—C161.336 (5)C3—H30.93
C17—H170.93C2—H20.93
C8—C91.382 (6)C6—H60.93
C14—O7—H2A111.6O5—N2—O6123.9 (4)
C15—N4—C16109.4 (3)O5—N2—C8118.0 (5)
C15—N4—H4A125.3O6—N2—C8118.1 (5)
C16—N4—H4A125.3N4—C15—N3108.4 (4)
C15—N3—C17108.0 (3)N4—C15—H15125.8
C15—N3—C18125.0 (3)N3—C15—H15125.8
C17—N3—C18127.0 (3)C17—C16—N4107.0 (4)
C10—C11—C12119.4 (4)C17—C16—H16126.5
C10—C11—C14119.0 (4)N4—C16—H16126.5
C12—C11—C14121.6 (4)N3—C18—C19111.7 (3)
C13—C12—C11120.7 (4)N3—C18—H18A109.3
C13—C12—H12119.7C19—C18—H18A109.3
C11—C12—H12119.7N3—C18—H18B109.3
C21—C20—C19121.1 (4)C19—C18—H18B109.3
C21—C20—H20119.4H18A—C18—H18B107.9
C19—C20—H20119.4C5—C4—C3119.5 (4)
C9—C10—C11121.2 (4)C5—C4—C7121.0 (4)
C9—C10—H10119.4C3—C4—C7119.6 (4)
C11—C10—H10119.4C2—C1—C6122.6 (4)
C20—C21—C19i120.0 (4)C2—C1—N1118.9 (4)
C20—C21—H21120.0C6—C1—N1118.5 (4)
C19i—C21—H21120.0O1—N1—O2123.3 (4)
C8—C13—C12118.3 (4)O1—N1—C1118.3 (4)
C8—C13—H13120.8O2—N1—C1118.4 (5)
C12—C13—H13120.8C6—C5—C4120.4 (4)
C16—C17—N3107.1 (4)C6—C5—H5119.8
C16—C17—H17126.4C4—C5—H5119.8
N3—C17—H17126.4C2—C3—C4120.7 (4)
C13—C8—C9122.2 (4)C2—C3—H3119.7
C13—C8—N2119.5 (4)C4—C3—H3119.7
C9—C8—N2118.2 (4)C1—C2—C3118.4 (4)
O8—C14—O7124.9 (4)C1—C2—H2120.8
O8—C14—C11119.4 (4)C3—C2—H2120.8
O7—C14—C11115.7 (4)C1—C6—C5118.5 (4)
C20—C19—C21i118.8 (4)C1—C6—H6120.7
C20—C19—C18120.6 (4)C5—C6—H6120.7
C21i—C19—C18120.5 (4)O3—C7—O4124.3 (4)
C10—C9—C8118.2 (4)O3—C7—C4119.0 (5)
C10—C9—H9120.9O4—C7—C4116.7 (4)
C8—C9—H9120.9
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2A···O3ii0.852.573.167 (5)128
O7—H2A···O4ii0.851.652.494 (5)173
N4—H4A···O80.862.032.690 (5)133
C15—H15···O30.932.233.073 (7)150
C17—H17···O5iii0.932.463.228 (7)140
C21—H21···O3i0.932.463.321 (6)154
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC14H16N42+·2C7H4NO4·2C7H5NO4
Mr906.77
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.2659 (15), 12.689 (3), 13.028 (3)
α, β, γ (°)112.94 (3), 102.49 (3), 101.94 (3)
V3)1021.8 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
8835, 3590, 2019
Rint0.066
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.191, 1.19
No. of reflections3590
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2A···O3i0.852.573.167 (5)128
O7—H2A···O4i0.851.652.494 (5)173
N4—H4A···O80.862.032.690 (5)133
C15—H15···O30.932.233.073 (7)150
C17—H17···O5ii0.932.463.228 (7)140
C21—H21···O3iii0.932.463.321 (6)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z1; (iii) x, y+1, z.
 

Footnotes

Additional corresponding author, e-mail: tsdgying@126.com.

Acknowledgements

The authors thank Hebei Polytechnic University and Government College University for support of this work.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChen, H., Zhu, K., Liu, G. H. & Ren, X. M. (2010). Chin. J. Struct. Chem. 29, 347–352.  CrossRef CAS Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952–2953.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds