organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(5-Chloro-2-hy­dr­oxy­benzyl­­idene)amino]-3′,6′-bis­­(di­ethyl­amino)­spiro­[isoindoline-1,9′-xanthen]-3-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: xuzhihong1980@yahoo.cn

(Received 20 April 2010; accepted 25 May 2010; online 29 May 2010)

The title compound, C35H35ClN4O3, resulted from a spiro­lactam ring closure of rhodamine B dye. The xanthene ring system is approximately planar [r.m.s. deviation = 0.050 (9) Å for the xanthene ring]. The dihedral angles formed by the spiro­lactam and 5-chloro-2-hy­droxy­benzene rings with the xanthene ring system are 87.9 (7) and 79.1 (7)°, respectively.

Related literature

For rhodamine derivatives bearing a lactam unit, see: Deng et al. (2009[Deng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464.]); Kwon et al., 2005[Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2005). J. Am. Chem. Soc. 127, 10107-10111.]; Tian & Peng (2008[Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.]); Wu et al. (2007[Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.]); Xu et al. (2009[Xu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876.]); Zhang et al. (2008[Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C35H35ClN4O3

  • Mr = 595.12

  • Orthorhombic, P c a 21

  • a = 21.609 (9) Å

  • b = 11.892 (5) Å

  • c = 12.355 (5) Å

  • V = 3175 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.955

  • 16073 measured reflections

  • 5528 independent reflections

  • 2820 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.088

  • S = 1.02

  • 5528 reflections

  • 394 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2521 Friedel pairs

  • Flack parameter: −0.05 (8)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules. There are a few single-crystal reports on rhodamine derivatives bearing a lactam moiety (Xu et al., 2009; Kwon et al., 2005; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Deng et al., 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models, (Xu et al., 2009; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, the atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene and the spirolactam ring fragment mean planes is 87.9 (7)°. The dihedral angle between the xanthene mean plane and the 2-hydroxy-5-cholorobenzene ring is 79.1 (7)°.

Related literature top

For rhodamine derivatives bearing a lactam unit, see: Deng et al. (2009); Kwon et al., 2005; Tian & Peng (2008); Wu et al. (2007); Xu et al. (2009); Zhang et al. (2008).

Experimental top

A portion of rhodamine B hydrazide (0.46 g, 1 mmol) and 2-hydroxy-5-chlorobenzaldehyde (0.17 g, 1.1 mmol) were mixed in 20 ml ethanol to which three drops acetic acid was added. The reaction solution was refluxed for 3 hours under N2 atmosphere, the precipatate was separated and washed by ethanol to give 0.30 g of the title compound in 50% yield. Single crystals suitable for X-ray measurements were obtained from the mother liquid by slow solvent evaporation at room temperatures.

Refinement top

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C, O).

Structure description top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules. There are a few single-crystal reports on rhodamine derivatives bearing a lactam moiety (Xu et al., 2009; Kwon et al., 2005; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Deng et al., 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models, (Xu et al., 2009; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, the atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene and the spirolactam ring fragment mean planes is 87.9 (7)°. The dihedral angle between the xanthene mean plane and the 2-hydroxy-5-cholorobenzene ring is 79.1 (7)°.

For rhodamine derivatives bearing a lactam unit, see: Deng et al. (2009); Kwon et al., 2005; Tian & Peng (2008); Wu et al. (2007); Xu et al. (2009); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with H atoms omitted and with displacement ellipsoids drawn at 50% probability level
2-[(5-Chloro-2-hydroxybenzylidene)amino]-3',6'- bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one top
Crystal data top
C35H35ClN4O3F(000) = 1256
Mr = 595.12Dx = 1.245 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1377 reflections
a = 21.609 (9) Åθ = 2.5–17.6°
b = 11.892 (5) ŵ = 0.16 mm1
c = 12.355 (5) ÅT = 296 K
V = 3175 (2) Å3Block, red
Z = 40.35 × 0.32 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
5528 independent reflections
Radiation source: fine-focus sealed tube2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
φ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2125
Tmin = 0.946, Tmax = 0.955k = 1414
16073 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.020P)2 + 0.0114P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.20 e Å3
5528 reflectionsΔρmin = 0.25 e Å3
394 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0018 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2521 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C35H35ClN4O3V = 3175 (2) Å3
Mr = 595.12Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 21.609 (9) ŵ = 0.16 mm1
b = 11.892 (5) ÅT = 296 K
c = 12.355 (5) Å0.35 × 0.32 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
5528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2820 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.955Rint = 0.079
16073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.20 e Å3
S = 1.02Δρmin = 0.25 e Å3
5528 reflectionsAbsolute structure: Flack (1983), 2521 Friedel pairs
394 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91042 (15)0.2527 (3)0.2707 (3)0.0444 (10)
C20.92493 (16)0.3631 (3)0.2392 (3)0.0556 (11)
H20.93070.41730.29260.067*
C30.93088 (18)0.3942 (3)0.1323 (3)0.0610 (12)
H30.94030.46840.11510.073*
C40.92276 (16)0.3146 (3)0.0482 (3)0.0514 (10)
C50.90881 (15)0.2049 (3)0.0793 (3)0.0498 (10)
H50.90340.14990.02650.060*
C60.90281 (15)0.1763 (3)0.1872 (3)0.0480 (10)
C70.88582 (16)0.0256 (3)0.3112 (3)0.0487 (10)
C80.87418 (16)0.0896 (3)0.3190 (3)0.0504 (11)
H80.86870.13250.25680.060*
C90.87086 (18)0.1398 (3)0.4202 (3)0.0581 (11)
C100.88058 (19)0.0710 (3)0.5111 (3)0.0709 (13)
H100.87960.10270.57990.085*
C110.89161 (17)0.0435 (3)0.4998 (3)0.0627 (12)
H110.89750.08700.56150.075*
C120.89403 (16)0.0949 (3)0.3985 (3)0.0435 (9)
C130.90153 (15)0.2201 (3)0.3879 (3)0.0433 (9)
C140.84695 (17)0.2814 (3)0.4418 (3)0.0469 (10)
C150.78553 (18)0.2786 (3)0.4104 (4)0.0660 (12)
H150.77340.24050.34820.079*
C160.7425 (2)0.3343 (4)0.4747 (4)0.0814 (15)
H160.70090.33280.45560.098*
C170.7606 (2)0.3919 (4)0.5666 (4)0.0858 (15)
H170.73110.42840.60850.103*
C180.8217 (2)0.3960 (3)0.5970 (4)0.0689 (12)
H180.83400.43410.65910.083*
C190.86485 (18)0.3410 (3)0.5316 (3)0.0489 (10)
C200.93194 (19)0.3317 (3)0.5431 (3)0.0514 (10)
C211.03453 (16)0.1615 (3)0.3910 (3)0.0563 (11)
H211.01030.13920.33260.068*
C221.09773 (17)0.1217 (3)0.4016 (3)0.0524 (10)
C231.12309 (18)0.0528 (3)0.3199 (3)0.0580 (11)
H231.09950.03520.25930.070*
C241.1822 (2)0.0114 (3)0.3287 (4)0.0641 (12)
C251.21808 (19)0.0326 (4)0.4194 (4)0.0769 (13)
H251.25740.00150.42590.092*
C261.1946 (2)0.1004 (4)0.4997 (4)0.0796 (15)
H261.21860.11610.56040.096*
C271.1352 (2)0.1458 (4)0.4911 (3)0.0609 (12)
C280.9453 (2)0.4583 (4)0.0927 (4)0.0861 (15)
H28A0.96640.45450.16190.103*
H28B0.97400.48940.04030.103*
C290.8901 (3)0.5355 (4)0.1026 (4)0.1127 (19)
H29A0.85740.49740.14040.169*
H29B0.90180.60180.14190.169*
H29C0.87600.55630.03170.169*
C300.91860 (19)0.2621 (4)0.1446 (3)0.0635 (12)
H30A0.90420.30140.20860.076*
H30B0.88630.21030.12270.076*
C310.9757 (2)0.1955 (4)0.1738 (4)0.1004 (17)
H31A1.00880.24610.19140.151*
H31B0.96690.14840.23500.151*
H31C0.98770.14950.11340.151*
C320.8484 (3)0.3280 (4)0.3399 (4)0.109 (2)
H32A0.86080.40340.36050.131*
H32B0.87480.30410.28070.131*
C330.7837 (3)0.3307 (5)0.3019 (5)0.177 (3)
H33A0.75710.35340.36030.266*
H33B0.77990.38340.24340.266*
H33C0.77180.25720.27740.266*
C340.8455 (3)0.3014 (4)0.5475 (6)0.125 (2)
H34A0.82590.24580.59350.150*
H34B0.81930.36760.54380.150*
C350.9045 (3)0.3290 (5)0.5864 (6)0.150 (3)
H35A0.92100.39040.54500.225*
H35B0.90170.35050.66110.225*
H35C0.93130.26500.57970.225*
Cl11.21296 (5)0.07129 (11)0.22454 (12)0.0958 (4)
N10.95241 (13)0.2637 (2)0.4589 (3)0.0472 (8)
N21.01262 (14)0.2276 (2)0.4631 (3)0.0489 (8)
N30.92790 (14)0.3435 (3)0.0588 (3)0.0665 (10)
N40.85785 (18)0.2527 (3)0.4319 (3)0.0830 (12)
O10.88834 (11)0.0645 (2)0.2056 (2)0.0611 (7)
O20.96649 (13)0.3715 (2)0.6133 (2)0.0667 (8)
O31.11542 (13)0.2139 (3)0.5725 (2)0.0799 (9)
H3A1.08090.23830.55790.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.046 (2)0.040 (3)0.0038 (18)0.0038 (18)0.000 (2)
C20.067 (3)0.050 (3)0.049 (3)0.015 (2)0.005 (2)0.009 (2)
C30.075 (3)0.053 (3)0.055 (3)0.022 (2)0.003 (2)0.013 (2)
C40.058 (3)0.057 (3)0.040 (3)0.011 (2)0.006 (2)0.003 (2)
C50.067 (3)0.052 (3)0.030 (2)0.008 (2)0.001 (2)0.004 (2)
C60.052 (2)0.046 (3)0.046 (3)0.0112 (19)0.004 (2)0.008 (2)
C70.049 (2)0.049 (3)0.048 (3)0.000 (2)0.002 (2)0.006 (2)
C80.063 (3)0.042 (3)0.046 (3)0.0063 (19)0.001 (2)0.004 (2)
C90.087 (3)0.039 (2)0.048 (3)0.004 (2)0.002 (2)0.000 (2)
C100.120 (4)0.052 (3)0.041 (3)0.009 (3)0.002 (3)0.009 (2)
C110.094 (3)0.053 (3)0.041 (3)0.003 (2)0.001 (2)0.006 (2)
C120.054 (2)0.046 (2)0.031 (2)0.0047 (19)0.0000 (19)0.001 (2)
C130.044 (2)0.043 (2)0.043 (2)0.0087 (18)0.0043 (19)0.007 (2)
C140.048 (2)0.042 (2)0.051 (3)0.0081 (19)0.001 (2)0.002 (2)
C150.061 (3)0.065 (3)0.072 (3)0.002 (2)0.004 (3)0.019 (3)
C160.054 (3)0.083 (3)0.108 (5)0.009 (3)0.004 (3)0.011 (4)
C170.068 (4)0.080 (4)0.110 (5)0.011 (3)0.027 (3)0.015 (3)
C180.085 (3)0.059 (3)0.063 (3)0.005 (3)0.008 (3)0.006 (2)
C190.051 (3)0.048 (3)0.048 (3)0.003 (2)0.006 (2)0.003 (2)
C200.069 (3)0.045 (3)0.040 (3)0.009 (2)0.005 (2)0.007 (2)
C210.046 (3)0.069 (3)0.053 (3)0.008 (2)0.007 (2)0.012 (2)
C220.043 (2)0.059 (3)0.055 (3)0.004 (2)0.002 (2)0.009 (2)
C230.048 (3)0.075 (3)0.050 (3)0.001 (2)0.003 (2)0.021 (2)
C240.054 (3)0.083 (3)0.055 (3)0.011 (2)0.006 (3)0.017 (2)
C250.052 (3)0.093 (4)0.086 (4)0.008 (3)0.012 (3)0.020 (3)
C260.052 (3)0.110 (4)0.077 (4)0.006 (3)0.023 (3)0.003 (3)
C270.055 (3)0.073 (3)0.055 (3)0.005 (2)0.006 (3)0.009 (3)
C280.121 (4)0.087 (4)0.050 (3)0.045 (3)0.001 (3)0.018 (3)
C290.185 (6)0.057 (3)0.096 (4)0.014 (4)0.037 (4)0.013 (3)
C300.081 (3)0.075 (3)0.034 (2)0.003 (3)0.000 (2)0.011 (2)
C310.091 (4)0.115 (4)0.096 (4)0.013 (3)0.020 (3)0.013 (3)
C320.186 (7)0.061 (3)0.081 (4)0.019 (4)0.003 (4)0.003 (3)
C330.195 (8)0.181 (6)0.155 (7)0.090 (6)0.022 (6)0.032 (6)
C340.137 (5)0.049 (3)0.190 (7)0.019 (3)0.056 (5)0.022 (4)
C350.153 (6)0.115 (5)0.184 (8)0.001 (4)0.000 (5)0.034 (5)
Cl10.0795 (8)0.1268 (10)0.0810 (9)0.0372 (7)0.0101 (8)0.0157 (9)
N10.0449 (19)0.053 (2)0.044 (2)0.0050 (16)0.0026 (17)0.0028 (17)
N20.046 (2)0.058 (2)0.043 (2)0.0033 (16)0.0016 (17)0.0066 (18)
N30.088 (3)0.063 (2)0.048 (2)0.0181 (19)0.001 (2)0.013 (2)
N40.155 (4)0.044 (2)0.050 (3)0.014 (2)0.013 (2)0.006 (2)
O10.101 (2)0.0459 (16)0.0368 (17)0.0196 (15)0.0012 (16)0.0044 (14)
O20.084 (2)0.0645 (19)0.0511 (19)0.0140 (15)0.0083 (16)0.0106 (16)
O30.078 (2)0.092 (2)0.069 (2)0.0026 (18)0.0253 (19)0.000 (2)
Geometric parameters (Å, º) top
C1—C61.384 (4)C22—C271.400 (5)
C1—C21.405 (4)C22—C231.411 (5)
C1—C131.512 (5)C23—C241.374 (5)
C2—C31.377 (5)C23—H230.9300
C2—H20.9300C24—C251.386 (5)
C3—C41.416 (5)C24—Cl11.751 (4)
C3—H30.9300C25—C261.375 (5)
C4—N31.372 (5)C25—H250.9300
C4—C51.393 (5)C26—C271.398 (5)
C5—C61.382 (5)C26—H260.9300
C5—H50.9300C27—O31.359 (4)
C6—O11.384 (4)C28—N31.477 (5)
C7—C121.370 (5)C28—C291.511 (5)
C7—O11.385 (4)C28—H28A0.9700
C7—C81.396 (5)C28—H28B0.9700
C8—C91.387 (5)C29—H29A0.9600
C8—H80.9300C29—H29B0.9600
C9—N41.379 (4)C29—H29C0.9600
C9—C101.405 (5)C30—N31.448 (5)
C10—C111.390 (5)C30—C311.510 (5)
C10—H100.9300C30—H30A0.9700
C11—C121.394 (5)C30—H30B0.9700
C11—H110.9300C31—H31A0.9600
C12—C131.503 (4)C31—H31B0.9600
C13—N11.499 (4)C31—H31C0.9600
C13—C141.539 (5)C32—N41.461 (5)
C14—C191.372 (5)C32—C331.477 (6)
C14—C151.383 (4)C32—H32A0.9700
C15—C161.391 (5)C32—H32B0.9700
C15—H150.9300C33—H33A0.9600
C16—C171.383 (6)C33—H33B0.9600
C16—H160.9300C33—H33C0.9600
C17—C181.373 (5)C34—C351.402 (6)
C17—H170.9300C34—N41.565 (7)
C18—C191.396 (5)C34—H34A0.9700
C18—H180.9300C34—H34B0.9700
C19—C201.461 (5)C35—H35A0.9600
C20—O21.239 (4)C35—H35B0.9600
C20—N11.390 (4)C35—H35C0.9600
C21—N21.279 (4)N1—N21.371 (4)
C21—C221.451 (5)O3—H3A0.8200
C21—H210.9300
C6—C1—C2115.7 (3)C23—C24—C25121.3 (4)
C6—C1—C13122.0 (3)C23—C24—Cl1119.7 (4)
C2—C1—C13122.2 (3)C25—C24—Cl1119.0 (4)
C3—C2—C1122.5 (4)C26—C25—C24119.0 (4)
C3—C2—H2118.8C26—C25—H25120.5
C1—C2—H2118.8C24—C25—H25120.5
C2—C3—C4120.8 (3)C25—C26—C27120.7 (4)
C2—C3—H3119.6C25—C26—H26119.7
C4—C3—H3119.6C27—C26—H26119.7
N3—C4—C5121.2 (4)O3—C27—C26117.5 (4)
N3—C4—C3122.0 (4)O3—C27—C22121.7 (4)
C5—C4—C3116.8 (4)C26—C27—C22120.8 (4)
C6—C5—C4121.1 (4)N3—C28—C29112.5 (4)
C6—C5—H5119.5N3—C28—H28A109.1
C4—C5—H5119.5C29—C28—H28A109.1
C5—C6—C1123.1 (3)N3—C28—H28B109.1
C5—C6—O1114.5 (3)C29—C28—H28B109.1
C1—C6—O1122.3 (3)H28A—C28—H28B107.8
C12—C7—O1122.4 (3)C28—C29—H29A109.5
C12—C7—C8124.0 (4)C28—C29—H29B109.5
O1—C7—C8113.7 (3)H29A—C29—H29B109.5
C9—C8—C7119.6 (4)C28—C29—H29C109.5
C9—C8—H8120.2H29A—C29—H29C109.5
C7—C8—H8120.2H29B—C29—H29C109.5
N4—C9—C8121.6 (4)N3—C30—C31114.3 (4)
N4—C9—C10120.9 (4)N3—C30—H30A108.7
C8—C9—C10117.5 (3)C31—C30—H30A108.7
C11—C10—C9121.1 (4)N3—C30—H30B108.7
C11—C10—H10119.5C31—C30—H30B108.7
C9—C10—H10119.5H30A—C30—H30B107.6
C10—C11—C12121.7 (4)C30—C31—H31A109.5
C10—C11—H11119.1C30—C31—H31B109.5
C12—C11—H11119.1H31A—C31—H31B109.5
C7—C12—C11116.0 (3)C30—C31—H31C109.5
C7—C12—C13122.8 (3)H31A—C31—H31C109.5
C11—C12—C13121.1 (3)H31B—C31—H31C109.5
N1—C13—C12111.8 (3)N4—C32—C33113.1 (5)
N1—C13—C1112.2 (3)N4—C32—H32A109.0
C12—C13—C1110.6 (3)C33—C32—H32A109.0
N1—C13—C1498.3 (3)N4—C32—H32B109.0
C12—C13—C14110.4 (3)C33—C32—H32B109.0
C1—C13—C14113.0 (3)H32A—C32—H32B107.8
C19—C14—C15120.7 (4)C32—C33—H33A109.5
C19—C14—C13112.3 (3)C32—C33—H33B109.5
C15—C14—C13127.0 (4)H33A—C33—H33B109.5
C14—C15—C16118.0 (4)C32—C33—H33C109.5
C14—C15—H15121.0H33A—C33—H33C109.5
C16—C15—H15121.0H33B—C33—H33C109.5
C17—C16—C15121.0 (4)C35—C34—N4104.2 (5)
C17—C16—H16119.5C35—C34—H34A110.9
C15—C16—H16119.5N4—C34—H34A110.9
C18—C17—C16121.0 (4)C35—C34—H34B110.9
C18—C17—H17119.5N4—C34—H34B110.9
C16—C17—H17119.5H34A—C34—H34B108.9
C17—C18—C19117.8 (4)C34—C35—H35A109.5
C17—C18—H18121.1C34—C35—H35B109.5
C19—C18—H18121.1H35A—C35—H35B109.5
C14—C19—C18121.5 (4)C34—C35—H35C109.5
C14—C19—C20108.6 (4)H35A—C35—H35C109.5
C18—C19—C20129.9 (4)H35B—C35—H35C109.5
O2—C20—N1123.7 (4)N2—N1—C20117.1 (3)
O2—C20—C19129.6 (4)N2—N1—C13127.6 (3)
N1—C20—C19106.7 (4)C20—N1—C13113.9 (3)
N2—C21—C22119.0 (4)C21—N2—N1121.1 (3)
N2—C21—H21120.5C4—N3—C30121.8 (3)
C22—C21—H21120.5C4—N3—C28121.7 (4)
C27—C22—C23117.4 (4)C30—N3—C28116.5 (3)
C27—C22—C21123.3 (4)C9—N4—C32122.9 (4)
C23—C22—C21119.3 (4)C9—N4—C34119.4 (4)
C24—C23—C22120.8 (4)C32—N4—C34117.3 (3)
C24—C23—H23119.6C6—O1—C7119.0 (3)
C22—C23—H23119.6C27—O3—H3A109.5
C6—C1—C2—C30.4 (6)C17—C18—C19—C20179.6 (4)
C13—C1—C2—C3177.6 (4)C14—C19—C20—O2179.1 (4)
C1—C2—C3—C40.3 (6)C18—C19—C20—O20.7 (7)
C2—C3—C4—N3179.4 (4)C14—C19—C20—N11.1 (4)
C2—C3—C4—C50.2 (6)C18—C19—C20—N1177.4 (4)
N3—C4—C5—C6179.1 (3)N2—C21—C22—C274.5 (5)
C3—C4—C5—C60.5 (5)N2—C21—C22—C23177.2 (3)
C4—C5—C6—C10.4 (6)C27—C22—C23—C240.1 (6)
C4—C5—C6—O1179.5 (3)C21—C22—C23—C24178.3 (3)
C2—C1—C6—C50.0 (5)C22—C23—C24—C252.2 (6)
C13—C1—C6—C5178.0 (3)C22—C23—C24—Cl1178.6 (3)
C2—C1—C6—O1179.9 (3)C23—C24—C25—C262.7 (7)
C13—C1—C6—O11.9 (5)Cl1—C24—C25—C26178.1 (3)
C12—C7—C8—C90.5 (6)C24—C25—C26—C271.0 (7)
O1—C7—C8—C9179.6 (3)C25—C26—C27—O3178.7 (4)
C7—C8—C9—N4178.3 (4)C25—C26—C27—C221.2 (6)
C7—C8—C9—C101.0 (5)C23—C22—C27—O3178.2 (3)
N4—C9—C10—C11177.8 (4)C21—C22—C27—O33.5 (6)
C8—C9—C10—C111.5 (6)C23—C22—C27—C261.7 (6)
C9—C10—C11—C120.5 (6)C21—C22—C27—C26176.6 (4)
O1—C7—C12—C11178.6 (3)O2—C20—N1—N28.8 (5)
C8—C7—C12—C111.5 (5)C19—C20—N1—N2169.4 (3)
O1—C7—C12—C134.9 (5)O2—C20—N1—C13176.5 (3)
C8—C7—C12—C13175.1 (3)C19—C20—N1—C131.7 (4)
C10—C11—C12—C70.9 (6)C12—C13—N1—N253.6 (4)
C10—C11—C12—C13175.6 (3)C1—C13—N1—N271.3 (4)
C7—C12—C13—N1136.2 (3)C14—C13—N1—N2169.6 (3)
C11—C12—C13—N147.5 (5)C12—C13—N1—C20112.6 (3)
C7—C12—C13—C110.4 (5)C1—C13—N1—C20122.5 (3)
C11—C12—C13—C1173.3 (3)C14—C13—N1—C203.4 (3)
C7—C12—C13—C14115.4 (4)C22—C21—N2—N1177.3 (3)
C11—C12—C13—C1460.9 (4)C20—N1—N2—C21177.5 (3)
C6—C1—C13—N1134.4 (3)C13—N1—N2—C2111.7 (5)
C2—C1—C13—N147.7 (4)C5—C4—N3—C300.6 (6)
C6—C1—C13—C128.9 (4)C3—C4—N3—C30179.0 (4)
C2—C1—C13—C12173.2 (3)C5—C4—N3—C28177.3 (4)
C6—C1—C13—C14115.5 (4)C3—C4—N3—C283.1 (6)
C2—C1—C13—C1462.4 (4)C31—C30—N3—C486.1 (4)
N1—C13—C14—C194.0 (4)C31—C30—N3—C2891.8 (4)
C12—C13—C14—C19113.0 (3)C29—C28—N3—C487.4 (5)
C1—C13—C14—C19122.6 (3)C29—C28—N3—C3094.6 (5)
N1—C13—C14—C15177.8 (4)C8—C9—N4—C321.8 (7)
C12—C13—C14—C1565.2 (5)C10—C9—N4—C32178.9 (4)
C1—C13—C14—C1559.3 (5)C8—C9—N4—C34171.5 (4)
C19—C14—C15—C162.3 (6)C10—C9—N4—C347.8 (6)
C13—C14—C15—C16175.8 (3)C33—C32—N4—C987.6 (6)
C14—C15—C16—C170.7 (6)C33—C32—N4—C3485.8 (6)
C15—C16—C17—C180.1 (7)C35—C34—N4—C987.2 (6)
C16—C17—C18—C190.6 (7)C35—C34—N4—C3299.2 (5)
C15—C14—C19—C183.1 (6)C5—C6—O1—C7175.3 (3)
C13—C14—C19—C18175.2 (3)C1—C6—O1—C74.9 (5)
C15—C14—C19—C20178.3 (3)C12—C7—O1—C63.4 (5)
C13—C14—C19—C203.4 (4)C8—C7—O1—C6176.7 (3)
C17—C18—C19—C142.2 (6)

Experimental details

Crystal data
Chemical formulaC35H35ClN4O3
Mr595.12
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)21.609 (9), 11.892 (5), 12.355 (5)
V3)3175 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.32 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
16073, 5528, 2820
Rint0.079
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.088, 1.02
No. of reflections5528
No. of parameters394
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), 2521 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Department of Henan Province (2010B150029) and the Natural Science Foundation of Henan Province (082300420110) for support.

References

First citationBruker (2005). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2005). J. Am. Chem. Soc. 127, 10107–10111.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds