metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-1-Amino-2-cyano-2-(4,6-di-2-pyridyl­pyrimidin-2-yl)ethenolato]chlorido(N,N-di­methyl­formamide-κO)zinc(II)

aNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 1 April 2010; accepted 14 May 2010; online 22 May 2010)

In the title complex, [Zn(C17H11N6O)Cl(C3H7NO)], the ZnII atom has a distorted square-pyramidal coordination formed by one Cl, two O and two N atoms. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds link mol­ecules into centrosymmetric dimers, which are further assembled by ππ inter­actions [centroid–centroid distances = 3.809 (3) and 3.834 (3) Å] into layers parallel to the ab plane. The crystal packing exhibits also weak inter­molecular C—H⋯Cl inter­actions.

Related literature

For general background concerning the self-assembly of metal complexes with organic ligands, see: Chi et al. (2008[Chi, Y. N., Cui, F. Y., Xu, Y. Q. & Hu, C. W. (2008). J. Mol. Struct. 875, 42-49.]); Patroniak et al. (2005[Patroniak, V., Stefankiewicz, A. R., Lehn, J. M. & Kubicki, M. (2005). Eur. J. Inorg. Chem. pp. 4168-4173.]); Kovbasyuk et al. (2005[Kovbasyuk, L., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. 894-900.]). For related structures, see: Preston & Kennard (1969[Preston, H. S. & Kennard, C. H. L. (1969). Eur. J. Chem. Soc. A, pp. 1956-1961.]); Jian et al. (2004[Jian, F., Xiao, H. & Sun, P. (2004). Acta Cryst. E60, m38-m39.]); Patroniak et al. (2003[Patroniak, V., Baxter, P. N. W., Lehn, J. M., Kubicki, M., Nissinen, M. & Pissanen, M. (2003). Eur. J. Inorg. Chem. pp. 4001-4009.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C17H11N6O)Cl(C3H7NO)]

  • Mr = 489.23

  • Triclinic, [P \overline 1]

  • a = 8.5610 (17) Å

  • b = 11.250 (2) Å

  • c = 12.259 (3) Å

  • α = 110.70 (3)°

  • β = 91.36 (3)°

  • γ = 101.37 (3)°

  • V = 1077.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 295 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 10564 measured reflections

  • 4863 independent reflections

  • 4214 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.167

  • S = 1.09

  • 4863 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯Cl1i 0.86 2.57 3.396 (4) 161
C10—H10A⋯Cl1ii 0.93 2.80 3.670 (4) 156
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, self-assembly of specially designed metal complexes have attracted intense attention due to their fascinating molecular structures and crystal-packing motifs (Chi et al., 2008). Several metal complexes with ligands containig heterocyclic pyrimidine and pyridine units have been studied previously to explore the role of hydrogen bonding in supramolecular assemblies (Patroniak et al., 2005; Kovbasyuk et al., 2005). Herein, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), the zinc(II) ion is coordinated by one O anion and two N atoms of (Z)-3-amino-2-(4,6-di(pyridin-2-yl)pyrimidin-2-yl)-3- hydroxyacrylonitrile ligand, one O atom from DMF (DMF = N,N-dimethylformamide) and one Cl- anion, forming a distorted square-pyramidal geometry. The Zn—Cl distance of 2.2956 (12)Å is longer than the value of 2.212 (4) Å in ZnCl2(2,9-dimethyl-1,10-phenanthroline) (Preston et al., 1969) and 2.209 (1)Å in ZnCl2(C6H4N3CH2COPh)2 (Jian et al., 2004). The Zn—O bond lengths of 1.996 (3) and 2.066 (2)Å, respectively, are shorter than those reported previously (Patroniak et al., 2003). The Zn—N bond lengths are 2.103 (3) and 2.106 (2) Å, respectively, which are in disagreement with the corresponding five-coordination Zn—N distances found in similar compounds (Patroniak et al., 2003; Chi et al., 2008 ). The N3—Zn1—N4 bite angle is 77.58 (10)°, which is narrower than that in {Zn[4,6-bis(2-pyridyl)-2-aminopyrimidine](OOCCH3)2} [78.40 (7)°, Chi et al., 2008].

The five-membered chelate ring N3/C8/C9/N4/Zn1 (P1) is fairly planar, the deviation of atom Zn1 from the weighted least-squares plane N3/C8/C9/N4 is 0.079 Å. The dihedral angles formed by P1 with the planes N3/C14/C15/C17/O1/Zn1(P2), N2/C6—C8/N3/C14(P3), N4/C9—C13(P4) and N1/C1—C5(P5) are 16.67, 9.93, 5.02 and 19.49°, respectively. The dihedral angles formed by P3 with P4 and P5 are 5.61 and 16.55°, respectively. The dihedral angle between P2 and P4 is 14.55°.

In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 2) link molecules into centrosymmetric dimers, which are further assembled by π-π interactions (Table 1) into layers parallel to ab plane. The crystal packing exhibits also weak intermolecular C—H···Cl interactions (Table 2).

Related literature top

For general background concerning the self-assembly of metal complexes with organic ligands, see: Chi et al. (2008); Patroniak et al. (2005); Kovbasyuk et al. (2005). For related structures, see: Preston et al. (1969); Jian et al. (2004); Patroniak et al. (2003).

Experimental top

The title complex was prepared by the reaction of (Z)-3-amino-2-(4,6-di(pyridin-2-yl)pyrimidin-2-yl)-3-hydroxyacrylonitrile (3.16 g, 10 mmol) with Zinc dichloride (1.36 g, 10 mmol) in water solution at 353 K for four hours. Single crystals suitable for x-ray measurements were obtained by recrystallization from DMF at room temperature.

Refinement top

All H atoms, except H1, were fixed geometrically and allowed to ride on their attached atoms, with C—H distances constrained to 0.93-0.96Å, N—H = 0.86 Å, and with Uiso(H) = 1.2-1.5Ueq (C, N). Atom H1 was located on a difference map and refined isotropically.

Structure description top

Recently, self-assembly of specially designed metal complexes have attracted intense attention due to their fascinating molecular structures and crystal-packing motifs (Chi et al., 2008). Several metal complexes with ligands containig heterocyclic pyrimidine and pyridine units have been studied previously to explore the role of hydrogen bonding in supramolecular assemblies (Patroniak et al., 2005; Kovbasyuk et al., 2005). Herein, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), the zinc(II) ion is coordinated by one O anion and two N atoms of (Z)-3-amino-2-(4,6-di(pyridin-2-yl)pyrimidin-2-yl)-3- hydroxyacrylonitrile ligand, one O atom from DMF (DMF = N,N-dimethylformamide) and one Cl- anion, forming a distorted square-pyramidal geometry. The Zn—Cl distance of 2.2956 (12)Å is longer than the value of 2.212 (4) Å in ZnCl2(2,9-dimethyl-1,10-phenanthroline) (Preston et al., 1969) and 2.209 (1)Å in ZnCl2(C6H4N3CH2COPh)2 (Jian et al., 2004). The Zn—O bond lengths of 1.996 (3) and 2.066 (2)Å, respectively, are shorter than those reported previously (Patroniak et al., 2003). The Zn—N bond lengths are 2.103 (3) and 2.106 (2) Å, respectively, which are in disagreement with the corresponding five-coordination Zn—N distances found in similar compounds (Patroniak et al., 2003; Chi et al., 2008 ). The N3—Zn1—N4 bite angle is 77.58 (10)°, which is narrower than that in {Zn[4,6-bis(2-pyridyl)-2-aminopyrimidine](OOCCH3)2} [78.40 (7)°, Chi et al., 2008].

The five-membered chelate ring N3/C8/C9/N4/Zn1 (P1) is fairly planar, the deviation of atom Zn1 from the weighted least-squares plane N3/C8/C9/N4 is 0.079 Å. The dihedral angles formed by P1 with the planes N3/C14/C15/C17/O1/Zn1(P2), N2/C6—C8/N3/C14(P3), N4/C9—C13(P4) and N1/C1—C5(P5) are 16.67, 9.93, 5.02 and 19.49°, respectively. The dihedral angles formed by P3 with P4 and P5 are 5.61 and 16.55°, respectively. The dihedral angle between P2 and P4 is 14.55°.

In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 2) link molecules into centrosymmetric dimers, which are further assembled by π-π interactions (Table 1) into layers parallel to ab plane. The crystal packing exhibits also weak intermolecular C—H···Cl interactions (Table 2).

For general background concerning the self-assembly of metal complexes with organic ligands, see: Chi et al. (2008); Patroniak et al. (2005); Kovbasyuk et al. (2005). For related structures, see: Preston et al. (1969); Jian et al. (2004); Patroniak et al. (2003).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software(Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[(Z)-1-Amino-2-cyano-2-(4,6-di-2-pyridylpyrimidin-2- yl)ethenolato]chlorido(N,N-dimethylformamide-κ>i>O)zinc(II) top
Crystal data top
[Zn(C17H11N6O)Cl(C3H7NO)]Z = 2
Mr = 489.23F(000) = 500
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5610 (17) ÅCell parameters from 25 reflections
b = 11.250 (2) Åθ = 4–14°
c = 12.259 (3) ŵ = 1.30 mm1
α = 110.70 (3)°T = 295 K
β = 91.36 (3)°Block, red
γ = 101.37 (3)°0.20 × 0.17 × 0.15 mm
V = 1077.1 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.0°
Graphite monochromatorh = 1011
ω scansk = 1414
10564 measured reflectionsl = 1515
4863 independent reflections3 standard reflections every 100 reflections
4214 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.732P]
where P = (Fo2 + 2Fc2)/3
4863 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Zn(C17H11N6O)Cl(C3H7NO)]γ = 101.37 (3)°
Mr = 489.23V = 1077.1 (4) Å3
Triclinic, P1Z = 2
a = 8.5610 (17) ÅMo Kα radiation
b = 11.250 (2) ŵ = 1.30 mm1
c = 12.259 (3) ÅT = 295 K
α = 110.70 (3)°0.20 × 0.17 × 0.15 mm
β = 91.36 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
10564 measured reflections3 standard reflections every 100 reflections
4863 independent reflections intensity decay: none
4214 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.58 e Å3
4863 reflectionsΔρmin = 0.58 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.33598 (4)0.22665 (3)0.92885 (3)0.03870 (16)
Cl10.17317 (10)0.36222 (8)1.02298 (8)0.0497 (2)
O10.5618 (3)0.3196 (3)0.9911 (2)0.0511 (6)
O20.3716 (3)0.2649 (3)0.7773 (2)0.0542 (6)
N10.3389 (4)0.0424 (3)1.3640 (3)0.0566 (8)
N20.4266 (4)0.0756 (3)1.2026 (3)0.0496 (7)
N30.3565 (3)0.1094 (2)1.0273 (2)0.0328 (5)
N40.1814 (3)0.0487 (3)0.8275 (2)0.0401 (6)
N50.7321 (5)0.3459 (4)1.3637 (3)0.0727 (10)
N60.7680 (4)0.4302 (3)1.1244 (3)0.0591 (8)
H6A0.80200.47361.08110.071*
H6B0.82090.44621.19040.071*
N70.4824 (4)0.3814 (3)0.6721 (3)0.0499 (7)
C10.3016 (6)0.0996 (5)1.4418 (4)0.0646 (11)
H1B0.34650.05511.51890.078*
C20.2027 (5)0.2183 (5)1.4156 (4)0.0628 (10)
H2B0.17940.25301.47330.075*
C30.1376 (6)0.2861 (5)1.3011 (4)0.0655 (11)
H3A0.06980.36791.27990.079*
C40.1749 (5)0.2300 (4)1.2179 (4)0.0562 (9)
H4A0.13480.27461.13970.067*
C50.2727 (4)0.1070 (3)1.2534 (3)0.0417 (7)
C60.3068 (4)0.0356 (3)1.1717 (3)0.0375 (6)
C70.2136 (4)0.0771 (3)1.0636 (3)0.0377 (6)
H7A0.13420.15331.03860.045*
C80.2430 (3)0.0020 (3)0.9955 (2)0.0344 (6)
C90.1483 (3)0.0380 (3)0.8802 (2)0.0358 (6)
C100.0349 (4)0.1544 (3)0.8286 (3)0.0460 (7)
H10A0.01370.21410.86580.055*
C110.0458 (5)0.1798 (4)0.7204 (3)0.0538 (9)
H11A0.12330.25620.68500.065*
C120.0105 (4)0.0919 (4)0.6666 (3)0.0526 (8)
H12A0.06200.10850.59340.063*
C130.1019 (4)0.0213 (4)0.7218 (3)0.0483 (8)
H13A0.12420.08150.68520.058*
C140.4514 (3)0.1485 (3)1.1287 (2)0.0354 (6)
C150.5791 (4)0.2644 (3)1.1610 (3)0.0385 (6)
C160.6641 (4)0.3068 (3)1.2730 (3)0.0448 (7)
C170.6313 (4)0.3365 (3)1.0886 (3)0.0392 (6)
C180.4729 (4)0.3546 (4)0.7681 (3)0.0460 (7)
C190.3704 (7)0.3062 (5)0.5696 (4)0.0831 (15)
H19A0.29530.24050.58580.125*
H19B0.42750.26550.50530.125*
H19C0.31400.36270.54960.125*
C200.6072 (6)0.4868 (4)0.6641 (4)0.0608 (10)
H20A0.67420.52850.73700.091*
H20B0.55830.54930.64780.091*
H20C0.67090.45160.60220.091*
H10.546 (5)0.406 (4)0.831 (4)0.056 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0394 (2)0.0427 (2)0.0365 (2)0.00096 (15)0.00087 (14)0.02205 (16)
Cl10.0495 (5)0.0453 (4)0.0573 (5)0.0067 (3)0.0090 (4)0.0242 (4)
O10.0415 (12)0.0654 (16)0.0501 (13)0.0046 (11)0.0003 (10)0.0344 (12)
O20.0582 (15)0.0631 (16)0.0436 (13)0.0035 (12)0.0051 (11)0.0313 (12)
N10.068 (2)0.0629 (19)0.0421 (15)0.0026 (15)0.0026 (14)0.0297 (14)
N20.0516 (16)0.0552 (17)0.0468 (15)0.0107 (13)0.0047 (12)0.0251 (13)
N30.0365 (12)0.0333 (11)0.0290 (11)0.0053 (9)0.0033 (9)0.0130 (9)
N40.0424 (13)0.0445 (14)0.0350 (13)0.0048 (11)0.0015 (10)0.0191 (11)
N50.074 (2)0.079 (3)0.055 (2)0.0010 (19)0.0158 (17)0.0238 (18)
N60.0483 (17)0.0606 (19)0.067 (2)0.0140 (14)0.0101 (14)0.0364 (16)
N70.0607 (18)0.0525 (16)0.0411 (14)0.0061 (13)0.0101 (13)0.0257 (12)
C10.079 (3)0.077 (3)0.046 (2)0.009 (2)0.0025 (18)0.0359 (19)
C20.068 (2)0.080 (3)0.063 (2)0.018 (2)0.0154 (19)0.052 (2)
C30.070 (3)0.063 (2)0.073 (3)0.003 (2)0.000 (2)0.046 (2)
C40.063 (2)0.056 (2)0.055 (2)0.0007 (17)0.0042 (17)0.0341 (17)
C50.0447 (16)0.0456 (17)0.0432 (16)0.0119 (13)0.0056 (12)0.0253 (13)
C60.0407 (15)0.0404 (15)0.0376 (15)0.0112 (12)0.0084 (12)0.0202 (12)
C70.0402 (15)0.0362 (14)0.0373 (14)0.0037 (11)0.0035 (11)0.0169 (12)
C80.0369 (14)0.0351 (14)0.0325 (13)0.0080 (11)0.0044 (11)0.0137 (11)
C90.0342 (14)0.0401 (15)0.0333 (14)0.0081 (11)0.0044 (11)0.0138 (11)
C100.0490 (18)0.0418 (16)0.0439 (17)0.0021 (13)0.0014 (13)0.0164 (13)
C110.0513 (19)0.0502 (19)0.0464 (18)0.0023 (15)0.0069 (15)0.0092 (15)
C120.0515 (19)0.062 (2)0.0381 (17)0.0084 (16)0.0079 (14)0.0143 (15)
C130.0515 (19)0.057 (2)0.0364 (16)0.0049 (15)0.0040 (13)0.0217 (14)
C140.0358 (14)0.0375 (14)0.0354 (14)0.0085 (11)0.0046 (11)0.0161 (11)
C150.0376 (14)0.0402 (15)0.0376 (15)0.0041 (12)0.0004 (11)0.0164 (12)
C160.0436 (17)0.0468 (17)0.0401 (17)0.0031 (13)0.0038 (13)0.0153 (13)
C170.0332 (14)0.0401 (15)0.0434 (16)0.0045 (11)0.0018 (11)0.0163 (13)
C180.0488 (18)0.0525 (19)0.0398 (16)0.0079 (15)0.0064 (13)0.0223 (14)
C190.110 (4)0.086 (3)0.048 (2)0.009 (3)0.012 (2)0.036 (2)
C200.075 (3)0.058 (2)0.061 (2)0.0138 (19)0.027 (2)0.0358 (18)
Geometric parameters (Å, º) top
Zn1—O11.996 (3)C3—H3A0.9300
Zn1—O22.066 (2)C4—C51.380 (5)
Zn1—N42.103 (3)C4—H4A0.9300
Zn1—N32.106 (2)C5—C61.491 (4)
Zn1—Cl12.2956 (12)C6—C71.406 (4)
O1—C171.256 (4)C7—C81.378 (4)
O2—C181.234 (4)C7—H7A0.9300
N1—C11.338 (5)C8—C91.493 (4)
N1—C51.339 (5)C9—C101.394 (4)
N2—C61.378 (4)C10—C111.388 (5)
N2—C141.416 (4)C10—H10A0.9300
N3—C81.350 (4)C11—C121.362 (6)
N3—C141.350 (4)C11—H11A0.9300
N4—C91.339 (4)C12—C131.372 (5)
N4—C131.353 (4)C12—H12A0.9300
N5—C161.136 (5)C13—H13A0.9300
N6—C171.355 (4)C14—C151.451 (4)
N6—H6A0.8600C15—C161.413 (4)
N6—H6B0.8600C15—C171.426 (4)
N7—C181.314 (4)C18—H10.91 (4)
N7—C191.444 (6)C19—H19A0.9600
N7—C201.465 (5)C19—H19B0.9600
C1—C21.357 (6)C19—H19C0.9600
C1—H1B0.9300C20—H20A0.9600
C2—C31.379 (6)C20—H20B0.9600
C2—H2B0.9300C20—H20C0.9600
C3—C41.389 (5)
Cg1···Cg1i3.809 (3)Cg1···Cg2ii3.834 (3)
O1—Zn1—O289.37 (11)C8—C7—H7A120.9
O1—Zn1—N4146.12 (12)C6—C7—H7A120.9
O2—Zn1—N488.67 (11)N3—C8—C7123.4 (3)
O1—Zn1—N387.29 (10)N3—C8—C9114.8 (3)
O2—Zn1—N3149.32 (11)C7—C8—C9121.8 (3)
N4—Zn1—N377.58 (10)N4—C9—C10121.5 (3)
O1—Zn1—Cl1107.51 (9)N4—C9—C8115.4 (3)
O2—Zn1—Cl1103.78 (9)C10—C9—C8123.1 (3)
N4—Zn1—Cl1105.79 (8)C11—C10—C9118.8 (3)
N3—Zn1—Cl1106.30 (7)C11—C10—H10A120.6
C17—O1—Zn1126.9 (2)C9—C10—H10A120.6
C18—O2—Zn1125.8 (2)C12—C11—C10119.5 (3)
C1—N1—C5117.3 (3)C12—C11—H11A120.3
C6—N2—C14120.6 (3)C10—C11—H11A120.3
C8—N3—C14119.3 (2)C11—C12—C13119.2 (3)
C8—N3—Zn1114.61 (19)C11—C12—H12A120.4
C14—N3—Zn1124.8 (2)C13—C12—H12A120.4
C9—N4—C13118.6 (3)N4—C13—C12122.5 (3)
C9—N4—Zn1115.2 (2)N4—C13—H13A118.8
C13—N4—Zn1125.8 (2)C12—C13—H13A118.8
C17—N6—H6A120.0N3—C14—N2119.8 (3)
C17—N6—H6B120.0N3—C14—C15119.9 (3)
H6A—N6—H6B120.0N2—C14—C15120.3 (3)
C18—N7—C19120.9 (3)C16—C15—C17116.8 (3)
C18—N7—C20121.7 (3)C16—C15—C14117.0 (3)
C19—N7—C20117.4 (3)C17—C15—C14126.1 (3)
N1—C1—C2124.4 (4)N5—C16—C15177.3 (4)
N1—C1—H1B117.8O1—C17—N6115.8 (3)
C2—C1—H1B117.8O1—C17—C15125.4 (3)
C1—C2—C3118.3 (4)N6—C17—C15118.9 (3)
C1—C2—H2B120.9O2—C18—N7123.6 (3)
C3—C2—H2B120.9O2—C18—H1119 (3)
C2—C3—C4118.8 (4)N7—C18—H1117 (3)
C2—C3—H3A120.6N7—C19—H19A109.5
C4—C3—H3A120.6N7—C19—H19B109.5
C5—C4—C3118.8 (4)H19A—C19—H19B109.5
C5—C4—H4A120.6N7—C19—H19C109.5
C3—C4—H4A120.6H19A—C19—H19C109.5
N1—C5—C4122.3 (3)H19B—C19—H19C109.5
N1—C5—C6115.6 (3)N7—C20—H20A109.5
C4—C5—C6122.0 (3)N7—C20—H20B109.5
N2—C6—C7118.5 (3)H20A—C20—H20B109.5
N2—C6—C5120.6 (3)N7—C20—H20C109.5
C7—C6—C5120.8 (3)H20A—C20—H20C109.5
C8—C7—C6118.3 (3)H20B—C20—H20C109.5
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl1iii0.862.573.396 (4)161
C10—H10A···Cl1iv0.932.803.670 (4)156
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C17H11N6O)Cl(C3H7NO)]
Mr489.23
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.5610 (17), 11.250 (2), 12.259 (3)
α, β, γ (°)110.70 (3), 91.36 (3), 101.37 (3)
V3)1077.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10564, 4863, 4214
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.167, 1.09
No. of reflections4863
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.58, 0.58

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software(Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected interatomic distances (Å) top
Cg1···Cg1i3.809 (3)Cg1···Cg2ii3.834 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl1iii0.862.573.396 (4)161
C10—H10A···Cl1iv0.932.803.670 (4)156
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x, y, z+2.
 

Acknowledgements

This work was supported financially by the Doctoral Fund of Shandaong Province (grant No. 2007BS04046), People's Republic of China.

References

First citationChi, Y. N., Cui, F. Y., Xu, Y. Q. & Hu, C. W. (2008). J. Mol. Struct. 875, 42–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJian, F., Xiao, H. & Sun, P. (2004). Acta Cryst. E60, m38–m39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovbasyuk, L., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. 894–900.  Google Scholar
First citationPatroniak, V., Baxter, P. N. W., Lehn, J. M., Kubicki, M., Nissinen, M. & Pissanen, M. (2003). Eur. J. Inorg. Chem. pp. 4001–4009.  Web of Science CSD CrossRef Google Scholar
First citationPatroniak, V., Stefankiewicz, A. R., Lehn, J. M. & Kubicki, M. (2005). Eur. J. Inorg. Chem. pp. 4168–4173.  Web of Science CSD CrossRef Google Scholar
First citationPreston, H. S. & Kennard, C. H. L. (1969). Eur. J. Chem. Soc. A, pp. 1956–1961.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds