metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris{N-[bis­­(di­methyl­amino)phosphino­yl]-2,2,2-tri­chloro­acetamido}(tri­phenyl­phosphine oxide)holmium(III)

aKyiv National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: amirkhalex@gmail.com

(Received 22 April 2010; accepted 6 May 2010; online 12 May 2010)

In the title compound, [Ho(C6H12Cl3N3O2P)3(C18H15OP)], the HoIII ion is surrounded by six O atoms from the three bidentate N-[bis­(dimethyl­amino)phosphino­yl]-2,2,2-trichloro­acetamido ligands (L) and by one O atom from the triphenyl­phosphine oxide ligand, with the formation of a distorted monocapped octa­hedron. In one ligand L, the trichloro­methyl group is rotationally disordered between two orientations in a 1:1 ratio, while two dimethyl­amino groups in another ligand L are disordered between two conformations, each with the same 1:1 ratio.

Related literature

For the synthesis and structural investigation of N-[bis­(dimethyl­amino)phosphino­yl]-2,2,2-trichloro­acetamide, see: Amir­khanov et al. (2010[Amirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Trush, E. A. & Sliva, T. Y. (2010). Acta Cryst. E66, o1102.]). For LnIII (Ln = lanthanide) complexes with a triphenyl­phosphine oxide, see: Zhong et al. (2006[Zhong, Q., Wang, H., Qian, G., Wang, Z., Zhang, J., Qiu, J. & Wang, M. (2006). Inorg. Chem. 45, 4537-4543.]); Cao et al. (2005[Cao, Q.-Y., Huang, L.-Q., Wang, Z.-W., Yang, C.-J. & Gao, X.-C. (2005). Acta Cryst. E61, m2414-m2415.]). For the method of calculation of the coordination polyhedra of Ln ions, see: Kouba & Wreford (1976[Kouba, J. K. & Wreford, S. S. (1976). Inorg. Chem. 15, 1463-1465.]). For details of the potential application of lanthanide complexes, see: Bünzli & Piguet (2005[Bünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.]). For LnIII complexes with CAPh-type (carbacylamidophosphate) ligands, see: Borzechowska et al. (2002[Borzechowska, M., Trush, V., Turowska-Tyrk, I., Amirkhanov, V. & Legendziewicz, J. (2002). J. Alloys Compd, 341, 98-106.]); Trush et al. (2001[Trush, V., Swiatek-Kozlowska, J., Skopenko, V. & Amirkhanov, V. (2001). Z. Naturforsch. Teil B, 56, 249-254.]); Znovjyak et al. (2009[Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731-3738.]).

[Scheme 1]

Experimental

Crystal data
  • [Ho(C6H12Cl3N3O2P)3(C18H15OP)]

  • Mr = 1329.72

  • Monoclinic, P 21 /c

  • a = 12.1338 (4) Å

  • b = 23.2403 (9) Å

  • c = 23.6071 (8) Å

  • β = 120.462 (2)°

  • V = 5738.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 293 K

  • 0.10 × 0.07 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 0.943

  • 24428 measured reflections

  • 10386 independent reflections

  • 7799 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.09

  • 10386 reflections

  • 668 parameters

  • 120 restraints

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Synthesis of luminescent lanthanide complexes has been attracted a considerable interest because of their potential application, such as fluorescent labeling reagents, imaging agents, and emitter materials in organic light-emitting diodes (Bünzli & Piguet, 2005). As a part of our study of Ln(III) coordination compounds based on carbacylamidophosphates (CAPh), which comprise C(O)NHP(O) structural fragment, we synthesized and structurally characterized compound [HoIII(L-)3TPPO] (1) {HL is N-[bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide, TPPO is triphenylphosphine oxide}.

The molecular structure of 1 is shown in Fig. 1. There are no short contacts between neighboring molecules in the crystal packing. The coordination environment of HoIII ion can be described as a distorted monocapped octahedron polyhedron (6 + 1) (Kouba & Wreford, 1976). The HoO7 center is made by one oxygen atom from TPPO molecule and six oxygen atoms from phosphoryl and carbonyl groups from three ligands (L-) which are coordinated in bidentate chelate mode forming with central ion six-membered chelate rings.

The Ho–O(P) and Ho–O(C) distances from L- fall in the range 2.241 (3) – 2.282 (3) Å and 2.322 (4) – 2.330 (4) Å, respectively. The bond lengths Ho–O(P) are shorter than Ho–O(C) which is a result of higher affinity of phosphoryl group to lanthanides. The Ho–O(TPPO) bond distance is 2.258 (4) Å which is similar to values observed for complexes with TPPO ligand (Zhong et al., 2006; Cao et al., 2005). The amide nitrogen atom of L- is deprotonated that leads to decrease of C–N, N–P and increase of P–O, C–O bond length values in comparison with the same values for neutral ligand (Amirkhanov et al., 2010). Such changes of the bond lengths may be related to the occurrence of the π-coupling in C(O)NP(O) fragment (Znovjyak et al., 2009).

The bite angles around the central atom lie in the range 75.4 (1) – 76.3 (1)° which are typical for lanthanide complexes with O- donor ligands (Trush et al., 2001; Borzechowska et al., 2002). The phosphorus atoms of the complex 1 have distorted tetrahedral configuration. The O–P–N chelate angle has value 116.2 (2)°. The sum of the contiguous angles of O–C–N chelate angle is 360°, which is expected for the sp2-hybridization of C atom.

Related literature top

For the synthesis and structural investigation of the N-[bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide, see: Amirkhanov et al. (2010). For LnIII-containing complexes with a triphenylphosphine oxide, see: Zhong et al. (2006); Cao et al. (2005). For the method of calculation of the coordination polyhedra of Ln ions, see: Kouba & Wreford (1976). For details of the potential application of lanthanide complexes, see: Bünzli & Piguet (2005). For LnIII complexes with CAPh ligands, see: Borzechowska et al. (2002); Trush et al. (2001); Znovjyak et al. (2009).

Experimental top

The synthesis of HL was carried out according to previously published procedure (Amirkhanov et al., 2010).

A solution of HL (0.89 g., 3 mmol) in isopropanol (10 ml) was mixed with isopropanol solution of sodium (0.07 g., 3 mmol). After that acetone solution of Ho(NO3)3.6H2O (5 ml) (0.46 g., 1 mmol) was added. After 20 min the precipitate of NaNO3 was filtered off and filtrate was added to 10 ml of isopropanol solution of TPPO (0.28 g., 1 mmol). The resulting clear solution was left at ambient temperature for crystallization in air. The yellow crystals were collected by filtration after 5 days, washed thoroughly with cool isopropanol and finally dried on filter. A well-formed crystal was used for the single X-ray structural analysis. Yield: 1.06 g (80%). IR (KBr pellet, cm-1): 1608 (ν(CO)), 1125 (ν(PO)), 1105 (ν(PO)), 993 (ν(PNamine)), 870 (ν(PNamide)), 668 (ν(CCl)).

Refinement top

The H atoms were geometrically positioned (C—H 0.93–0.98Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq of the parent atom. Atoms Cl4, Cl5, Cl6, C35, C36, C37 and C38 were treated as disordered between two positions each with occupancy factors fixed to 0.5. In the refinement, several constrains were applied: SIMU and ISOR for CL4A CL4B CL6A CL6B CL5A CL5B atoms; ISOR for disordered C atoms of one NMe2 group; EADP instruction - for O6 C5 atoms. Also several ISOR and DFIX instructions were added.

Structure description top

Synthesis of luminescent lanthanide complexes has been attracted a considerable interest because of their potential application, such as fluorescent labeling reagents, imaging agents, and emitter materials in organic light-emitting diodes (Bünzli & Piguet, 2005). As a part of our study of Ln(III) coordination compounds based on carbacylamidophosphates (CAPh), which comprise C(O)NHP(O) structural fragment, we synthesized and structurally characterized compound [HoIII(L-)3TPPO] (1) {HL is N-[bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide, TPPO is triphenylphosphine oxide}.

The molecular structure of 1 is shown in Fig. 1. There are no short contacts between neighboring molecules in the crystal packing. The coordination environment of HoIII ion can be described as a distorted monocapped octahedron polyhedron (6 + 1) (Kouba & Wreford, 1976). The HoO7 center is made by one oxygen atom from TPPO molecule and six oxygen atoms from phosphoryl and carbonyl groups from three ligands (L-) which are coordinated in bidentate chelate mode forming with central ion six-membered chelate rings.

The Ho–O(P) and Ho–O(C) distances from L- fall in the range 2.241 (3) – 2.282 (3) Å and 2.322 (4) – 2.330 (4) Å, respectively. The bond lengths Ho–O(P) are shorter than Ho–O(C) which is a result of higher affinity of phosphoryl group to lanthanides. The Ho–O(TPPO) bond distance is 2.258 (4) Å which is similar to values observed for complexes with TPPO ligand (Zhong et al., 2006; Cao et al., 2005). The amide nitrogen atom of L- is deprotonated that leads to decrease of C–N, N–P and increase of P–O, C–O bond length values in comparison with the same values for neutral ligand (Amirkhanov et al., 2010). Such changes of the bond lengths may be related to the occurrence of the π-coupling in C(O)NP(O) fragment (Znovjyak et al., 2009).

The bite angles around the central atom lie in the range 75.4 (1) – 76.3 (1)° which are typical for lanthanide complexes with O- donor ligands (Trush et al., 2001; Borzechowska et al., 2002). The phosphorus atoms of the complex 1 have distorted tetrahedral configuration. The O–P–N chelate angle has value 116.2 (2)°. The sum of the contiguous angles of O–C–N chelate angle is 360°, which is expected for the sp2-hybridization of C atom.

For the synthesis and structural investigation of the N-[bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide, see: Amirkhanov et al. (2010). For LnIII-containing complexes with a triphenylphosphine oxide, see: Zhong et al. (2006); Cao et al. (2005). For the method of calculation of the coordination polyhedra of Ln ions, see: Kouba & Wreford (1976). For details of the potential application of lanthanide complexes, see: Bünzli & Piguet (2005). For LnIII complexes with CAPh ligands, see: Borzechowska et al. (2002); Trush et al. (2001); Znovjyak et al. (2009).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1 with atom numbering scheme and 20% probability displacement ellipsoids. For each disordered atom, only one position (labelled with letter A) is shown. H atoms were omitted for clarity.
Tris{N-[bis(dimethylamino)phosphinoyl]-2,2,2- trichloroacetamido}(triphenylphosphine oxide)holmium(III) top
Crystal data top
[Ho(C6H12Cl3N3O2P)3(C18H15OP)]F(000) = 2664
Mr = 1329.72Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24428 reflections
a = 12.1338 (4) Åθ = 1.8–26.0°
b = 23.2403 (9) ŵ = 1.96 mm1
c = 23.6071 (8) ÅT = 293 K
β = 120.462 (2)°Block, colorless
V = 5738.1 (4) Å30.1 × 0.07 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
10386 independent reflections
Radiation source: fine-focus sealed tube7799 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 1.8°
φ scans and ω scans with κ offseth = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2820
Tmin = 0.848, Tmax = 0.943l = 2724
24428 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0588P)2 + 5.5377P]
where P = (Fo2 + 2Fc2)/3
10386 reflections(Δ/σ)max = 0.001
668 parametersΔρmax = 0.81 e Å3
120 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Ho(C6H12Cl3N3O2P)3(C18H15OP)]V = 5738.1 (4) Å3
Mr = 1329.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1338 (4) ŵ = 1.96 mm1
b = 23.2403 (9) ÅT = 293 K
c = 23.6071 (8) Å0.1 × 0.07 × 0.03 mm
β = 120.462 (2)°
Data collection top
Nonius KappaCCD
diffractometer
10386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7799 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.943Rint = 0.021
24428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041120 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.09Δρmax = 0.81 e Å3
10386 reflectionsΔρmin = 0.76 e Å3
668 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ho10.72329 (2)0.161007 (10)0.243739 (10)0.04697 (10)
Cl10.9056 (3)0.34718 (11)0.05525 (12)0.1383 (10)
Cl20.7085 (3)0.39845 (10)0.17412 (13)0.1391 (9)
Cl30.6463 (3)0.30681 (14)0.11674 (17)0.1613 (12)
Cl4A0.9802 (6)0.1737 (3)0.0109 (5)0.124 (2)0.50
Cl5A0.7709 (8)0.1689 (3)0.0115 (4)0.174 (2)0.50
Cl6A0.8820 (11)0.0633 (3)0.0032 (7)0.200 (3)0.50
Cl4B0.9374 (10)0.0728 (3)0.0048 (7)0.201 (3)0.50
Cl5B0.9406 (6)0.1955 (3)0.0120 (6)0.129 (2)0.50
Cl6B0.7802 (8)0.1343 (4)0.0245 (4)0.171 (2)0.50
Cl70.2850 (2)0.28801 (12)0.43120 (13)0.1385 (9)
Cl80.5130 (3)0.34413 (9)0.33699 (13)0.1338 (10)
Cl90.4751 (3)0.31821 (11)0.46425 (12)0.1291 (8)
P10.94063 (15)0.26903 (7)0.21883 (8)0.0660 (4)
P20.51228 (16)0.12129 (8)0.19290 (9)0.0758 (5)
P30.52002 (18)0.12899 (8)0.40950 (7)0.0770 (5)
P40.93045 (14)0.03620 (6)0.22533 (7)0.0602 (4)
O10.8846 (4)0.21046 (16)0.24089 (19)0.0664 (10)
O20.7405 (4)0.24256 (17)0.18238 (19)0.0673 (10)
O30.5430 (4)0.1362 (2)0.2448 (2)0.0801 (12)
O40.7958 (4)0.1297 (2)0.13714 (19)0.0746 (11)
O50.6267 (4)0.11480 (16)0.34270 (17)0.0640 (10)
O60.5990 (4)0.23135 (17)0.31940 (18)0.0783 (10)
O70.8631 (4)0.08973 (16)0.22698 (19)0.0706 (11)
N10.8772 (5)0.3085 (2)0.1869 (3)0.0770 (14)
N21.0926 (5)0.2607 (3)0.1671 (3)0.0885 (16)
N30.9369 (6)0.3071 (3)0.2769 (4)0.103 (2)
N40.6283 (6)0.1282 (3)0.1180 (3)0.0846 (16)
N50.4640 (7)0.0553 (3)0.1967 (4)0.107 (2)
N60.3919 (7)0.1609 (3)0.2046 (4)0.117 (2)
N70.4672 (5)0.1943 (2)0.4212 (2)0.0832 (16)
N80.3974 (7)0.0871 (3)0.4310 (4)0.142 (3)
N90.5635 (8)0.1163 (4)0.4628 (3)0.130 (3)
C10.7961 (6)0.2894 (3)0.1711 (3)0.0641 (15)
C20.7642 (8)0.3329 (3)0.1308 (4)0.091 (2)
C30.7447 (7)0.1314 (3)0.1030 (3)0.0744 (17)
C40.8432 (4)0.13507 (15)0.0277 (2)0.116 (3)
C50.5139 (6)0.2329 (3)0.3773 (3)0.0783 (10)
C60.4505 (7)0.2931 (3)0.4009 (3)0.092 (2)
C70.8378 (5)0.0255 (2)0.2310 (3)0.0642 (14)
C80.8698 (6)0.0611 (3)0.1787 (3)0.0835 (19)
H80.94590.05520.13940.100*
C90.7895 (9)0.1058 (3)0.1839 (5)0.108 (3)
H90.81240.12970.14800.129*
C100.6777 (9)0.1151 (3)0.2409 (5)0.106 (3)
H100.62360.14490.24420.127*
C110.6463 (8)0.0797 (4)0.2935 (5)0.114 (3)
H110.57110.08640.33310.137*
C120.7232 (7)0.0349 (3)0.2888 (4)0.101 (2)
H120.69860.01060.32450.121*
C131.0815 (5)0.0322 (3)0.1507 (3)0.0691 (16)
C141.1820 (6)0.0009 (4)0.1460 (4)0.104 (3)
H141.17340.01900.18220.125*
C151.2971 (8)0.0008 (5)0.0862 (6)0.138 (4)
H151.36470.02280.08210.166*
C161.0962 (8)0.0609 (3)0.0970 (4)0.100 (2)
H161.02820.08160.09960.120*
C171.2128 (11)0.0594 (4)0.0381 (4)0.138 (4)
H171.22230.07910.00160.165*
C180.9605 (6)0.0337 (3)0.2918 (3)0.0791 (18)
C190.9759 (8)0.0857 (4)0.3150 (4)0.112 (3)
H190.96810.12010.29720.134*
C200.9716 (7)0.0171 (4)0.3191 (4)0.112 (3)
H200.96140.05220.30330.134*
C210.9981 (9)0.0159 (7)0.3707 (6)0.156 (5)
H211.00590.04960.38960.187*
C221.3108 (9)0.0297 (5)0.0338 (6)0.141 (4)
H221.38910.02990.00520.170*
C231.1234 (9)0.2171 (5)0.1167 (4)0.150 (4)
H23A1.10740.23230.08370.226*
H23B1.07110.18370.13630.226*
H23C1.21190.20670.09680.226*
C240.9846 (12)0.2795 (5)0.3164 (6)0.169 (5)
H24A1.01060.30860.33620.253*
H24B1.05630.25550.28870.253*
H24C0.91790.25660.35020.253*
C250.8443 (11)0.3483 (4)0.3128 (5)0.136 (4)
H25A0.77960.33180.35350.205*
H25B0.80620.36130.28800.205*
H25C0.88310.38030.32180.205*
C260.5602 (14)0.0100 (4)0.1656 (7)0.179 (5)
H26A0.58330.00420.19640.268*
H26B0.63460.02540.12790.268*
H26C0.52590.02090.15220.268*
C270.3484 (13)0.1568 (6)0.1575 (7)0.200 (7)
H27A0.25730.15190.18060.301*
H27B0.38840.12440.12920.301*
H27C0.37080.19130.13180.301*
C280.3516 (12)0.2104 (5)0.2451 (7)0.191 (6)
H28A0.36520.24390.21860.287*
H28B0.40000.21380.26690.287*
H28C0.26240.20710.27730.287*
C290.3499 (12)0.0355 (5)0.2495 (6)0.191 (6)
H29A0.31030.00910.23400.286*
H29B0.29370.06750.27060.286*
H29C0.36700.01640.28020.286*
C301.1715 (10)0.3112 (5)0.1432 (7)0.191 (6)
H30A1.25890.30100.12750.287*
H30B1.14380.33870.17820.287*
H30C1.16430.32780.10800.287*
C311.0041 (11)0.0862 (7)0.3671 (6)0.167 (5)
H311.01660.12050.38340.200*
C321.0116 (15)0.0354 (8)0.3911 (8)0.175 (6)
H321.02790.03590.42560.210*
C35A0.401 (3)0.0269 (4)0.4280 (16)0.197 (12)0.50
H35A0.34050.01350.41590.296*0.50
H35B0.37850.01160.47020.296*0.50
H35C0.48500.01440.39580.296*0.50
C36A0.2863 (18)0.1091 (11)0.4349 (14)0.184 (10)0.50
H36A0.28940.10290.39390.276*0.50
H36B0.28030.14960.44410.276*0.50
H36C0.21290.08990.46950.276*0.50
C37A0.452 (2)0.1140 (10)0.5350 (9)0.145 (7)0.50
H37A0.46570.08250.55720.217*0.50
H37B0.37300.10880.53600.217*0.50
H37C0.44970.14940.55670.217*0.50
C38A0.687 (2)0.1197 (14)0.4493 (13)0.161 (9)0.50
H38A0.69580.09780.48130.242*0.50
H38B0.70840.15910.45100.242*0.50
H38C0.74330.10440.40630.242*0.50
C35B0.386 (2)0.0480 (10)0.3891 (10)0.151 (8)0.50
H35D0.35690.01160.41100.227*0.50
H35E0.46750.04320.34990.227*0.50
H35F0.32540.06250.37780.227*0.50
C36B0.316 (2)0.0848 (11)0.4992 (4)0.177 (9)0.50
H36D0.29530.04540.51280.266*0.50
H36E0.23890.10570.51120.266*0.50
H36F0.35780.10170.52050.266*0.50
C37B0.622 (3)0.1630 (10)0.4744 (18)0.209 (14)0.50
H37D0.63640.15380.50990.314*0.50
H37E0.56770.19620.48600.314*0.50
H37F0.70250.17110.43550.314*0.50
C38B0.630 (2)0.0701 (7)0.4695 (11)0.141 (7)0.50
H38D0.71920.07320.43690.212*0.50
H38E0.59690.03460.46350.212*0.50
H38F0.62000.07090.51250.212*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.04653 (15)0.04951 (15)0.03866 (14)0.00049 (11)0.01704 (11)0.00195 (10)
Cl10.156 (2)0.143 (2)0.0812 (14)0.0087 (16)0.0353 (15)0.0423 (13)
Cl20.161 (2)0.0863 (14)0.145 (2)0.0377 (14)0.0598 (18)0.0174 (14)
Cl30.184 (3)0.162 (2)0.215 (3)0.031 (2)0.158 (3)0.072 (2)
Cl4A0.085 (4)0.188 (5)0.0807 (18)0.032 (4)0.028 (3)0.019 (4)
Cl5A0.198 (3)0.276 (6)0.077 (3)0.072 (4)0.090 (3)0.024 (4)
Cl6A0.207 (7)0.215 (4)0.114 (2)0.006 (4)0.034 (4)0.097 (3)
Cl4B0.209 (7)0.219 (4)0.113 (3)0.003 (4)0.036 (5)0.091 (3)
Cl5B0.091 (4)0.188 (5)0.0810 (18)0.032 (4)0.024 (3)0.016 (4)
Cl6B0.198 (3)0.273 (6)0.074 (3)0.077 (4)0.092 (3)0.015 (4)
Cl70.0878 (14)0.167 (2)0.1322 (19)0.0585 (15)0.0351 (13)0.0100 (17)
Cl80.160 (2)0.0875 (14)0.1074 (17)0.0429 (14)0.0341 (16)0.0088 (11)
Cl90.160 (2)0.1119 (16)0.1042 (16)0.0313 (16)0.0591 (16)0.0469 (14)
P10.0615 (9)0.0623 (9)0.0765 (10)0.0070 (7)0.0366 (8)0.0062 (8)
P20.0708 (10)0.0889 (12)0.0823 (12)0.0165 (9)0.0495 (10)0.0190 (9)
P30.0857 (12)0.0771 (11)0.0430 (8)0.0138 (9)0.0142 (8)0.0063 (8)
P40.0509 (8)0.0558 (8)0.0596 (9)0.0070 (7)0.0176 (7)0.0044 (7)
O10.076 (3)0.061 (2)0.080 (3)0.013 (2)0.051 (2)0.006 (2)
O20.081 (3)0.067 (2)0.064 (2)0.014 (2)0.044 (2)0.016 (2)
O30.051 (2)0.122 (4)0.066 (3)0.015 (2)0.029 (2)0.011 (2)
O40.069 (3)0.102 (3)0.049 (2)0.007 (2)0.028 (2)0.021 (2)
O50.069 (2)0.063 (2)0.044 (2)0.0124 (19)0.0172 (18)0.0039 (17)
O60.088 (3)0.061 (2)0.0512 (18)0.0130 (19)0.0098 (17)0.0016 (17)
O70.068 (2)0.058 (2)0.071 (3)0.0159 (19)0.024 (2)0.0095 (19)
N10.080 (4)0.054 (3)0.098 (4)0.009 (3)0.046 (3)0.008 (3)
N20.062 (3)0.109 (4)0.085 (4)0.008 (3)0.030 (3)0.009 (3)
N30.106 (5)0.092 (4)0.131 (6)0.010 (4)0.076 (4)0.045 (4)
N40.094 (4)0.100 (4)0.076 (4)0.029 (3)0.054 (3)0.011 (3)
N50.101 (5)0.099 (5)0.132 (6)0.035 (4)0.068 (5)0.036 (4)
N60.098 (5)0.139 (7)0.140 (7)0.011 (4)0.078 (5)0.016 (5)
N70.095 (4)0.079 (4)0.050 (3)0.025 (3)0.018 (3)0.004 (3)
N80.100 (5)0.115 (6)0.105 (6)0.021 (5)0.026 (4)0.002 (5)
N90.152 (7)0.163 (7)0.051 (4)0.062 (6)0.035 (4)0.000 (4)
C10.069 (4)0.057 (3)0.055 (3)0.001 (3)0.024 (3)0.007 (3)
C20.099 (5)0.075 (4)0.093 (5)0.001 (4)0.045 (4)0.026 (4)
C30.086 (5)0.083 (4)0.055 (4)0.011 (4)0.037 (3)0.004 (3)
C40.119 (6)0.171 (8)0.051 (4)0.032 (6)0.038 (4)0.015 (5)
C50.088 (3)0.061 (2)0.0512 (18)0.0130 (19)0.0098 (17)0.0016 (17)
C60.097 (5)0.088 (5)0.067 (4)0.032 (4)0.024 (4)0.011 (4)
C70.056 (3)0.056 (3)0.069 (4)0.003 (3)0.023 (3)0.001 (3)
C80.070 (4)0.084 (5)0.082 (5)0.005 (4)0.028 (4)0.016 (4)
C90.110 (6)0.088 (5)0.124 (7)0.002 (5)0.058 (6)0.029 (5)
C100.104 (6)0.074 (5)0.145 (8)0.022 (5)0.066 (6)0.009 (5)
C110.087 (5)0.123 (7)0.107 (7)0.044 (5)0.031 (5)0.014 (6)
C120.078 (5)0.111 (6)0.080 (5)0.022 (4)0.016 (4)0.011 (4)
C130.053 (3)0.056 (3)0.073 (4)0.003 (3)0.013 (3)0.006 (3)
C140.058 (4)0.122 (6)0.105 (6)0.012 (4)0.021 (4)0.021 (5)
C150.053 (5)0.181 (11)0.132 (9)0.023 (6)0.012 (5)0.026 (8)
C160.093 (5)0.084 (5)0.078 (5)0.010 (4)0.009 (4)0.004 (4)
C170.129 (8)0.114 (7)0.086 (6)0.024 (7)0.007 (6)0.007 (5)
C180.056 (4)0.103 (5)0.074 (4)0.004 (3)0.030 (3)0.000 (4)
C190.105 (6)0.136 (8)0.109 (6)0.000 (5)0.065 (5)0.021 (6)
C200.090 (5)0.142 (8)0.114 (7)0.006 (5)0.059 (5)0.034 (6)
C210.098 (7)0.220 (14)0.147 (10)0.014 (8)0.060 (7)0.083 (10)
C220.064 (6)0.153 (10)0.126 (9)0.014 (6)0.011 (6)0.022 (7)
C230.101 (6)0.247 (13)0.101 (7)0.055 (8)0.050 (5)0.065 (8)
C240.236 (13)0.159 (10)0.206 (12)0.059 (9)0.182 (11)0.076 (9)
C250.162 (10)0.122 (8)0.126 (8)0.027 (7)0.075 (8)0.039 (6)
C260.226 (14)0.094 (7)0.236 (15)0.013 (9)0.131 (12)0.010 (9)
C270.198 (13)0.266 (18)0.224 (15)0.054 (10)0.172 (13)0.006 (11)
C280.182 (12)0.152 (11)0.274 (17)0.074 (10)0.140 (12)0.057 (11)
C290.179 (12)0.188 (12)0.217 (14)0.105 (10)0.108 (11)0.072 (10)
C300.091 (7)0.160 (10)0.269 (16)0.038 (7)0.051 (8)0.069 (11)
C310.133 (9)0.232 (15)0.150 (11)0.014 (10)0.083 (8)0.057 (11)
C320.161 (9)0.233 (11)0.163 (9)0.005 (8)0.107 (7)0.017 (8)
C35A0.196 (15)0.188 (15)0.194 (15)0.003 (10)0.089 (10)0.005 (10)
C36A0.179 (13)0.182 (14)0.194 (14)0.018 (9)0.096 (10)0.015 (9)
C37A0.159 (11)0.158 (11)0.103 (10)0.028 (9)0.056 (8)0.012 (8)
C38A0.154 (12)0.189 (13)0.152 (12)0.014 (9)0.087 (9)0.005 (9)
C35B0.148 (12)0.163 (12)0.148 (12)0.005 (9)0.080 (9)0.019 (9)
C36B0.168 (12)0.166 (13)0.168 (13)0.009 (9)0.063 (9)0.003 (9)
C37B0.225 (17)0.214 (17)0.209 (17)0.019 (10)0.124 (12)0.008 (10)
C38B0.157 (11)0.142 (11)0.130 (11)0.026 (9)0.077 (8)0.002 (8)
Geometric parameters (Å, º) top
Ho1—O12.241 (3)C13—C161.363 (10)
Ho1—O32.251 (4)C13—C141.376 (10)
Ho1—O72.258 (4)C14—C151.394 (11)
Ho1—O52.282 (3)C14—H140.9300
Ho1—O42.322 (4)C15—C221.360 (15)
Ho1—O62.325 (4)C15—H150.9300
Ho1—O22.330 (4)C16—C171.393 (11)
Cl1—C21.769 (8)C16—H160.9300
Cl2—C21.767 (8)C17—C221.333 (15)
Cl3—C21.734 (9)C17—H170.9300
Cl4A—C41.7493 (11)C18—C191.379 (11)
Cl5A—C41.7513 (11)C18—C201.384 (11)
Cl6A—C41.7506 (11)C19—C311.433 (13)
Cl4B—C41.7508 (11)C19—H190.9300
Cl5B—C41.7505 (11)C20—C211.410 (13)
Cl6B—C41.7489 (11)C20—H200.9300
Cl7—C61.761 (8)C21—C321.326 (18)
Cl8—C61.760 (8)C21—H210.9300
Cl9—C61.765 (8)C22—H220.9300
P1—O11.493 (4)C23—H23A0.9600
P1—N11.610 (6)C23—H23B0.9600
P1—N31.613 (6)C23—H23C0.9600
P1—N21.627 (6)C24—H24A0.9600
P2—O31.490 (4)C24—H24B0.9600
P2—N41.615 (6)C24—H24C0.9600
P2—N61.627 (7)C25—H25A0.9600
P2—N51.629 (7)C25—H25B0.9600
P3—O51.484 (4)C25—H25C0.9600
P3—N71.616 (6)C26—H26A0.9600
P3—N91.619 (7)C26—H26B0.9600
P3—N81.629 (8)C26—H26C0.9600
P4—O71.478 (4)C27—H27A0.9600
P4—C181.782 (7)C27—H27B0.9600
P4—C71.784 (6)C27—H27C0.9600
P4—C131.788 (6)C28—H28A0.9600
O2—C11.236 (7)C28—H28B0.9600
O4—C31.242 (7)C28—H28C0.9600
O6—C51.227 (6)C29—H29A0.9600
N1—C11.294 (8)C29—H29B0.9600
N2—C301.438 (11)C29—H29C0.9600
N2—C231.459 (10)C30—H30A0.9600
N3—C251.390 (10)C30—H30B0.9600
N3—C241.472 (11)C30—H30C0.9600
N4—C31.272 (8)C31—C321.334 (18)
N5—C291.390 (12)C31—H310.9300
N5—C261.462 (13)C32—H320.9300
N6—C281.415 (12)C35A—H35A0.9600
N6—C271.456 (13)C35A—H35B0.9600
N7—C51.266 (8)C35A—H35C0.9600
N8—C35B1.3998 (11)C36A—H36A0.9600
N8—C35A1.3999 (11)C36A—H36B0.9600
N8—C36B1.4003 (11)C36A—H36C0.9600
N8—C36A1.4006 (11)C37A—H37A0.9600
N9—C38A1.37 (2)C37A—H37B0.9600
N9—C38B1.3999 (11)C37A—H37C0.9600
N9—C37B1.4004 (11)C38A—H38A0.9600
N9—C37A1.548 (19)C38A—H38B0.9600
C1—C21.567 (9)C38A—H38C0.9600
C3—C41.562 (8)C35B—H35D0.9600
C5—C61.559 (9)C35B—H35E0.9600
C7—C81.369 (8)C35B—H35F0.9600
C7—C121.384 (9)C36B—H36D0.9600
C8—C91.387 (10)C36B—H36E0.9600
C8—H80.9300C36B—H36F0.9600
C9—C101.359 (11)C37B—H37D0.9600
C9—H90.9300C37B—H37E0.9600
C10—C111.372 (11)C37B—H37F0.9600
C10—H100.9300C38B—H38D0.9600
C11—C121.366 (10)C38B—H38E0.9600
C11—H110.9300C38B—H38F0.9600
C12—H120.9300
O1—Ho1—O3163.98 (16)C8—C7—C12118.5 (6)
O1—Ho1—O778.69 (14)C8—C7—P4122.5 (5)
O3—Ho1—O7116.96 (16)C12—C7—P4118.8 (5)
O1—Ho1—O5105.03 (14)C7—C8—C9120.5 (7)
O3—Ho1—O582.91 (15)C7—C8—H8119.7
O7—Ho1—O577.55 (13)C9—C8—H8119.7
O1—Ho1—O4106.45 (15)C10—C9—C8120.7 (8)
O3—Ho1—O476.30 (15)C10—C9—H9119.6
O7—Ho1—O475.03 (15)C8—C9—H9119.6
O5—Ho1—O4132.65 (15)C9—C10—C11118.7 (8)
O1—Ho1—O683.05 (16)C9—C10—H10120.7
O3—Ho1—O685.63 (17)C11—C10—H10120.7
O7—Ho1—O6141.97 (15)C12—C11—C10121.2 (8)
O5—Ho1—O675.41 (13)C12—C11—H11119.4
O4—Ho1—O6142.64 (16)C10—C11—H11119.4
O1—Ho1—O276.26 (13)C11—C12—C7120.3 (7)
O3—Ho1—O289.75 (15)C11—C12—H12119.8
O7—Ho1—O2131.71 (14)C7—C12—H12119.8
O5—Ho1—O2148.98 (14)C16—C13—C14119.4 (7)
O4—Ho1—O273.51 (15)C16—C13—P4118.5 (5)
O6—Ho1—O274.00 (14)C14—C13—P4122.1 (6)
O1—P1—N1116.2 (2)C13—C14—C15119.3 (9)
O1—P1—N3113.1 (3)C13—C14—H14120.4
N1—P1—N3105.7 (3)C15—C14—H14120.4
O1—P1—N2107.2 (3)C22—C15—C14120.2 (10)
N1—P1—N2110.2 (3)C22—C15—H15119.9
N3—P1—N2103.7 (3)C14—C15—H15119.9
O3—P2—N4115.7 (3)C13—C16—C17120.3 (9)
O3—P2—N6107.8 (4)C13—C16—H16119.9
N4—P2—N6109.8 (4)C17—C16—H16119.9
O3—P2—N5114.0 (3)C22—C17—C16120.3 (10)
N4—P2—N5104.0 (4)C22—C17—H17119.9
N6—P2—N5104.9 (4)C16—C17—H17119.9
O5—P3—N7116.6 (2)C19—C18—C20119.8 (8)
O5—P3—N9109.4 (3)C19—C18—P4116.9 (6)
N7—P3—N9107.2 (4)C20—C18—P4123.3 (7)
O5—P3—N8111.4 (3)C18—C19—C31119.2 (11)
N7—P3—N8106.7 (4)C18—C19—H19120.4
N9—P3—N8104.8 (5)C31—C19—H19120.4
O7—P4—C18111.2 (3)C18—C20—C21120.3 (11)
O7—P4—C7110.8 (3)C18—C20—H20119.8
C18—P4—C7108.1 (3)C21—C20—H20119.8
O7—P4—C13110.3 (3)C32—C21—C20117.2 (13)
C18—P4—C13107.5 (3)C32—C21—H21121.4
C7—P4—C13108.9 (3)C20—C21—H21121.4
P1—O1—Ho1135.6 (2)C17—C22—C15120.5 (9)
C1—O2—Ho1135.8 (4)C17—C22—H22119.8
P2—O3—Ho1134.2 (2)C15—C22—H22119.8
C3—O4—Ho1130.8 (4)N2—C23—H23A109.5
P3—O5—Ho1134.6 (2)N2—C23—H23B109.5
C5—O6—Ho1136.7 (4)H23A—C23—H23B109.5
P4—O7—Ho1168.1 (3)N2—C23—H23C109.5
C1—N1—P1123.6 (4)H23A—C23—H23C109.5
C30—N2—C23113.8 (8)H23B—C23—H23C109.5
C30—N2—P1118.2 (7)N3—C24—H24A109.5
C23—N2—P1114.8 (5)N3—C24—H24B109.5
C25—N3—C24111.6 (8)H24A—C24—H24B109.5
C25—N3—P1124.3 (6)N3—C24—H24C109.5
C24—N3—P1116.7 (6)H24A—C24—H24C109.5
C3—N4—P2122.6 (5)H24B—C24—H24C109.5
C29—N5—C26113.0 (9)N3—C25—H25A109.5
C29—N5—P2121.8 (8)N3—C25—H25B109.5
C26—N5—P2118.5 (6)H25A—C25—H25B109.5
C28—N6—C27115.7 (9)N3—C25—H25C109.5
C28—N6—P2123.2 (7)H25A—C25—H25C109.5
C27—N6—P2118.3 (8)H25B—C25—H25C109.5
C5—N7—P3123.4 (4)N5—C26—H26A109.5
C35B—N8—C35A47.7 (14)N5—C26—H26B109.5
C35B—N8—C36B121.5 (16)H26A—C26—H26B109.5
C35A—N8—C36B90.3 (17)N5—C26—H26C109.5
C35B—N8—C36A81.2 (17)H26A—C26—H26C109.5
C35A—N8—C36A111.7 (19)H26B—C26—H26C109.5
C36B—N8—C36A81.0 (15)N6—C27—H27A109.5
C35B—N8—P3124.8 (11)N6—C27—H27B109.5
C35A—N8—P3125.7 (15)H27A—C27—H27B109.5
C36B—N8—P3112.4 (13)N6—C27—H27C109.5
C36A—N8—P3119.9 (13)H27A—C27—H27C109.5
C38A—N9—C38B56.1 (13)H27B—C27—H27C109.5
C38A—N9—C37B52.7 (16)N6—C28—H28A109.5
C38B—N9—C37B101.1 (18)N6—C28—H28B109.5
C38A—N9—C37A119.8 (15)H28A—C28—H28B109.5
C38B—N9—C37A94.6 (12)N6—C28—H28C109.5
C37B—N9—C37A93.1 (18)H28A—C28—H28C109.5
C38A—N9—P3124.0 (13)H28B—C28—H28C109.5
C38B—N9—P3131.5 (11)N5—C29—H29A109.5
C37B—N9—P3114.2 (15)N5—C29—H29B109.5
C37A—N9—P3114.7 (10)H29A—C29—H29B109.5
O2—C1—N1130.7 (6)N5—C29—H29C109.5
O2—C1—C2115.0 (6)H29A—C29—H29C109.5
N1—C1—C2114.3 (6)H29B—C29—H29C109.5
C1—C2—Cl3111.9 (5)N2—C30—H30A109.5
C1—C2—Cl2110.1 (5)N2—C30—H30B109.5
Cl3—C2—Cl2107.5 (4)H30A—C30—H30B109.5
C1—C2—Cl1108.8 (5)N2—C30—H30C109.5
Cl3—C2—Cl1110.2 (5)H30A—C30—H30C109.5
Cl2—C2—Cl1108.2 (4)H30B—C30—H30C109.5
O4—C3—N4131.8 (6)C32—C31—C19117.1 (13)
O4—C3—C4113.2 (5)C32—C31—H31121.4
N4—C3—C4114.9 (5)C19—C31—H31121.4
C3—C4—Cl6B116.5 (4)C21—C32—C31126.4 (15)
C3—C4—Cl4A112.1 (5)C21—C32—H32116.8
Cl6B—C4—Cl4A123.3 (5)C31—C32—H32116.8
C3—C4—Cl5B109.3 (5)N8—C35A—H35A109.5
Cl6B—C4—Cl5B110.3 (5)N8—C35A—H35B109.5
C3—C4—Cl6A104.3 (5)N8—C35A—H35C109.5
Cl6B—C4—Cl6A84.2 (5)N8—C36A—H36A109.5
Cl4A—C4—Cl6A110.4 (5)N8—C36A—H36B109.5
Cl5B—C4—Cl6A130.9 (6)N8—C36A—H36C109.5
C3—C4—Cl4B108.1 (6)N9—C37A—H37A109.5
Cl6B—C4—Cl4B103.0 (6)N9—C37A—H37B109.5
Cl4A—C4—Cl4B87.5 (5)N9—C37A—H37C109.5
Cl5B—C4—Cl4B109.4 (5)N9—C38A—H38A109.5
C3—C4—Cl5A109.1 (5)N9—C38A—H38B109.5
Cl4A—C4—Cl5A108.8 (5)N9—C38A—H38C109.5
Cl5B—C4—Cl5A89.6 (4)N8—C35B—H35D109.5
Cl6A—C4—Cl5A112.1 (5)N8—C35B—H35E109.5
Cl4B—C4—Cl5A129.1 (6)N8—C35B—H35F109.5
O6—C5—N7131.8 (6)N8—C36B—H36D109.5
O6—C5—C6114.1 (5)N8—C36B—H36E109.5
N7—C5—C6114.1 (5)N8—C36B—H36F109.5
C5—C6—Cl8112.2 (4)N9—C37B—H37D109.5
C5—C6—Cl7109.8 (5)N9—C37B—H37E109.5
Cl8—C6—Cl7107.5 (4)N9—C37B—H37F109.5
C5—C6—Cl9109.6 (5)N9—C38B—H38D109.5
Cl8—C6—Cl9108.6 (4)N9—C38B—H38E109.5
Cl7—C6—Cl9109.0 (4)N9—C38B—H38F109.5
N1—P1—O1—Ho12.0 (5)N9—P3—N8—C36B40.4 (14)
N3—P1—O1—Ho1120.6 (4)O5—P3—N8—C36A108.9 (15)
N2—P1—O1—Ho1125.7 (4)N7—P3—N8—C36A19.3 (16)
O3—Ho1—O1—P120.6 (8)N9—P3—N8—C36A132.8 (15)
O7—Ho1—O1—P1147.6 (4)O5—P3—N9—C38A29.1 (19)
O5—Ho1—O1—P1138.7 (3)N7—P3—N9—C38A98.2 (18)
O4—Ho1—O1—P177.1 (4)N8—P3—N9—C38A148.7 (18)
O6—Ho1—O1—P165.9 (4)O5—P3—N9—C38B43.4 (17)
O2—Ho1—O1—P19.2 (3)N7—P3—N9—C38B170.7 (16)
O1—Ho1—O2—C112.7 (5)N8—P3—N9—C38B76.2 (17)
O3—Ho1—O2—C1159.5 (5)O5—P3—N9—C37B89.2 (18)
O7—Ho1—O2—C173.4 (6)N7—P3—N9—C37B38.1 (18)
O5—Ho1—O2—C183.7 (6)N8—P3—N9—C37B151.2 (18)
O4—Ho1—O2—C1124.8 (6)O5—P3—N9—C37A165.0 (10)
O6—Ho1—O2—C173.9 (5)N7—P3—N9—C37A67.7 (11)
N4—P2—O3—Ho15.4 (6)N8—P3—N9—C37A45.4 (12)
N6—P2—O3—Ho1128.8 (4)Ho1—O2—C1—N16.4 (10)
N5—P2—O3—Ho1115.3 (5)Ho1—O2—C1—C2174.0 (4)
O1—Ho1—O3—P290.7 (7)P1—N1—C1—O28.8 (10)
O7—Ho1—O3—P276.3 (4)P1—N1—C1—C2170.7 (5)
O5—Ho1—O3—P2148.4 (4)O2—C1—C2—Cl34.9 (8)
O4—Ho1—O3—P211.2 (4)N1—C1—C2—Cl3175.4 (5)
O6—Ho1—O3—P2135.8 (4)O2—C1—C2—Cl2124.5 (5)
O2—Ho1—O3—P261.8 (4)N1—C1—C2—Cl255.9 (7)
O1—Ho1—O4—C3132.9 (6)O2—C1—C2—Cl1117.0 (5)
O3—Ho1—O4—C330.8 (6)N1—C1—C2—Cl162.6 (7)
O7—Ho1—O4—C3154.0 (6)Ho1—O4—C3—N432.6 (12)
O5—Ho1—O4—C397.3 (6)Ho1—O4—C3—C4151.1 (4)
O6—Ho1—O4—C332.6 (7)P2—N4—C3—O41.1 (12)
O2—Ho1—O4—C363.1 (6)P2—N4—C3—C4177.3 (4)
N7—P3—O5—Ho110.0 (5)O4—C3—C4—Cl6B177.1 (5)
N9—P3—O5—Ho1131.8 (5)N4—C3—C4—Cl6B0.1 (8)
N8—P3—O5—Ho1112.8 (5)O4—C3—C4—Cl4A33.0 (7)
O1—Ho1—O5—P391.2 (4)N4—C3—C4—Cl4A150.1 (6)
O3—Ho1—O5—P374.6 (4)O4—C3—C4—Cl5B57.1 (7)
O7—Ho1—O5—P3165.7 (4)N4—C3—C4—Cl5B126.0 (6)
O4—Ho1—O5—P3138.6 (3)O4—C3—C4—Cl6A86.5 (7)
O6—Ho1—O5—P312.7 (3)N4—C3—C4—Cl6A90.4 (7)
O2—Ho1—O5—P32.9 (5)O4—C3—C4—Cl4B61.9 (7)
O1—Ho1—O6—C5119.6 (7)N4—C3—C4—Cl4B115.1 (7)
O3—Ho1—O6—C571.8 (7)O4—C3—C4—Cl5A153.5 (5)
O7—Ho1—O6—C558.0 (8)N4—C3—C4—Cl5A29.5 (7)
O5—Ho1—O6—C512.0 (7)Ho1—O6—C5—N77.3 (14)
O4—Ho1—O6—C5132.3 (7)Ho1—O6—C5—C6171.9 (5)
O2—Ho1—O6—C5162.8 (7)P3—N7—C5—O63.1 (13)
C18—P4—O7—Ho186.1 (13)P3—N7—C5—C6177.8 (5)
C7—P4—O7—Ho134.1 (14)O6—C5—C6—Cl82.5 (9)
C13—P4—O7—Ho1154.8 (13)N7—C5—C6—Cl8176.9 (6)
O1—Ho1—O7—P4142.0 (13)O6—C5—C6—Cl7121.9 (6)
O3—Ho1—O7—P441.6 (14)N7—C5—C6—Cl757.4 (8)
O5—Ho1—O7—P433.7 (13)O6—C5—C6—Cl9118.3 (6)
O4—Ho1—O7—P4107.3 (13)N7—C5—C6—Cl962.4 (8)
O6—Ho1—O7—P479.2 (14)O7—P4—C7—C8107.8 (6)
O2—Ho1—O7—P4158.1 (12)C18—P4—C7—C8130.1 (6)
O1—P1—N1—C110.4 (7)C13—P4—C7—C813.7 (7)
N3—P1—N1—C1136.8 (6)O7—P4—C7—C1266.3 (6)
N2—P1—N1—C1111.8 (6)C18—P4—C7—C1255.7 (6)
O1—P1—N2—C30174.1 (8)C13—P4—C7—C12172.2 (6)
N1—P1—N2—C3058.6 (9)C12—C7—C8—C90.6 (11)
N3—P1—N2—C3054.2 (9)P4—C7—C8—C9174.7 (6)
O1—P1—N2—C2347.2 (7)C7—C8—C9—C100.0 (13)
N1—P1—N2—C2380.1 (7)C8—C9—C10—C110.6 (14)
N3—P1—N2—C23167.2 (7)C9—C10—C11—C121.8 (14)
O1—P1—N3—C2598.2 (8)C10—C11—C12—C72.4 (14)
N1—P1—N3—C2530.0 (9)C8—C7—C12—C111.8 (12)
N2—P1—N3—C25146.0 (8)P4—C7—C12—C11176.1 (7)
O1—P1—N3—C2449.0 (8)O7—P4—C13—C1625.7 (6)
N1—P1—N3—C24177.2 (7)C18—P4—C13—C16147.0 (6)
N2—P1—N3—C2466.8 (8)C7—P4—C13—C1696.1 (6)
O3—P2—N4—C317.4 (7)O7—P4—C13—C14154.8 (6)
N6—P2—N4—C3139.8 (6)C18—P4—C13—C1433.5 (7)
N5—P2—N4—C3108.4 (6)C7—P4—C13—C1483.4 (6)
O3—P2—N5—C2965.3 (9)C16—C13—C14—C150.1 (12)
N4—P2—N5—C29167.7 (8)P4—C13—C14—C15179.6 (7)
N6—P2—N5—C2952.4 (9)C13—C14—C15—C222.0 (15)
O3—P2—N5—C2684.0 (8)C14—C13—C16—C171.2 (12)
N4—P2—N5—C2643.0 (8)P4—C13—C16—C17179.3 (7)
N6—P2—N5—C26158.3 (8)C13—C16—C17—C220.1 (15)
O3—P2—N6—C2815.8 (10)O7—P4—C18—C1929.2 (6)
N4—P2—N6—C28111.1 (10)C7—P4—C18—C19151.0 (6)
N5—P2—N6—C28137.6 (10)C13—P4—C18—C1991.6 (6)
O3—P2—N6—C27176.3 (8)O7—P4—C18—C20152.3 (6)
N4—P2—N6—C2749.4 (9)C7—P4—C18—C2030.5 (7)
N5—P2—N6—C2761.8 (9)C13—P4—C18—C2086.9 (6)
O5—P3—N7—C51.5 (8)C20—C18—C19—C310.4 (12)
N9—P3—N7—C5121.5 (7)P4—C18—C19—C31178.2 (7)
N8—P3—N7—C5126.7 (7)C19—C18—C20—C210.2 (12)
O5—P3—N8—C35B8.3 (18)P4—C18—C20—C21178.6 (6)
N7—P3—N8—C35B120.0 (17)C18—C20—C21—C320.0 (16)
N9—P3—N8—C35B126.5 (17)C16—C17—C22—C152.0 (18)
O5—P3—N8—C35A51 (2)C14—C15—C22—C173.1 (18)
N7—P3—N8—C35A179.3 (19)C18—C19—C31—C321.2 (17)
N9—P3—N8—C35A67 (2)C20—C21—C32—C311 (2)
O5—P3—N8—C36B158.7 (13)C19—C31—C32—C212 (2)
N7—P3—N8—C36B73.0 (14)

Experimental details

Crystal data
Chemical formula[Ho(C6H12Cl3N3O2P)3(C18H15OP)]
Mr1329.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1338 (4), 23.2403 (9), 23.6071 (8)
β (°) 120.462 (2)
V3)5738.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.1 × 0.07 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.848, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
24428, 10386, 7799
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.09
No. of reflections10386
No. of parameters668
No. of restraints120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.76

Computer programs: COLLECT (Nonius, 1999), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are grateful to Dr Yu. S. Moroz for kind assistance with preparation of the manuscript.

References

First citationAmirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Trush, E. A. & Sliva, T. Y. (2010). Acta Cryst. E66, o1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBorzechowska, M., Trush, V., Turowska-Tyrk, I., Amirkhanov, V. & Legendziewicz, J. (2002). J. Alloys Compd, 341, 98–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077.  Web of Science PubMed Google Scholar
First citationCao, Q.-Y., Huang, L.-Q., Wang, Z.-W., Yang, C.-J. & Gao, X.-C. (2005). Acta Cryst. E61, m2414–m2415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKouba, J. K. & Wreford, S. S. (1976). Inorg. Chem. 15, 1463–1465.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrush, V., Swiatek-Kozlowska, J., Skopenko, V. & Amirkhanov, V. (2001). Z. Naturforsch. Teil B, 56, 249–254.  CAS Google Scholar
First citationZhong, Q., Wang, H., Qian, G., Wang, Z., Zhang, J., Qiu, J. & Wang, M. (2006). Inorg. Chem. 45, 4537–4543.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZnovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds