organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Xyloccensin E

aProgram in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and bResearch Centre of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 30 April 2010; accepted 6 May 2010; online 15 May 2010)

The title compound (also known as phragmalin triacetate), C35H42O14, is a phragmalin-type limonoid extracted from X. rumphii. The mol­ecule consists of eight rings with the orthoacetate group bridged at positions 1, 8 and 9. The two five-carbocyclic rings (A1 and A2) and the dioxolane ring (G) adopt a distorted envelope conformation. The 1,3-dioxane ring (E) exists in a chair conformation. The six-carbocyclic rings (B and C) exhibit a twisted-boat conformation. The lactone ring has a half-chair conformation and the furan ring is planar (r.m.s. deviation = 0.002 Å). Rings A1/B, A2/B, B/C, C/D and C/G are all cis-fused. The two acet­oxy groups attached to ring B and the furan ring attached to the lactone ring are in equatorial positions. The porous crystal packing exhibits voids of 688 Å3 and weak inter­molecular C—H⋯O inter­actions. The absolute configuration was assigned on the basis of literature data.

Related literature

For background to the structures of limonoids and their activities, see: Koul et al. (2004[Koul, O., Sing, G., Singh, R., Daniewski, W. M. & Berlozecki, S. (2004). J. Biol. Sci. 29, 409-416.]); Cui et al. (2005[Cui, J., Deng, Z., Li, J., Fu, H., Proksch, P. & Lin, W. (2005). Phytochemistry, 66, 2334-2339.]); Pudhom et al. (2009[Pudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2009). J. Nat. Prod. 72, 2188-2191.]). For related structures and the assignment of the absolute configuration, see: Wu et al. (2004[Wu, J., Xiao, Q., Huang, J., Xiao, Z., Qi, S., Li, Q. & Zhang, S. (2004). Org. Lett. 6, 1841-1844.]); Fan et al. (2007[Fan, C.-Q., Wang, X. N., Yin, S., Zhang, C. R., Wang, F. D. & Yue, J. M. (2007). Tetrahedron, 63, 6741-6747.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C35H42O14

  • Mr = 686.69

  • Hexagonal, P 61

  • a = 17.7635 (5) Å

  • c = 19.6294 (6) Å

  • V = 5364.1 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • 28307 measured reflections

  • 4183 independent reflections

  • 3738 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.10

  • 4183 reflections

  • 445 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O11i 0.97 2.41 3.326 (3) 157
C25—H25B⋯O1ii 0.96 2.34 3.294 (3) 176
C29—H29A⋯O10iii 0.97 2.51 3.348 (3) 145
C34—H34A⋯O11iv 0.96 2.62 3.293 (3) 127
Symmetry codes: (i) [x-y+1, x, z+{\script{1\over 6}}]; (ii) [x-y, x-1, z+{\script{1\over 6}}]; (iii) [-x+2, -y+1, z-{\script{1\over 2}}]; (iv) [-x+y+1, -x+1, z-{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Limonoid research from the Meliaceae family is of growing interest due to a range of biological activities, such as insect antifeedants and growth regulators, antibacterial, antifungal, antimalarial, anticancer and antiviral activities on humans (Koul et al., 2004). Such a focused interest upon limonoids from the Meliaceae family has already resulted in a discovery of several limonoids with novel skeletons, mostly, but not exclusively, from the genus Xylocarpus, and, in particular, the cannonball mangrove, Xylocarpus granatum Koenig (Cui et al., 2005; Pudhom et al., 2009). Limonoid derivatives have been found in all Xylocarpus plants studied, but their distribution and content may vary both between different plant species, and between parts or geocultivars of the same species. This, combined with their wide ranging structural diversity and potential biological significance across this plant family, prompted us to investigate another plant in this genus, Xylocarpus rumphii. Herein, the complete assignments of NMR data and the crystal and molecular structure of Xyloccensin E obtained from the seeds of X. rumphii collected from Rayong Province, Thailand, in April 2009, were reported for the first time.

The molecule consists of eight rings with the orthoacetate group bridged at positions of 1, 8 and 9. The two five-carbocyclic rings A1 (C1, C2, C3, C4 and C29) and A2 (C1, C10, C5, C4 and C29) and the dioxlane ring G (C8, C9, O1, C1? and O2) adopt distorted envelope conformations [puckering parameters: q2 = 0.639 Å, φ2 = -132.24° for A1, q2 = 0.572 Å, φ2 = 164.56° for A2 and q2 = 0.440 Å,φ2 = 31.13° for G]. The 1,3-dioxane ring E (C1?, C10, C9, O1, C1 and O3) exists as a chair conformation [puckering parameters: Q = 0.636 Å, q = 133.17° and φ = 17.29°]. The six carbocyclic rings B (C1, C2, C30, C8, C9 and C10) and C (C8, C9, C11, C12, C13 and C14) appear as twisted boat conformations [puckering parameters: Q = 0.815 Å, θ = -28.92°, φ = 84.96° and Q = 0.767 Å, θ = 90.57°, φ = -151.34°, respectively]. The lactone ring is a half-chair conformation and the furan ring is planar. Rings A1/B, A2/B, B/C, C/D, C/G are all cis-fused. The two acetoxy groups attached to ring B are in equatorial positions. The furan ring is attached to the lactone ring in equatorial position, and it is inclined at 56.8 (1) ° with respect to the lactone ring.

The structure is devoid of any classical hydrogen bonds. However, non-classical intra- and intermolecular (Table 1) hydrogen-bonding interactions of the type C—H···O are present in the structure. The crystal structure contains solvent accessible voids of 688 Å3.This might indicate that the crystal lost its solvent molecules of crystallization without collapsing of the structure.

Related literature top

For background to the structures of limonoids and their activities, see: Koul et al. (2004); Cui et al. (2005); Pudhom et al. (2009). For related structures, see: Wu et al. (2004); Fan et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Air-dried powdered seeds of X. rumphii (0.5 kg) were extracted with MeOH (2 L x 2, each for two days). The extract was concentrated under reduced pressure, followed by suspension in water and extraction with EtOAc. The resulting EtOAc crude extract (4.10 g) was chromatographed on a silica gel column eluted with a gradient of acetone–n-hexane (from 1:9 to 1:1) to yield 12 fractions. Fraction 12 (1.67 g) was further purified by silica gel column chromatography eluting with a gradient system of MeOH-CH2Cl2 (from 2:98 to 5:95) and recrystallized from methanol to afford xyloccensin E (1, 79.0 mg).

Colorless crystals; mp 168-171 oC; 1H NMR (400 MHz, CDCl3) d 7.51 (1H, s, H-21), 7.40 (1H, s, H-23), 6.44 (1H, s, H-22), 6.30 (1H, s, H-30), 5.54 (1H, s, H-17), 5.10 (1H, s, H-3), 3.69 (3H, s, 7-COOCH3), 3.28 (1H, d, J = 20.3 Hz, H-15a), 2.96 (1H, d, J = 8.5 Hz, H-5), 2.70 (1H, m, H-15 b), 2.47 (1H, m, H-6a), 2.25 (3H, s, 1-OCOCH3), 2.24 (1H, m, H-6 b), 2.15 (3H, s, 3-OCOCH3), 2.07 (1H, m, H-11a), 1.98 (1H, m, H-29a), 1.94 (3H, s, 30-OCOCH3), 1.67 (1H, m, H-29 b), 1.66 (3H, s, 2?-CH3), 1.65 (1H, m, H-11 b), 1.54 (1H, m, H-12a), 1.30 (1H, m, H-12 b), 1.14 (3H, s, 19-CH3), 1.06 (3H, s, 18-CH3), 0.89 (3H, s, 28-CH3); 13C NMR (100 MHz, CDCl3) d 172.7 (C, C-7), 170.4 (C, C-16), 170.2 (C, 1-OCOCH3 and 3-OCOCH3), 168.6 (C, 30-OCOCH3), 143.0 (CH, C-23), 140.8 (CH, C-21), 121.1 (C, C-20), 119.0 (C, C-1?), 109.7 (CH, C-22), 86.8 (C, C-1), 85.9 (C, C-8), 85.3 (C, C-9), 85.2 (C, C-2), 81.1 (CH, C-3), 78.6 (CH, C-17), 69.3 (CH, C-30), 46.2 (C, C-4), 45.7 (C, C-10), 43.1 (C, C-14), 40.2 (CH2, C-29), 35.5 (CH, C-5), 34.3 (C, C-13), 33.3 (CH2, C-6), 29.1 (CH2, C-12), 26.5 (CH2, C-15), 25.4 (CH2, C-11), 21.7 (CH3, 3-OCOCH3), 21.6 (CH3, 30-OCOCH3), 21.1 (CH3, 1-OCOCH3), 21.0 (CH3, C-2?), 19.9 (CH3, C-18), 16.5 (CH3, C-19), 14.6 (CH3, C-28).; HRESIMS m/z 709.2490 [M+Na]+ (calcd for C35H42O14Na, 709.2492).

Refinement top

All H atoms were geometrically positioned and treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), and Uiso(H) = 1.20 Ueq(C) for methylene and aromatic, 1.50 Ueq(C) for methyl. Hydrogen atoms bonded to C25 and C35 were treated as rotationally disordered between two orientations each in a ratio 1:1. The absolute structure could not be determined from the X-ray analysis, but it was known from earlier work on related compounds (e.g. Wu et al., 2004 and Fan et al., 2007). 3652 Friedel pairs were therefore merged before the final refinement. The crystal structure contained solvent accessible voids of 688 Å3, showed no electrons in the voids. This might indicate that the crystal lost its solvent of crystallization without collapsing of the structure. The highest residual electron density peak (0.77 e Å-3) and the deepest hole (-0.27 e Å-3) were located 0.77 and 0.29 Å at O9 and C15, respectively.

Structure description top

Limonoid research from the Meliaceae family is of growing interest due to a range of biological activities, such as insect antifeedants and growth regulators, antibacterial, antifungal, antimalarial, anticancer and antiviral activities on humans (Koul et al., 2004). Such a focused interest upon limonoids from the Meliaceae family has already resulted in a discovery of several limonoids with novel skeletons, mostly, but not exclusively, from the genus Xylocarpus, and, in particular, the cannonball mangrove, Xylocarpus granatum Koenig (Cui et al., 2005; Pudhom et al., 2009). Limonoid derivatives have been found in all Xylocarpus plants studied, but their distribution and content may vary both between different plant species, and between parts or geocultivars of the same species. This, combined with their wide ranging structural diversity and potential biological significance across this plant family, prompted us to investigate another plant in this genus, Xylocarpus rumphii. Herein, the complete assignments of NMR data and the crystal and molecular structure of Xyloccensin E obtained from the seeds of X. rumphii collected from Rayong Province, Thailand, in April 2009, were reported for the first time.

The molecule consists of eight rings with the orthoacetate group bridged at positions of 1, 8 and 9. The two five-carbocyclic rings A1 (C1, C2, C3, C4 and C29) and A2 (C1, C10, C5, C4 and C29) and the dioxlane ring G (C8, C9, O1, C1? and O2) adopt distorted envelope conformations [puckering parameters: q2 = 0.639 Å, φ2 = -132.24° for A1, q2 = 0.572 Å, φ2 = 164.56° for A2 and q2 = 0.440 Å,φ2 = 31.13° for G]. The 1,3-dioxane ring E (C1?, C10, C9, O1, C1 and O3) exists as a chair conformation [puckering parameters: Q = 0.636 Å, q = 133.17° and φ = 17.29°]. The six carbocyclic rings B (C1, C2, C30, C8, C9 and C10) and C (C8, C9, C11, C12, C13 and C14) appear as twisted boat conformations [puckering parameters: Q = 0.815 Å, θ = -28.92°, φ = 84.96° and Q = 0.767 Å, θ = 90.57°, φ = -151.34°, respectively]. The lactone ring is a half-chair conformation and the furan ring is planar. Rings A1/B, A2/B, B/C, C/D, C/G are all cis-fused. The two acetoxy groups attached to ring B are in equatorial positions. The furan ring is attached to the lactone ring in equatorial position, and it is inclined at 56.8 (1) ° with respect to the lactone ring.

The structure is devoid of any classical hydrogen bonds. However, non-classical intra- and intermolecular (Table 1) hydrogen-bonding interactions of the type C—H···O are present in the structure. The crystal structure contains solvent accessible voids of 688 Å3.This might indicate that the crystal lost its solvent molecules of crystallization without collapsing of the structure.

For background to the structures of limonoids and their activities, see: Koul et al. (2004); Cui et al. (2005); Pudhom et al. (2009). For related structures, see: Wu et al. (2004); Fan et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme and 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing viewed along the c-axis and showing solvent accessible voids.
(1R,4aR,4bR,6S,7aR, 8S,9S,10R,11S,11aR,11bS,13aR, 16R)-methyl 8,9,16-triacetoxy-1-(3-furyl)decahydro-6,10,11a,13a-tetramethyl-3-oxo- 8H-6,11b-epoxy-4b,8:7a,10-dimethano-1H- benzopyrano[5,6-d][1,3]benzodioxepine-11-acetate top
Crystal data top
C35H42O14F(000) = 2184
Mr = 686.69Dx = 1.275 Mg m3
Hexagonal, P61Melting point: 168 K
Hall symbol: P 61Mo Kα radiation, λ = 0.71073 Å
a = 17.7635 (5) ŵ = 0.10 mm1
c = 19.6294 (6) ÅT = 100 K
V = 5364.1 (3) Å3Prism, colourless
Z = 60.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3738 reflections with I > 2σ(I)
Radiation source: MoRint = 0.040
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
φ and ω scansh = 2322
28307 measured reflectionsk = 2221
4183 independent reflectionsl = 2224
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.085P)2 + 0.919P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max = 0.029
S = 1.10Δρmax = 0.77 e Å3
4183 reflectionsΔρmin = 0.27 e Å3
445 parameters
Crystal data top
C35H42O14Z = 6
Mr = 686.69Mo Kα radiation
Hexagonal, P61µ = 0.10 mm1
a = 17.7635 (5) ÅT = 100 K
c = 19.6294 (6) Å0.40 × 0.40 × 0.30 mm
V = 5364.1 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3738 reflections with I > 2σ(I)
28307 measured reflectionsRint = 0.040
4183 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.10Δρmax = 0.77 e Å3
4183 reflectionsΔρmin = 0.27 e Å3
445 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1'1.16441 (19)0.58265 (19)0.76883 (15)0.0217 (6)
C11.06376 (17)0.61547 (17)0.81972 (14)0.0175 (5)
C2'1.2166 (2)0.5971 (2)0.70457 (17)0.0296 (7)
H2'11.17810.5760.66610.044*
H2'21.24820.56650.70770.044*
H2'31.25670.65810.6990.044*
C20.98030 (17)0.52150 (17)0.82913 (13)0.0170 (5)
C30.91974 (17)0.54361 (17)0.87095 (14)0.0170 (5)
H30.87410.54140.84160.02*
C40.98104 (17)0.63768 (18)0.89457 (15)0.0189 (5)
C51.05140 (17)0.63106 (18)0.93977 (14)0.0182 (5)
H51.02430.57230.9590.022*
C61.08925 (19)0.69610 (19)0.99894 (15)0.0237 (6)
H6A1.14620.70481.01040.028*
H6B1.09670.75150.98420.028*
C71.0333 (2)0.6669 (2)1.06132 (17)0.0307 (7)
C81.09628 (18)0.48402 (18)0.85465 (14)0.0186 (5)
C91.15837 (17)0.57860 (18)0.88338 (14)0.0186 (5)
C101.11894 (17)0.63904 (17)0.88473 (14)0.0169 (5)
C111.20720 (18)0.57911 (19)0.94751 (15)0.0212 (6)
H11A1.22260.63120.97370.025*
H11B1.26050.58040.93470.025*
C121.15201 (19)0.49887 (19)0.99166 (15)0.0220 (6)
H12A1.09690.49541.00170.026*
H12B1.18170.50461.03450.026*
C131.13502 (19)0.41414 (19)0.95545 (15)0.0211 (6)
C141.13326 (18)0.42580 (19)0.87763 (15)0.0201 (5)
H141.19480.45890.86480.024*
C151.0988 (2)0.3398 (2)0.83957 (15)0.0247 (6)
H15A1.07610.34540.79610.03*
H15B1.14770.33140.830.03*
C161.0297 (2)0.2590 (2)0.87376 (17)0.0309 (7)
C171.0464 (2)0.33966 (19)0.98038 (16)0.0240 (6)
H171.00360.35880.97580.029*
C181.2087 (2)0.3951 (2)0.97206 (16)0.0268 (6)
H18A1.19670.34160.95080.04*
H18B1.21240.39031.02050.04*
H18C1.26280.44160.95520.04*
C191.19506 (18)0.73425 (18)0.88085 (16)0.0230 (6)
H19A1.22930.74810.92160.035*
H19B1.17220.77280.87640.035*
H19C1.23080.74070.84210.035*
C201.0459 (2)0.3137 (2)1.05295 (18)0.0308 (7)
C211.0287 (3)0.3468 (3)1.10853 (19)0.0436 (9)
H211.01450.39061.10760.052*
C221.0637 (3)0.2486 (3)1.0784 (2)0.0523 (11)
H221.07770.21321.05280.063*
C231.0561 (3)0.2487 (4)1.1461 (3)0.0651 (15)
H231.06450.21241.17540.078*
C240.79901 (18)0.46072 (18)0.94503 (15)0.0212 (5)
C250.7784 (2)0.4132 (2)1.01126 (17)0.0280 (6)
H25A0.8280.40981.02650.042*0.5
H25B0.730.35551.00530.042*0.5
H25C0.7640.44361.04450.042*0.5
H25D0.720.39611.02440.042*0.5
H25E0.81810.45041.04560.042*0.5
H25F0.7840.36241.00640.042*0.5
C280.9336 (2)0.6798 (2)0.92673 (17)0.0257 (6)
H28A0.9750.73790.94050.039*
H28B0.90180.64670.96580.039*
H28C0.89410.68140.89420.039*
C291.02450 (19)0.67419 (18)0.82469 (15)0.0205 (5)
H29A0.98280.66360.78880.025*
H29B1.06810.73540.82650.025*
C301.00034 (17)0.45462 (17)0.86481 (14)0.0171 (5)
H300.98710.45150.91360.021*
C310.87864 (19)0.30753 (19)0.86851 (19)0.0278 (7)
C320.8275 (2)0.2305 (2)0.8248 (2)0.0422 (9)
H32A0.77370.19150.84690.063*
H32B0.860.20140.81710.063*
H32C0.81580.24870.78190.063*
C330.86812 (19)0.43362 (19)0.74661 (16)0.0224 (6)
C340.8570 (2)0.4182 (2)0.67120 (18)0.0360 (8)
H34A0.84440.36010.66130.054*
H34B0.90960.4590.64840.054*
H34C0.80990.42560.65560.054*
C351.0148 (3)0.7155 (4)1.1691 (2)0.0732 (18)
H35A1.03910.76751.1960.11*0.5
H35B1.02080.67161.19290.11*0.5
H35C0.95430.69521.1610.11*0.5
H35D0.97040.65541.17060.11*0.5
H35E0.98870.75131.17370.11*0.5
H35F1.05520.72771.20570.11*0.5
O11.21889 (12)0.61294 (13)0.82626 (11)0.0214 (4)
O21.10977 (13)0.49352 (13)0.78162 (10)0.0208 (4)
O31.11411 (13)0.62397 (13)0.76107 (10)0.0207 (4)
O40.88190 (12)0.48674 (13)0.92764 (10)0.0184 (4)
O60.95079 (12)0.49548 (12)0.75992 (10)0.0198 (4)
O70.94979 (13)0.36999 (12)0.83415 (11)0.0215 (4)
O81.01541 (16)0.25960 (14)0.94147 (12)0.0308 (5)
O90.9896 (2)0.19177 (17)0.84406 (16)0.0500 (7)
O101.0349 (2)0.3077 (2)1.16646 (14)0.0602 (10)
O110.75158 (15)0.47641 (17)0.91176 (13)0.0351 (6)
O130.86291 (15)0.31476 (14)0.92703 (13)0.0318 (5)
O140.81228 (14)0.39672 (14)0.78855 (12)0.0266 (5)
O150.97453 (19)0.59611 (19)1.07362 (14)0.0504 (8)
O161.05994 (17)0.7337 (2)1.10510 (14)0.0500 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0198 (13)0.0228 (14)0.0195 (13)0.0085 (11)0.0022 (11)0.0031 (11)
C10.0163 (12)0.0178 (12)0.0169 (12)0.0073 (10)0.0012 (10)0.0031 (10)
C2'0.0278 (16)0.0324 (16)0.0252 (16)0.0126 (13)0.0102 (13)0.0070 (13)
C20.0157 (12)0.0181 (12)0.0145 (12)0.0065 (10)0.0021 (9)0.0002 (10)
C30.0150 (12)0.0178 (12)0.0176 (12)0.0077 (10)0.0001 (10)0.0019 (10)
C40.0143 (12)0.0179 (13)0.0226 (13)0.0066 (10)0.0018 (10)0.0003 (10)
C50.0157 (12)0.0185 (12)0.0193 (13)0.0076 (10)0.0009 (10)0.0009 (10)
C60.0184 (13)0.0243 (14)0.0244 (14)0.0077 (11)0.0026 (11)0.0056 (12)
C70.0228 (15)0.0396 (18)0.0222 (14)0.0099 (14)0.0055 (12)0.0079 (13)
C80.0164 (12)0.0224 (13)0.0180 (13)0.0104 (11)0.0009 (10)0.0022 (10)
C90.0124 (11)0.0213 (13)0.0205 (13)0.0072 (10)0.0016 (10)0.0028 (10)
C100.0141 (12)0.0165 (12)0.0182 (12)0.0063 (10)0.0000 (9)0.0013 (10)
C110.0182 (13)0.0255 (14)0.0193 (13)0.0104 (11)0.0019 (10)0.0008 (11)
C120.0206 (13)0.0269 (14)0.0194 (13)0.0124 (11)0.0004 (11)0.0013 (11)
C130.0216 (13)0.0268 (14)0.0184 (13)0.0146 (12)0.0034 (11)0.0047 (11)
C140.0186 (13)0.0263 (14)0.0194 (13)0.0142 (11)0.0015 (10)0.0018 (11)
C150.0297 (15)0.0292 (15)0.0214 (14)0.0194 (13)0.0013 (12)0.0000 (11)
C160.0389 (18)0.0290 (16)0.0287 (16)0.0200 (15)0.0031 (14)0.0008 (13)
C170.0251 (14)0.0246 (14)0.0230 (14)0.0129 (12)0.0006 (11)0.0011 (11)
C180.0266 (15)0.0343 (16)0.0263 (15)0.0204 (13)0.0008 (12)0.0039 (13)
C190.0151 (12)0.0179 (13)0.0261 (14)0.0008 (11)0.0010 (11)0.0021 (11)
C200.0243 (15)0.0332 (17)0.0287 (16)0.0096 (13)0.0038 (12)0.0080 (13)
C210.0390 (19)0.040 (2)0.0275 (18)0.0015 (16)0.0070 (15)0.0009 (15)
C220.064 (3)0.062 (3)0.042 (2)0.040 (2)0.010 (2)0.024 (2)
C230.056 (3)0.085 (4)0.039 (2)0.024 (3)0.002 (2)0.030 (2)
C240.0182 (13)0.0213 (13)0.0242 (14)0.0099 (11)0.0025 (11)0.0020 (11)
C250.0231 (14)0.0292 (16)0.0284 (15)0.0106 (13)0.0066 (12)0.0080 (12)
C280.0241 (14)0.0270 (15)0.0302 (16)0.0159 (12)0.0019 (12)0.0015 (12)
C290.0213 (13)0.0187 (13)0.0214 (13)0.0100 (11)0.0000 (11)0.0030 (11)
C300.0143 (12)0.0154 (12)0.0205 (13)0.0066 (10)0.0010 (10)0.0005 (10)
C310.0194 (14)0.0179 (14)0.0444 (19)0.0079 (11)0.0013 (13)0.0037 (13)
C320.0288 (17)0.0205 (15)0.066 (3)0.0035 (13)0.0037 (17)0.0040 (16)
C330.0208 (13)0.0195 (13)0.0264 (14)0.0097 (12)0.0066 (12)0.0034 (11)
C340.0328 (18)0.0370 (18)0.0273 (17)0.0091 (15)0.0090 (14)0.0083 (13)
C350.039 (2)0.111 (4)0.036 (2)0.012 (3)0.0052 (18)0.035 (3)
O10.0151 (9)0.0247 (10)0.0207 (10)0.0072 (8)0.0027 (8)0.0026 (8)
O20.0215 (10)0.0227 (10)0.0163 (9)0.0095 (8)0.0026 (7)0.0038 (8)
O30.0208 (9)0.0225 (10)0.0171 (9)0.0094 (8)0.0036 (7)0.0035 (8)
O40.0142 (9)0.0197 (9)0.0200 (10)0.0075 (7)0.0012 (7)0.0045 (7)
O60.0195 (9)0.0199 (9)0.0175 (9)0.0080 (8)0.0043 (7)0.0023 (7)
O70.0188 (9)0.0160 (9)0.0276 (10)0.0072 (8)0.0006 (8)0.0003 (8)
O80.0372 (12)0.0228 (10)0.0284 (11)0.0119 (10)0.0035 (10)0.0018 (9)
O90.0683 (19)0.0263 (13)0.0443 (15)0.0154 (13)0.0063 (14)0.0075 (11)
O100.0501 (17)0.068 (2)0.0228 (14)0.0001 (16)0.0038 (12)0.0066 (14)
O110.0226 (11)0.0506 (14)0.0375 (13)0.0225 (11)0.0073 (10)0.0155 (11)
O130.0267 (11)0.0232 (11)0.0425 (14)0.0103 (9)0.0095 (10)0.0090 (10)
O140.0207 (10)0.0248 (10)0.0294 (11)0.0078 (9)0.0025 (9)0.0004 (9)
O150.0473 (16)0.0454 (16)0.0280 (13)0.0003 (13)0.0066 (12)0.0006 (11)
O160.0336 (13)0.0577 (17)0.0362 (15)0.0059 (12)0.0084 (11)0.0241 (13)
Geometric parameters (Å, º) top
C1'—O21.405 (3)C17—O81.458 (4)
C1'—O11.406 (4)C17—C201.496 (4)
C1'—O31.420 (4)C17—H170.98
C1'—C2'1.509 (4)C18—H18A0.96
C1—O31.419 (3)C18—H18B0.96
C1—C291.520 (4)C18—H18C0.96
C1—C101.534 (4)C19—H19A0.96
C1—C21.595 (4)C19—H19B0.96
C2'—H2'10.96C19—H19C0.96
C2'—H2'20.96C20—C211.346 (6)
C2'—H2'30.96C20—C221.431 (5)
C2—O61.446 (3)C21—O101.365 (5)
C2—C31.552 (4)C21—H210.93
C2—C301.566 (4)C22—C231.336 (7)
C3—O41.425 (3)C22—H220.93
C3—C41.541 (4)C23—O101.342 (8)
C3—H30.98C23—H230.93
C4—C281.515 (4)C24—O111.204 (4)
C4—C291.548 (4)C24—O41.348 (3)
C4—C51.584 (4)C24—C251.493 (4)
C5—C61.536 (4)C25—H25A0.96
C5—C101.567 (4)C25—H25B0.96
C5—H50.98C25—H25C0.96
C6—C71.497 (4)C25—H25D0.96
C6—H6A0.97C25—H25E0.96
C6—H6B0.97C25—H25F0.96
C7—O151.190 (4)C28—H28A0.96
C7—O161.345 (4)C28—H28B0.96
C8—O21.449 (3)C28—H28C0.96
C8—C301.525 (4)C29—H29A0.97
C8—C141.544 (4)C29—H29B0.97
C8—C91.582 (4)C30—O71.442 (3)
C9—O11.459 (3)C30—H300.98
C9—C111.526 (4)C31—O131.204 (4)
C9—C101.548 (4)C31—O71.372 (4)
C10—C191.552 (4)C31—C321.481 (5)
C11—C121.532 (4)C32—H32A0.96
C11—H11A0.97C32—H32B0.96
C11—H11B0.97C32—H32C0.96
C12—C131.551 (4)C33—O141.201 (4)
C12—H12A0.97C33—O61.348 (3)
C12—H12B0.97C33—C341.500 (5)
C13—C181.541 (4)C34—H34A0.96
C13—C141.544 (4)C34—H34B0.96
C13—C171.544 (4)C34—H34C0.96
C14—C151.527 (4)C35—O161.437 (5)
C14—H140.98C35—H35A0.96
C15—C161.502 (5)C35—H35B0.96
C15—H15A0.97C35—H35C0.96
C15—H15B0.97C35—H35D0.96
C16—O91.193 (4)C35—H35E0.96
C16—O81.354 (4)C35—H35F0.96
O2—C1'—O1104.1 (2)C13—C18—H18C109.5
O2—C1'—O3110.0 (2)H18A—C18—H18C109.5
O1—C1'—O3112.3 (2)H18B—C18—H18C109.5
O2—C1'—C2'111.2 (2)C10—C19—H19A109.5
O1—C1'—C2'111.0 (2)C10—C19—H19B109.5
O3—C1'—C2'108.3 (2)H19A—C19—H19B109.5
O3—C1—C29117.4 (2)C10—C19—H19C109.5
O3—C1—C10111.3 (2)H19A—C19—H19C109.5
C29—C1—C10102.1 (2)H19B—C19—H19C109.5
O3—C1—C2114.3 (2)C21—C20—C22105.1 (4)
C29—C1—C2101.9 (2)C21—C20—C17127.2 (3)
C10—C1—C2108.8 (2)C22—C20—C17127.7 (3)
C1'—C2'—H2'1109.5C20—C21—O10111.1 (4)
C1'—C2'—H2'2109.5C20—C21—H21124.5
H2'1—C2'—H2'2109.5O10—C21—H21124.5
C1'—C2'—H2'3109.5C23—C22—C20106.5 (5)
H2'1—C2'—H2'3109.5C23—C22—H22126.8
H2'2—C2'—H2'3109.5C20—C22—H22126.8
O6—C2—C3113.0 (2)C22—C23—O10111.4 (4)
O6—C2—C30111.2 (2)C22—C23—H23124.3
C3—C2—C30113.9 (2)O10—C23—H23124.3
O6—C2—C1103.0 (2)O11—C24—O4123.7 (3)
C3—C2—C1101.3 (2)O11—C24—C25127.0 (3)
C30—C2—C1113.6 (2)O4—C24—C25109.3 (2)
O4—C3—C4111.2 (2)C24—C25—H25A109.5
O4—C3—C2112.0 (2)C24—C25—H25B109.5
C4—C3—C2103.3 (2)H25A—C25—H25B109.5
O4—C3—H3110.1C24—C25—H25C109.5
C4—C3—H3110.1H25A—C25—H25C109.5
C2—C3—H3110.1H25B—C25—H25C109.5
C28—C4—C3113.3 (2)C24—C25—H25D109.5
C28—C4—C29116.5 (2)H25A—C25—H25D141.1
C3—C4—C2997.0 (2)H25B—C25—H25D56.3
C28—C4—C5117.2 (2)H25C—C25—H25D56.3
C3—C4—C5104.1 (2)C24—C25—H25E109.5
C29—C4—C5106.3 (2)H25A—C25—H25E56.3
C6—C5—C10115.2 (2)H25B—C25—H25E141.1
C6—C5—C4115.6 (2)H25C—C25—H25E56.3
C10—C5—C4101.8 (2)H25D—C25—H25E109.5
C6—C5—H5107.9C24—C25—H25F109.5
C10—C5—H5107.9H25A—C25—H25F56.3
C4—C5—H5107.9H25B—C25—H25F56.3
C7—C6—C5113.1 (2)H25C—C25—H25F141.1
C7—C6—H6A109H25D—C25—H25F109.5
C5—C6—H6A109H25E—C25—H25F109.5
C7—C6—H6B109C4—C28—H28A109.5
C5—C6—H6B109C4—C28—H28B109.5
H6A—C6—H6B107.8H28A—C28—H28B109.5
O15—C7—O16122.6 (3)C4—C28—H28C109.5
O15—C7—C6127.7 (3)H28A—C28—H28C109.5
O16—C7—C6109.7 (3)H28B—C28—H28C109.5
O2—C8—C30105.1 (2)C1—C29—C494.2 (2)
O2—C8—C14105.4 (2)C1—C29—H29A112.9
C30—C8—C14120.6 (2)C4—C29—H29A112.9
O2—C8—C9104.0 (2)C1—C29—H29B112.9
C30—C8—C9112.5 (2)C4—C29—H29B112.9
C14—C8—C9107.6 (2)H29A—C29—H29B110.3
O1—C9—C11109.5 (2)O7—C30—C8108.0 (2)
O1—C9—C10102.6 (2)O7—C30—C2110.2 (2)
C11—C9—C10115.8 (2)C8—C30—C2108.7 (2)
O1—C9—C898.4 (2)O7—C30—H30110
C11—C9—C8113.1 (2)C8—C30—H30110
C10—C9—C8115.2 (2)C2—C30—H30110
C1—C10—C9104.2 (2)O13—C31—O7123.5 (3)
C1—C10—C19110.3 (2)O13—C31—C32125.7 (3)
C9—C10—C19107.8 (2)O7—C31—C32110.7 (3)
C1—C10—C5101.1 (2)C31—C32—H32A109.5
C9—C10—C5122.7 (2)C31—C32—H32B109.5
C19—C10—C5110.0 (2)H32A—C32—H32B109.5
C9—C11—C12111.3 (2)C31—C32—H32C109.5
C9—C11—H11A109.4H32A—C32—H32C109.5
C12—C11—H11A109.4H32B—C32—H32C109.5
C9—C11—H11B109.4O14—C33—O6125.3 (3)
C12—C11—H11B109.4O14—C33—C34125.4 (3)
H11A—C11—H11B108O6—C33—C34109.3 (3)
C11—C12—C13111.5 (2)C33—C34—H34A109.5
C11—C12—H12A109.3C33—C34—H34B109.5
C13—C12—H12A109.3H34A—C34—H34B109.5
C11—C12—H12B109.3C33—C34—H34C109.5
C13—C12—H12B109.3H34A—C34—H34C109.5
H12A—C12—H12B108H34B—C34—H34C109.5
C18—C13—C14108.4 (2)O16—C35—H35A109.5
C18—C13—C17111.0 (2)O16—C35—H35B109.5
C14—C13—C17110.4 (2)H35A—C35—H35B109.5
C18—C13—C12109.9 (2)O16—C35—H35C109.5
C14—C13—C12109.3 (2)H35A—C35—H35C109.5
C17—C13—C12107.9 (2)H35B—C35—H35C109.5
C15—C14—C13112.0 (2)O16—C35—H35D109.5
C15—C14—C8115.8 (2)H35A—C35—H35D141.1
C13—C14—C8115.0 (2)H35B—C35—H35D56.3
C15—C14—H14104.1H35C—C35—H35D56.3
C13—C14—H14104.1O16—C35—H35E109.5
C8—C14—H14104.1H35A—C35—H35E56.3
C16—C15—C14117.7 (3)H35B—C35—H35E141.1
C16—C15—H15A107.9H35C—C35—H35E56.3
C14—C15—H15A107.9H35D—C35—H35E109.5
C16—C15—H15B107.9O16—C35—H35F109.5
C14—C15—H15B107.9H35A—C35—H35F56.3
H15A—C15—H15B107.2H35B—C35—H35F56.3
O9—C16—O8117.8 (3)H35C—C35—H35F141.1
O9—C16—C15122.1 (3)H35D—C35—H35F109.5
O8—C16—C15119.9 (3)H35E—C35—H35F109.5
O8—C17—C20104.9 (2)C1'—O1—C9103.5 (2)
O8—C17—C13113.3 (2)C1'—O2—C8106.8 (2)
C20—C17—C13114.4 (3)C1'—O3—C1112.6 (2)
O8—C17—H17108C24—O4—C3119.2 (2)
C20—C17—H17108C33—O6—C2121.0 (2)
C13—C17—H17108C31—O7—C30118.7 (2)
C13—C18—H18A109.5C16—O8—C17122.7 (3)
C13—C18—H18B109.5C23—O10—C21106.0 (3)
H18A—C18—H18B109.5C7—O16—C35116.7 (3)
O3—C1—C2—O636.7 (3)O2—C8—C14—C13173.8 (2)
C29—C1—C2—O691.0 (2)C30—C8—C14—C1367.7 (3)
C10—C1—C2—O6161.8 (2)C9—C8—C14—C1363.3 (3)
O3—C1—C2—C3153.8 (2)C13—C14—C15—C1633.8 (4)
C29—C1—C2—C326.1 (2)C8—C14—C15—C16100.8 (3)
C10—C1—C2—C381.1 (2)C14—C15—C16—O9168.1 (3)
O3—C1—C2—C3083.7 (3)C14—C15—C16—O816.5 (4)
C29—C1—C2—C30148.7 (2)C18—C13—C17—O869.8 (3)
C10—C1—C2—C3041.4 (3)C14—C13—C17—O850.4 (3)
O6—C2—C3—O4117.4 (2)C12—C13—C17—O8169.7 (2)
C30—C2—C3—O410.7 (3)C18—C13—C17—C2050.4 (4)
C1—C2—C3—O4133.1 (2)C14—C13—C17—C20170.6 (3)
O6—C2—C3—C4122.9 (2)C12—C13—C17—C2070.1 (3)
C30—C2—C3—C4109.0 (2)O8—C17—C20—C21146.0 (3)
C1—C2—C3—C413.4 (2)C13—C17—C20—C2189.2 (4)
O4—C3—C4—C2869.5 (3)O8—C17—C20—C2234.1 (5)
C2—C3—C4—C28170.2 (2)C13—C17—C20—C2290.7 (4)
O4—C3—C4—C29167.7 (2)C22—C20—C21—O100.4 (4)
C2—C3—C4—C2947.4 (2)C17—C20—C21—O10179.6 (3)
O4—C3—C4—C558.9 (3)C21—C20—C22—C230.3 (5)
C2—C3—C4—C561.4 (2)C17—C20—C22—C23179.6 (4)
C28—C4—C5—C622.4 (4)C20—C22—C23—O100.2 (6)
C3—C4—C5—C6148.3 (2)O3—C1—C29—C4179.6 (2)
C29—C4—C5—C6109.9 (3)C10—C1—C29—C457.7 (2)
C28—C4—C5—C10148.0 (2)C2—C1—C29—C454.7 (2)
C3—C4—C5—C1086.1 (2)C28—C4—C29—C1177.0 (2)
C29—C4—C5—C1015.7 (3)C3—C4—C29—C162.7 (2)
C10—C5—C6—C7158.4 (3)C5—C4—C29—C144.3 (2)
C4—C5—C6—C783.2 (3)O2—C8—C30—O764.8 (3)
C5—C6—C7—O1514.5 (5)C14—C8—C30—O753.9 (3)
C5—C6—C7—O16166.8 (3)C9—C8—C30—O7177.3 (2)
O2—C8—C9—O122.2 (2)O2—C8—C30—C254.8 (3)
C30—C8—C9—O1135.4 (2)C14—C8—C30—C2173.5 (2)
C14—C8—C9—O189.3 (2)C9—C8—C30—C257.8 (3)
O2—C8—C9—C11137.7 (2)O6—C2—C30—O725.9 (3)
C30—C8—C9—C11109.1 (3)C3—C2—C30—O7103.2 (2)
C14—C8—C9—C1126.2 (3)C1—C2—C30—O7141.5 (2)
O2—C8—C9—C1086.0 (3)O6—C2—C30—C892.3 (3)
C30—C8—C9—C1027.2 (3)C3—C2—C30—C8138.6 (2)
C14—C8—C9—C10162.5 (2)C1—C2—C30—C823.3 (3)
O3—C1—C10—C955.7 (3)O2—C1'—O1—C949.3 (3)
C29—C1—C10—C9178.3 (2)O3—C1'—O1—C969.7 (3)
C2—C1—C10—C971.1 (3)C2'—C1'—O1—C9169.0 (2)
O3—C1—C10—C1959.7 (3)C11—C9—O1—C1'160.9 (2)
C29—C1—C10—C1966.3 (3)C10—C9—O1—C1'75.6 (2)
C2—C1—C10—C19173.5 (2)C8—C9—O1—C1'42.6 (2)
O3—C1—C10—C5176.1 (2)O1—C1'—O2—C833.2 (3)
C29—C1—C10—C550.1 (2)O3—C1'—O2—C887.3 (3)
C2—C1—C10—C557.0 (3)C2'—C1'—O2—C8152.8 (2)
O1—C9—C10—C168.8 (2)C30—C8—O2—C1'112.8 (2)
C11—C9—C10—C1172.0 (2)C14—C8—O2—C1'118.8 (2)
C8—C9—C10—C136.9 (3)C9—C8—O2—C1'5.7 (3)
O1—C9—C10—C1948.3 (3)O2—C1'—O3—C159.5 (3)
C11—C9—C10—C1970.8 (3)O1—C1'—O3—C155.9 (3)
C8—C9—C10—C19154.0 (2)C2'—C1'—O3—C1178.8 (2)
O1—C9—C10—C5177.6 (2)C29—C1—O3—C1'165.6 (2)
C11—C9—C10—C558.5 (3)C10—C1—O3—C1'48.6 (3)
C8—C9—C10—C576.6 (3)C2—C1—O3—C1'75.1 (3)
C6—C5—C10—C1145.5 (2)O11—C24—O4—C36.9 (4)
C4—C5—C10—C119.6 (2)C25—C24—O4—C3171.5 (2)
C6—C5—C10—C999.4 (3)C4—C3—O4—C24102.6 (3)
C4—C5—C10—C9134.7 (2)C2—C3—O4—C24142.4 (2)
C6—C5—C10—C1928.9 (3)O14—C33—O6—C21.8 (4)
C4—C5—C10—C1997.0 (2)C34—C33—O6—C2178.2 (3)
O1—C9—C11—C12142.6 (2)C3—C2—O6—C3350.3 (3)
C10—C9—C11—C12102.2 (3)C30—C2—O6—C3379.2 (3)
C8—C9—C11—C1233.9 (3)C1—C2—O6—C33158.8 (2)
C9—C11—C12—C1366.1 (3)O13—C31—O7—C3011.3 (4)
C11—C12—C13—C1888.7 (3)C32—C31—O7—C30171.0 (3)
C11—C12—C13—C1430.1 (3)C8—C30—O7—C31137.3 (2)
C11—C12—C13—C17150.2 (2)C2—C30—O7—C31104.1 (3)
C18—C13—C14—C1571.8 (3)O9—C16—O8—C17167.2 (3)
C17—C13—C14—C1549.9 (3)C15—C16—O8—C1717.2 (5)
C12—C13—C14—C15168.4 (2)C20—C17—O8—C16160.4 (3)
C18—C13—C14—C8153.2 (2)C13—C17—O8—C1635.0 (4)
C17—C13—C14—C885.1 (3)C22—C23—O10—C210.0 (6)
C12—C13—C14—C833.4 (3)C20—C21—O10—C230.3 (4)
O2—C8—C14—C1552.9 (3)O15—C7—O16—C351.1 (6)
C30—C8—C14—C1565.6 (3)C6—C7—O16—C35177.7 (4)
C9—C8—C14—C15163.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O11i0.972.413.326 (3)157
C25—H25B···O1ii0.962.343.294 (3)176
C29—H29A···O10iii0.972.513.348 (3)145
C34—H34A···O11iv0.962.623.293 (3)127
Symmetry codes: (i) xy+1, x, z+1/6; (ii) xy, x1, z+1/6; (iii) x+2, y+1, z1/2; (iv) x+y+1, x+1, z1/3.

Experimental details

Crystal data
Chemical formulaC35H42O14
Mr686.69
Crystal system, space groupHexagonal, P61
Temperature (K)100
a, c (Å)17.7635 (5), 19.6294 (6)
V3)5364.1 (3)
Z6
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28307, 4183, 3738
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.10
No. of reflections4183
No. of parameters445
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O11i0.972.413.326 (3)156.7
C25—H25B···O1ii0.962.343.294 (3)176.1
C29—H29A···O10iii0.972.513.348 (3)144.8
C34—H34A···O11iv0.962.623.293 (3)127.1
Symmetry codes: (i) xy+1, x, z+1/6; (ii) xy, x1, z+1/6; (iii) x+2, y+1, z1/2; (iv) x+y+1, x+1, z1/3.
 

Acknowledgements

Financial support from the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek Somphot Endowment Fund) is gratefully acknowledged. The authors also thank the Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, for partial support. Finally, the authors are grateful for research funds from the Faculty of Science (A1B1), the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture, for support of the X-ray Crystallographic analysis.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCui, J., Deng, Z., Li, J., Fu, H., Proksch, P. & Lin, W. (2005). Phytochemistry, 66, 2334–2339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFan, C.-Q., Wang, X. N., Yin, S., Zhang, C. R., Wang, F. D. & Yue, J. M. (2007). Tetrahedron, 63, 6741–6747.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKoul, O., Sing, G., Singh, R., Daniewski, W. M. & Berlozecki, S. (2004). J. Biol. Sci. 29, 409–416.  CAS Google Scholar
First citationPudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2009). J. Nat. Prod. 72, 2188–2191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationWu, J., Xiao, Q., Huang, J., Xiao, Z., Qi, S., Li, Q. & Zhang, S. (2004). Org. Lett. 6, 1841–1844.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds