organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane tetra­fluoro­borate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cyik@163.com

(Received 4 May 2010; accepted 14 May 2010; online 22 May 2010)

In the title compound, C8H14N3+·BF4·H2O, the cation, anion and water molecule all lie on mirror planes. The BF4 anion is disordered over two orientations with occupancies refined to 0.57 (2) and 0.43 (2). The water mol­ecule is linked to the cation via an O—H⋯N hydrogen bond. Weak inter­molecular O—H⋯F, C—H⋯O and C—H⋯F hydrogen bonds consolidate the crystal packing.

Related literature

For applications of 1,4-diaza­bicyclo­[2.2.2]octane derivatives, see: Basaviah et al. (2003[Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]); Almarzoqi et al. (1986[Almarzoqi, B., George, A. V. & Isaacs, N. S. (1986). Tetrahedron Lett. 42, 601-607.]). For a related structure, see: Batsanov et al. (2005[Batsanov, A. S., Trmcic, J. & Sandford, G. (2005). Acta Cryst. E61, o681-o682.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N3+·BF4·H2O

  • Mr = 257.05

  • Orthorhombic, P n m a

  • a = 17.288 (4) Å

  • b = 6.8663 (14) Å

  • c = 9.776 (2) Å

  • V = 1160.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.691, Tmax = 1.000

  • 10255 measured reflections

  • 1239 independent reflections

  • 1043 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.140

  • S = 1.03

  • 1239 reflections

  • 115 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1WB⋯N1i 0.85 2.06 2.903 (3) 175
O1—H1WA⋯F1ii 0.85 2.53 3.29 (2) 150
O1—H1WA⋯F1iii 0.85 2.53 3.29 (2) 150
C3—H3B⋯O1iv 0.96 2.58 3.474 (3) 155
C5—H5A⋯F1v 0.96 2.32 3.140 (7) 143
C5—H5A⋯F1vi 0.96 2.54 3.231 (8) 129
Symmetry codes: (i) x, y, z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+1]; (vi) [x, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as an excellent organocatalyst for a variety of reactions because of the nucleophilicity (Basaviah et al., 2003), which can even go through substitution with relatively unreactive electrophiles such as dichloromethane (Almarzoqi et al., 1986). We report here the crystal structure of the title compound, [C8H14N3]+.BF4-.H2O (I), which was obtained by the solution evaporation method.

The reaction of Bromoacetonitrile and DABCO proceeds quickly in CH3CN, leading to the immediate precipitation of 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide.

The stucture of the title compound, (I), is shown in Fig. 1. All bond lengths and angles in (I) are normal and comparable with those observed in the related compound (Batsanov et al., 2005). In the crystal struture of the title compound, all moieties are situated on mirror planes and the F atoms of the BF4- anion are disordered. Lattice water molecule is paired with the cation by O—H···N hydrogen bond (Table 1). The crystal packing is stabilized by weak intermolecular hydrogen bonds of C—H···O, C—H···F and O—H···F (Table 1).

Related literature top

For applications of 1,4-diazabicyclo[2.2.2]octane derivatives, see: Basaviah et al. (2003); Almarzoqi et al. (1986). For a related structure, see: Batsanov et al. (2005).

Experimental top

Bromoacetonitrile (0.1 mol, 12.00 g) and 1,4-diaza-bicyclo[2.2.2]octane (0.05 mol, 5.6 g) were dissolved in CH3CN(40 ml) with stirring for 1 hour at room temperature. The white product formed was 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide which was filtered, washed with acetonitrile and dried with 80% yield. A mixture of 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (0.01 mol 2.32 g) and tetrafluoro-borate sodium (0.01 mol 1.10 g) in H2O (20 ml) was stirred until clear. After slow evaporation, colourless plate crystals of the title compand suitable for X-ray analysis were obtained with about 60% yield.

The powder-pressed pellets of compound 1 were used in temperature-dependent dielectric measurements because of the difficulty in obtaining large crystals. There is no dielectric anomaly observed between 93 K and 353 K. So there may no structural phase transitions between this temperature range.

Refinement top

C-bound H atoms were geometrically positioned with C—H = 0.96 Å. O-bound H atoms were located in a difference Fourier map, and then placed in idealized positions with O—H = 0.85 Å. All H atoms were refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C, O).

Structure description top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as an excellent organocatalyst for a variety of reactions because of the nucleophilicity (Basaviah et al., 2003), which can even go through substitution with relatively unreactive electrophiles such as dichloromethane (Almarzoqi et al., 1986). We report here the crystal structure of the title compound, [C8H14N3]+.BF4-.H2O (I), which was obtained by the solution evaporation method.

The reaction of Bromoacetonitrile and DABCO proceeds quickly in CH3CN, leading to the immediate precipitation of 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide.

The stucture of the title compound, (I), is shown in Fig. 1. All bond lengths and angles in (I) are normal and comparable with those observed in the related compound (Batsanov et al., 2005). In the crystal struture of the title compound, all moieties are situated on mirror planes and the F atoms of the BF4- anion are disordered. Lattice water molecule is paired with the cation by O—H···N hydrogen bond (Table 1). The crystal packing is stabilized by weak intermolecular hydrogen bonds of C—H···O, C—H···F and O—H···F (Table 1).

For applications of 1,4-diazabicyclo[2.2.2]octane derivatives, see: Basaviah et al. (2003); Almarzoqi et al. (1986). For a related structure, see: Batsanov et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme [symmetry code: (A) x, -y+1/2, z]. Displacement ellipsoids were drawn at the 30% probability level. Only major parts of disordered F atoms are shown.
1-Cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane tetrafluoroborate monohydrate top
Crystal data top
C8H14N3+·BF4·H2OF(000) = 536
Mr = 257.05Dx = 1.471 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3350 reflections
a = 17.288 (4) Åθ = 6.3–55.3°
b = 6.8663 (14) ŵ = 0.14 mm1
c = 9.776 (2) ÅT = 293 K
V = 1160.5 (4) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1239 independent reflections
Radiation source: fine-focus sealed tube1043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6620 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 2121
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.691, Tmax = 1.000l = 1212
10255 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.053P)2 + 1.0547P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1239 reflectionsΔρmax = 0.78 e Å3
115 parametersΔρmin = 0.43 e Å3
28 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0476 (15)
Crystal data top
C8H14N3+·BF4·H2OV = 1160.5 (4) Å3
Mr = 257.05Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.288 (4) ŵ = 0.14 mm1
b = 6.8663 (14) ÅT = 293 K
c = 9.776 (2) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
1239 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1043 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 1.000Rint = 0.037
10255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05728 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.78 e Å3
1239 reflectionsΔρmin = 0.43 e Å3
115 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N20.10929 (12)0.25000.2012 (2)0.0298 (5)
N30.08170 (15)0.25000.1105 (3)0.0501 (7)
C60.03141 (17)0.25000.1853 (3)0.0397 (7)
C30.11555 (11)0.0716 (3)0.1121 (2)0.0396 (5)
H3A0.07410.07010.04670.048*
H3B0.11190.04370.16710.048*
C20.17505 (17)0.25000.3022 (3)0.0445 (8)
H2A0.17210.13660.35950.053*
C50.03436 (16)0.25000.2790 (3)0.0414 (7)
H5A0.03200.36320.33650.050*
N10.23841 (13)0.25000.0745 (3)0.0407 (6)
C10.25193 (18)0.25000.2228 (3)0.0507 (9)
H1A0.28150.13690.24710.061*
C40.19356 (12)0.0767 (4)0.0382 (2)0.0471 (6)
H4A0.18500.07650.05880.057*
H4B0.22260.03790.06090.057*
O10.36760 (14)0.25000.8848 (2)0.0574 (6)
H1WB0.33180.25000.94400.086*
H1WA0.41390.25000.91300.086*
B10.0837 (3)0.25000.6715 (5)0.0574 (6)
F10.0498 (10)0.113 (2)0.5939 (6)0.108 (4)0.57 (2)
F20.1630 (5)0.25000.6946 (10)0.076 (3)0.57 (2)
F30.0555 (16)0.25000.800 (2)0.083 (5)0.57 (2)
F1'0.0855 (8)0.0727 (12)0.6066 (13)0.083 (3)0.43 (2)
F2'0.1513 (11)0.162 (3)0.6819 (16)0.086 (3)0.216 (12)
F3'0.039 (2)0.25000.792 (3)0.080 (5)0.43 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0319 (12)0.0335 (12)0.0240 (11)0.0000.0017 (9)0.000
N30.0342 (13)0.0579 (18)0.0581 (17)0.0000.0006 (13)0.000
C60.0341 (15)0.0424 (16)0.0426 (17)0.0000.0113 (13)0.000
C30.0406 (11)0.0365 (11)0.0417 (11)0.0033 (9)0.0008 (9)0.0105 (9)
C20.0448 (17)0.060 (2)0.0291 (14)0.0000.0143 (13)0.000
C50.0384 (16)0.0548 (19)0.0310 (15)0.0000.0066 (12)0.000
N10.0290 (12)0.0525 (15)0.0405 (14)0.0000.0018 (10)0.000
C10.0355 (16)0.072 (2)0.0443 (18)0.0000.0126 (14)0.000
C40.0410 (11)0.0499 (13)0.0505 (12)0.0043 (10)0.0030 (10)0.0130 (11)
O10.0541 (12)0.0670 (14)0.0512 (12)0.0000.0061 (10)0.000
B10.0541 (12)0.0670 (14)0.0512 (12)0.0000.0061 (10)0.000
F10.149 (7)0.125 (6)0.051 (2)0.086 (5)0.010 (3)0.012 (3)
F20.050 (3)0.074 (8)0.105 (4)0.0000.012 (3)0.000
F30.081 (13)0.135 (6)0.031 (4)0.0000.006 (5)0.000
F1'0.097 (5)0.056 (3)0.096 (5)0.003 (3)0.014 (4)0.026 (3)
F2'0.065 (6)0.068 (8)0.124 (7)0.036 (5)0.003 (5)0.013 (6)
F3'0.058 (9)0.116 (8)0.064 (9)0.0000.018 (6)0.000
Geometric parameters (Å, º) top
N2—C51.502 (3)C1—H1A0.9599
N2—C21.506 (3)C4—H4A0.9600
N2—C31.507 (2)C4—H4B0.9600
N2—C3i1.507 (2)O1—H1WB0.85
N3—C61.136 (4)O1—H1WA0.85
C6—C51.460 (4)B1—F2'i1.319 (16)
C3—C41.530 (3)B1—F2'1.319 (16)
C3—H3A0.9600B1—F31.34 (2)
C3—H3B0.9600B1—F11.345 (7)
C2—C11.540 (4)B1—F1i1.345 (7)
C2—H2A0.9600B1—F1'1.373 (9)
C5—H5A0.9600B1—F1'i1.373 (9)
N1—C41.464 (3)B1—F21.391 (9)
N1—C4i1.464 (3)B1—F3'1.41 (3)
N1—C11.468 (4)
C5—N2—C2108.6 (2)H4A—C4—H4B108.0
C5—N2—C3110.78 (13)H1WB—O1—H1WA117.9
C2—N2—C3108.96 (14)F2'i—B1—F3104.4 (13)
C5—N2—C3i110.78 (13)F2'—B1—F3104.4 (13)
C2—N2—C3i108.96 (14)F2'i—B1—F1138.6 (9)
C3—N2—C3i108.7 (2)F2'—B1—F196.2 (17)
N3—C6—C5178.8 (3)F3—B1—F1111.6 (8)
N2—C3—C4108.53 (17)F2'i—B1—F1i96.2 (17)
N2—C3—H3A109.9F2'—B1—F1i138.6 (9)
C4—C3—H3A110.1F3—B1—F1i111.6 (8)
N2—C3—H3B110.0F2'i—B1—F1'114.9 (8)
C4—C3—H3B109.9F3—B1—F1'116.0 (5)
H3A—C3—H3B108.4F1i—B1—F1'111.8 (10)
N2—C2—C1108.7 (2)F2'—B1—F1'i114.9 (8)
N2—C2—H2A110.0F3—B1—F1'i116.0 (5)
C1—C2—H2A109.9F1—B1—F1'i111.8 (10)
C6—C5—N2110.7 (2)F1'—B1—F1'i124.9 (10)
C6—C5—H5A109.6F3—B1—F2101.9 (13)
N2—C5—H5A109.4F1—B1—F2121.4 (10)
C4—N1—C4i108.7 (2)F1i—B1—F2121.4 (10)
C4—N1—C1108.90 (16)F1'—B1—F293.0 (7)
C4i—N1—C1108.90 (16)F1'i—B1—F293.0 (7)
N1—C1—C2111.1 (2)F2'i—B1—F3'115.1 (14)
N1—C1—H1A109.2F2'—B1—F3'115.1 (14)
C2—C1—H1A109.6F1—B1—F3'103.3 (11)
N1—C4—C3111.76 (18)F1i—B1—F3'103.3 (11)
N1—C4—H4A108.8F1'—B1—F3'113.5 (6)
C3—C4—H4A109.3F1'i—B1—F3'113.5 (6)
N1—C4—H4B109.4F2—B1—F3'114.1 (15)
C3—C4—H4B109.5
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WB···N1ii0.852.062.903 (3)175
O1—H1WA···F1iii0.852.533.29 (2)150
O1—H1WA···F1iv0.852.533.29 (2)150
C3—H3B···O1v0.962.583.474 (3)155
C5—H5A···F1vi0.962.323.140 (7)143
C5—H5A···F1i0.962.543.231 (8)129
Symmetry codes: (i) x, y+1/2, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y, z+3/2; (v) x+1/2, y, z1/2; (vi) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H14N3+·BF4·H2O
Mr257.05
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)17.288 (4), 6.8663 (14), 9.776 (2)
V3)1160.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.691, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10255, 1239, 1043
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.140, 1.03
No. of reflections1239
No. of parameters115
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.43

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WB···N1i0.852.062.903 (3)175.2
O1—H1WA···F1ii0.852.533.29 (2)150.2
O1—H1WA···F1iii0.852.533.29 (2)150.2
C3—H3B···O1iv0.962.583.474 (3)155.0
C5—H5A···F1v0.962.323.140 (7)142.6
C5—H5A···F1vi0.962.543.231 (8)128.9
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x+1/2, y, z1/2; (v) x, y+1/2, z+1; (vi) x, y+1/2, z.
 

References

First citationAlmarzoqi, B., George, A. V. & Isaacs, N. S. (1986). Tetrahedron Lett. 42, 601–607.  CrossRef CAS Google Scholar
First citationBasaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science PubMed Google Scholar
First citationBatsanov, A. S., Trmcic, J. & Sandford, G. (2005). Acta Cryst. E61, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds