metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-di­methyl­amino-1-(2-pyrid­yl)prop-2-en-1-one-κ2N2′,O]tris­­(nitrato-κ2O,O′)praseodymium(III)

aDepartment of City Science, Jiangsu City Vocation College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: hudahua@jstvu.edu.cn

(Received 14 May 2010; accepted 20 May 2010; online 26 May 2010)

In the title compound, [Pr(NO3)3(C10H12N2O)2], the PrIII ion is ten-coordinated by two N and two O atoms from two bidentate 3-(dimethyl­amino)-1-(2-pyrid­yl)prop-2-en-1-one ligands and by six O atoms from three nitrate anions in a distorted bicapped square-anti­prismatic geometry. An extensive three-dimensional network of weak inter­molecular C—H⋯O hydrogen bonds consolidates the crystal packing.

Related literature

For the crystal structures of the Co, Ni, Zn and Cd complexes with 3-(N,N-dimethyl­amino)-1-(2-pyrid­yl)prop-2-en-1-one) ligands, see: Bi (2009[Bi, J.-H. (2009). Acta Cryst. E65, m633.]); Hu et al. (2007[Hu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092-m1093.]); Li et al. (2005[Li, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410-m411.]); Wang et al. (2005[Wang, P., Xu, X.-N., Zheng, L.-F. & Bao, Y.-Q. (2005). Acta Cryst. E61, m1462-m1463.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C10H12N2O)2(NO3)3]

  • Mr = 679.37

  • Triclinic, [P \overline 1]

  • a = 10.2949 (10) Å

  • b = 11.2439 (11) Å

  • c = 11.7588 (12) Å

  • α = 92.378 (2)°

  • β = 108.101 (2)°

  • γ = 96.274 (2)°

  • V = 1281.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 291 K

  • 0.43 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]) Tmin = 0.430, Tmax = 0.700

  • 6421 measured reflections

  • 4431 independent reflections

  • 4090 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.05

  • 4431 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.37 3.227 (7) 154
C3—H3⋯O7i 0.93 2.50 3.297 (7) 144
C4—H4⋯O10ii 0.93 2.58 3.174 (8) 122
C8—H8A⋯O11iii 0.93 2.52 3.377 (7) 154
C12—H12⋯O5iv 0.93 2.48 3.223 (8) 137
C14—H14⋯O8v 0.93 2.58 3.444 (7) 155
C20—H20A⋯O11ii 0.96 2.54 3.360 (9) 143
C20—H20B⋯O6vi 0.96 2.54 3.381 (7) 146
C20—H20C⋯O9vi 0.96 2.58 3.182 (8) 121
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z; (v) -x+1, -y, -z+1; (vi) x, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the crystal structures of coordinated complexes of the ligand 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) with Co, Ni, Zn and Cd were reported ((Bi, 2009; Hu et al., 2007; Li et al., 2005; Wang et al., 2005). Here we report the crystal structure of the title complex with praseodymium(III)

The coordination geometry about Pr(III) center is shown in Fig. 1. Each Pr(III) ion is in a ten coordinate environment comprising two oxygen atoms and two nitrogen atoms from the bidentate organic ligands and six oxygen atoms from three tertiary nitrate anions that act as bidentate anion ligands. The coordination polyhedron is a distorted bicapped squareantiprism. The Pr—O distances lie in two groups, those to the oxygen atoms of organic ligands in the range 2.417 (4)-2.419 (4) (2) Å and those to nitrate O atoms in the range 2.539 (4)-2.644 (4) Å.

Weak intermolecular C—H···O hydrogen bonds (Table 1) play an important role in linking molecules into 3D supramolecular structure.

Related literature top

For the crystal structures of the Co, Ni, Zn and Cd complexes with the 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) ligand, see: Bi (2009); Hu et al. (2007); Li et al. (2005); Wang et al. (2005).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. For the synthesis of title compoud, a solution of ligand (0.2 mmol) and Pr(NO3)3(0.1 mmol) in 50 ml of methanol was refluxed for 2 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93-0.97 Å) and refined as riding , with Uiso(H)=1.2-1.5 Ueq of the parent atom.

Structure description top

Recently, the crystal structures of coordinated complexes of the ligand 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) with Co, Ni, Zn and Cd were reported ((Bi, 2009; Hu et al., 2007; Li et al., 2005; Wang et al., 2005). Here we report the crystal structure of the title complex with praseodymium(III)

The coordination geometry about Pr(III) center is shown in Fig. 1. Each Pr(III) ion is in a ten coordinate environment comprising two oxygen atoms and two nitrogen atoms from the bidentate organic ligands and six oxygen atoms from three tertiary nitrate anions that act as bidentate anion ligands. The coordination polyhedron is a distorted bicapped squareantiprism. The Pr—O distances lie in two groups, those to the oxygen atoms of organic ligands in the range 2.417 (4)-2.419 (4) (2) Å and those to nitrate O atoms in the range 2.539 (4)-2.644 (4) Å.

Weak intermolecular C—H···O hydrogen bonds (Table 1) play an important role in linking molecules into 3D supramolecular structure.

For the crystal structures of the Co, Ni, Zn and Cd complexes with the 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) ligand, see: Bi (2009); Hu et al. (2007); Li et al. (2005); Wang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
Bis[3-dimethylamino-1-(2-pyridyl)prop-2-en-1-one- κ2N2',O]tris(nitrato-κ2O,O') praseodymium(III) top
Crystal data top
[Pr(C10H12N2O)2(NO3)3]Z = 2
Mr = 679.37F(000) = 680.0
Triclinic, P1Dx = 1.760 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2949 (10) ÅCell parameters from 4431 reflections
b = 11.2439 (11) Åθ = 1.8–25.0°
c = 11.7588 (12) ŵ = 1.97 mm1
α = 92.378 (2)°T = 291 K
β = 108.101 (2)°Block, green
γ = 96.274 (2)°0.43 × 0.26 × 0.18 mm
V = 1281.9 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4431 independent reflections
Radiation source: fine-focus sealed tube4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scanθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1112
Tmin = 0.430, Tmax = 0.700k = 137
6421 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
4431 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Pr(C10H12N2O)2(NO3)3]γ = 96.274 (2)°
Mr = 679.37V = 1281.9 (2) Å3
Triclinic, P1Z = 2
a = 10.2949 (10) ÅMo Kα radiation
b = 11.2439 (11) ŵ = 1.97 mm1
c = 11.7588 (12) ÅT = 291 K
α = 92.378 (2)°0.43 × 0.26 × 0.18 mm
β = 108.101 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4090 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.700Rint = 0.068
6421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 1.51 e Å3
4431 reflectionsΔρmin = 1.26 e Å3
356 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.32845 (3)0.30102 (2)0.18779 (2)0.03231 (12)
N10.2599 (4)0.4770 (4)0.0429 (4)0.0371 (10)
N20.0283 (5)0.6828 (4)0.4065 (4)0.0482 (12)
N30.5449 (4)0.1771 (4)0.2475 (4)0.0362 (9)
N40.5519 (5)0.2006 (4)0.2602 (4)0.0456 (11)
N50.1476 (5)0.1201 (4)0.0079 (4)0.0446 (11)
N60.1779 (5)0.1518 (4)0.3284 (4)0.0440 (11)
N70.5768 (5)0.4527 (4)0.3565 (4)0.0487 (12)
O10.2248 (4)0.4635 (3)0.2516 (3)0.0451 (9)
O20.4446 (4)0.2699 (3)0.0413 (3)0.0408 (8)
O30.2390 (4)0.0870 (3)0.0782 (3)0.0500 (10)
O40.1341 (4)0.2306 (3)0.0047 (3)0.0474 (9)
O50.0773 (5)0.0514 (4)0.0920 (4)0.0696 (13)
O60.3062 (4)0.1567 (4)0.3466 (3)0.0474 (9)
O70.1137 (4)0.2126 (4)0.2498 (4)0.0540 (10)
O80.1219 (5)0.0882 (4)0.3868 (4)0.0684 (12)
O90.5041 (5)0.3804 (4)0.3969 (4)0.0564 (11)
O100.5304 (4)0.4693 (4)0.2469 (3)0.0503 (10)
O110.6884 (5)0.5035 (5)0.4183 (4)0.0726 (14)
C10.1837 (5)0.5549 (4)0.0720 (4)0.0328 (10)
C20.1243 (5)0.6362 (4)0.0067 (5)0.0385 (12)
H20.07330.69100.01550.046*
C30.1411 (5)0.6355 (5)0.1180 (5)0.0434 (13)
H30.09880.68770.17310.052*
C40.2202 (6)0.5578 (5)0.1471 (5)0.0449 (13)
H40.23430.55670.22150.054*
C50.2788 (6)0.4812 (5)0.0642 (5)0.0449 (13)
H50.33470.42930.08350.054*
C60.1716 (5)0.5458 (4)0.1938 (4)0.0343 (11)
C70.1004 (5)0.6261 (4)0.2385 (5)0.0406 (12)
H70.05740.68350.19070.049*
C80.0947 (5)0.6194 (4)0.3525 (5)0.0406 (12)
H8A0.14380.56310.39720.049*
C90.0284 (7)0.6650 (6)0.5285 (5)0.0598 (17)
H9A0.08900.60720.56160.090*
H9B0.06320.63620.52750.090*
H9C0.05960.73980.57690.090*
C100.0560 (8)0.7710 (6)0.3457 (7)0.075 (2)
H10A0.01490.80850.29100.113*
H10B0.06200.83080.40390.113*
H10C0.14670.73210.30200.113*
C110.5974 (5)0.1498 (4)0.1607 (4)0.0334 (10)
C120.7071 (6)0.0838 (5)0.1811 (5)0.0455 (13)
H120.74300.06580.12000.055*
C130.7617 (6)0.0454 (5)0.2929 (6)0.0544 (15)
H130.83650.00210.30870.065*
C140.7062 (6)0.0707 (5)0.3812 (5)0.0499 (14)
H140.74020.04330.45700.060*
C150.5993 (6)0.1377 (5)0.3545 (5)0.0454 (13)
H150.56250.15670.41490.055*
C160.5313 (5)0.1991 (4)0.0426 (4)0.0328 (10)
C170.5716 (5)0.1677 (4)0.0558 (4)0.0373 (11)
H170.63340.11190.04950.045*
C180.5208 (6)0.2187 (5)0.1622 (4)0.0416 (12)
H180.45720.27200.16460.050*
C190.6499 (7)0.1203 (5)0.2694 (5)0.0561 (16)
H19A0.73390.14030.20380.084*
H19B0.66860.12850.34390.084*
H19C0.61200.03900.26660.084*
C200.4878 (9)0.2591 (6)0.3674 (5)0.0680 (19)
H20A0.42640.31090.35120.102*
H20B0.43690.19950.43100.102*
H20C0.55770.30560.39100.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.03546 (18)0.03365 (18)0.03253 (18)0.01780 (12)0.01260 (12)0.00638 (11)
N10.039 (2)0.036 (2)0.042 (2)0.0190 (19)0.0149 (19)0.0090 (18)
N20.057 (3)0.045 (3)0.053 (3)0.024 (2)0.027 (2)0.006 (2)
N30.032 (2)0.042 (2)0.038 (2)0.0157 (19)0.0112 (18)0.0101 (18)
N40.066 (3)0.040 (2)0.037 (2)0.013 (2)0.023 (2)0.0030 (19)
N50.048 (3)0.048 (3)0.044 (3)0.017 (2)0.019 (2)0.000 (2)
N60.049 (3)0.044 (3)0.048 (3)0.014 (2)0.025 (2)0.009 (2)
N70.047 (3)0.047 (3)0.050 (3)0.020 (2)0.008 (2)0.000 (2)
O10.061 (2)0.041 (2)0.043 (2)0.0296 (19)0.0210 (18)0.0087 (16)
O20.044 (2)0.045 (2)0.0410 (19)0.0234 (17)0.0176 (16)0.0097 (16)
O30.054 (2)0.045 (2)0.052 (2)0.0260 (19)0.0109 (19)0.0069 (18)
O40.049 (2)0.045 (2)0.048 (2)0.0237 (18)0.0093 (18)0.0040 (17)
O50.069 (3)0.069 (3)0.062 (3)0.014 (2)0.010 (2)0.021 (2)
O60.039 (2)0.062 (2)0.047 (2)0.0168 (19)0.0158 (17)0.0141 (18)
O70.048 (2)0.057 (3)0.065 (3)0.027 (2)0.021 (2)0.026 (2)
O80.059 (3)0.080 (3)0.080 (3)0.019 (2)0.035 (2)0.034 (3)
O90.073 (3)0.053 (2)0.041 (2)0.016 (2)0.014 (2)0.0051 (19)
O100.046 (2)0.061 (3)0.044 (2)0.0096 (19)0.0130 (18)0.0104 (18)
O110.049 (3)0.080 (3)0.069 (3)0.008 (2)0.009 (2)0.005 (2)
C10.023 (2)0.032 (3)0.044 (3)0.007 (2)0.011 (2)0.004 (2)
C20.030 (3)0.033 (3)0.053 (3)0.011 (2)0.011 (2)0.011 (2)
C30.035 (3)0.045 (3)0.048 (3)0.012 (2)0.007 (2)0.018 (2)
C40.042 (3)0.054 (3)0.040 (3)0.011 (3)0.013 (2)0.011 (2)
C50.052 (3)0.049 (3)0.042 (3)0.025 (3)0.020 (3)0.011 (2)
C60.028 (2)0.028 (2)0.048 (3)0.008 (2)0.012 (2)0.004 (2)
C70.043 (3)0.034 (3)0.051 (3)0.014 (2)0.019 (2)0.008 (2)
C80.039 (3)0.030 (3)0.055 (3)0.014 (2)0.015 (2)0.001 (2)
C90.078 (5)0.053 (4)0.059 (4)0.015 (3)0.036 (3)0.001 (3)
C100.094 (6)0.073 (5)0.082 (5)0.059 (4)0.044 (4)0.020 (4)
C110.034 (3)0.026 (2)0.041 (3)0.007 (2)0.014 (2)0.002 (2)
C120.049 (3)0.042 (3)0.051 (3)0.022 (3)0.019 (3)0.003 (2)
C130.050 (4)0.047 (3)0.065 (4)0.029 (3)0.009 (3)0.011 (3)
C140.047 (3)0.053 (3)0.049 (3)0.020 (3)0.008 (3)0.016 (3)
C150.047 (3)0.055 (3)0.037 (3)0.019 (3)0.013 (2)0.012 (2)
C160.030 (2)0.030 (2)0.039 (3)0.008 (2)0.011 (2)0.003 (2)
C170.042 (3)0.034 (3)0.040 (3)0.012 (2)0.017 (2)0.002 (2)
C180.046 (3)0.040 (3)0.041 (3)0.013 (2)0.016 (2)0.001 (2)
C190.080 (5)0.045 (3)0.059 (4)0.018 (3)0.042 (3)0.000 (3)
C200.102 (6)0.061 (4)0.048 (3)0.028 (4)0.027 (4)0.011 (3)
Geometric parameters (Å, º) top
Pr1—O22.417 (3)C3—C41.359 (8)
Pr1—O12.418 (3)C3—H30.9300
Pr1—O42.539 (4)C4—C51.369 (7)
Pr1—O102.553 (4)C4—H40.9300
Pr1—O62.571 (4)C5—H50.9300
Pr1—O92.611 (4)C6—C71.405 (7)
Pr1—O32.612 (4)C7—C81.364 (8)
Pr1—O72.644 (4)C7—H70.9300
Pr1—N12.675 (4)C8—H8A0.9300
Pr1—N32.681 (4)C9—H9A0.9600
N1—C51.334 (6)C9—H9B0.9600
N1—C11.338 (6)C9—H9C0.9600
N2—C81.311 (7)C10—H10A0.9600
N2—C101.452 (7)C10—H10B0.9600
N2—C91.457 (7)C10—H10C0.9600
N3—C151.326 (6)C11—C121.383 (7)
N3—C111.335 (6)C11—C161.502 (7)
N4—C181.302 (6)C12—C131.368 (8)
N4—C191.450 (7)C12—H120.9300
N4—C201.451 (7)C13—C141.366 (9)
N5—O51.212 (6)C13—H130.9300
N5—O31.251 (6)C14—C151.365 (8)
N5—O41.266 (6)C14—H140.9300
N6—O81.230 (6)C15—H150.9300
N6—O71.237 (6)C16—C171.390 (7)
N6—O61.265 (6)C17—C181.373 (7)
N7—O111.216 (6)C17—H170.9300
N7—O91.252 (7)C18—H180.9300
N7—O101.257 (6)C19—H19A0.9600
O1—C61.245 (6)C19—H19B0.9600
O2—C161.256 (6)C19—H19C0.9600
C1—C21.382 (7)C20—H20A0.9600
C1—C61.483 (7)C20—H20B0.9600
C2—C31.373 (8)C20—H20C0.9600
C2—H20.9300
O2—Pr1—O1135.88 (12)N7—O10—Pr198.1 (3)
O2—Pr1—O475.94 (13)N1—C1—C2121.3 (5)
O1—Pr1—O497.39 (12)N1—C1—C6114.2 (4)
O2—Pr1—O1076.34 (13)C2—C1—C6124.5 (4)
O1—Pr1—O1078.79 (13)C3—C2—C1119.4 (5)
O4—Pr1—O10134.49 (13)C3—C2—H2120.3
O2—Pr1—O6125.68 (12)C1—C2—H2120.3
O1—Pr1—O698.15 (12)C4—C3—C2119.4 (5)
O4—Pr1—O6107.37 (13)C4—C3—H3120.3
O10—Pr1—O6118.09 (12)C2—C3—H3120.3
O2—Pr1—O9111.18 (14)C3—C4—C5118.4 (5)
O1—Pr1—O976.56 (13)C3—C4—H4120.8
O4—Pr1—O9172.74 (13)C5—C4—H4120.8
O10—Pr1—O948.89 (13)N1—C5—C4123.4 (5)
O6—Pr1—O970.01 (13)N1—C5—H5118.3
O2—Pr1—O371.18 (13)C4—C5—H5118.3
O1—Pr1—O3135.67 (13)O1—C6—C7122.9 (5)
O4—Pr1—O349.11 (12)O1—C6—C1116.8 (4)
O10—Pr1—O3144.44 (13)C7—C6—C1120.3 (4)
O6—Pr1—O372.40 (12)C8—C7—C6119.5 (5)
O9—Pr1—O3133.51 (12)C8—C7—H7120.2
O2—Pr1—O7141.79 (13)C6—C7—H7120.2
O1—Pr1—O770.37 (13)N2—C8—C7127.7 (5)
O4—Pr1—O772.83 (13)N2—C8—H8A116.1
O10—Pr1—O7141.87 (13)C7—C8—H8A116.1
O6—Pr1—O748.25 (12)N2—C9—H9A109.5
O9—Pr1—O7101.08 (14)N2—C9—H9B109.5
O3—Pr1—O771.85 (13)H9A—C9—H9B109.5
O2—Pr1—N176.73 (12)N2—C9—H9C109.5
O1—Pr1—N161.08 (12)H9A—C9—H9C109.5
O4—Pr1—N167.04 (13)H9B—C9—H9C109.5
O10—Pr1—N171.93 (13)N2—C10—H10A109.5
O6—Pr1—N1156.09 (13)N2—C10—H10B109.5
O9—Pr1—N1112.44 (13)H10A—C10—H10B109.5
O3—Pr1—N1113.07 (12)N2—C10—H10C109.5
O7—Pr1—N1109.74 (12)H10A—C10—H10C109.5
O2—Pr1—N361.89 (12)H10B—C10—H10C109.5
O1—Pr1—N3144.83 (13)N3—C11—C12121.4 (5)
O4—Pr1—N3117.69 (12)N3—C11—C16115.0 (4)
O10—Pr1—N378.28 (13)C12—C11—C16123.5 (5)
O6—Pr1—N370.21 (12)C13—C12—C11118.9 (5)
O9—Pr1—N368.27 (13)C13—C12—H12120.6
O3—Pr1—N373.99 (12)C11—C12—H12120.6
O7—Pr1—N3115.72 (12)C14—C13—C12119.9 (5)
N1—Pr1—N3133.52 (13)C14—C13—H13120.1
C5—N1—C1118.1 (4)C12—C13—H13120.1
C5—N1—Pr1124.0 (3)C15—C14—C13117.8 (5)
C1—N1—Pr1117.2 (3)C15—C14—H14121.1
C8—N2—C10121.8 (5)C13—C14—H14121.1
C8—N2—C9122.3 (5)N3—C15—C14123.7 (5)
C10—N2—C9115.9 (5)N3—C15—H15118.1
C15—N3—C11118.2 (4)C14—C15—H15118.1
C15—N3—Pr1124.9 (3)O2—C16—C17124.4 (5)
C11—N3—Pr1116.8 (3)O2—C16—C11116.4 (4)
C18—N4—C19122.5 (5)C17—C16—C11119.2 (4)
C18—N4—C20121.3 (5)C18—C17—C16120.4 (5)
C19—N4—C20116.3 (5)C18—C17—H17119.8
O5—N5—O3122.3 (5)C16—C17—H17119.8
O5—N5—O4121.1 (5)N4—C18—C17127.2 (5)
O3—N5—O4116.6 (4)N4—C18—H18116.4
O8—N6—O7122.7 (5)C17—C18—H18116.4
O8—N6—O6120.4 (5)N4—C19—H19A109.5
O7—N6—O6116.9 (5)N4—C19—H19B109.5
O11—N7—O9122.5 (5)H19A—C19—H19B109.5
O11—N7—O10120.7 (5)N4—C19—H19C109.5
O9—N7—O10116.8 (5)H19A—C19—H19C109.5
C6—O1—Pr1129.3 (3)H19B—C19—H19C109.5
C16—O2—Pr1128.1 (3)N4—C20—H20A109.5
N5—O3—Pr195.6 (3)N4—C20—H20B109.5
N5—O4—Pr198.7 (3)H20A—C20—H20B109.5
N6—O6—Pr198.8 (3)N4—C20—H20C109.5
N6—O7—Pr196.0 (3)H20A—C20—H20C109.5
N7—O9—Pr195.4 (3)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.373.227 (7)154
C3—H3···O7i0.932.503.297 (7)144
C4—H4···O10ii0.932.583.174 (8)122
C8—H8A···O11iii0.932.523.377 (7)154
C12—H12···O5iv0.932.483.223 (8)137
C14—H14···O8v0.932.583.444 (7)155
C20—H20A···O11ii0.962.543.360 (9)143
C20—H20B···O6vi0.962.543.381 (7)146
C20—H20C···O9vi0.962.583.182 (8)121
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Pr(C10H12N2O)2(NO3)3]
Mr679.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.2949 (10), 11.2439 (11), 11.7588 (12)
α, β, γ (°)92.378 (2), 108.101 (2), 96.274 (2)
V3)1281.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.43 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.430, 0.700
No. of measured, independent and
observed [I > 2σ(I)] reflections
6421, 4431, 4090
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.05
No. of reflections4431
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 1.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.93002.37003.227 (7)154.00
C3—H3···O7i0.93002.50003.297 (7)144.00
C4—H4···O10ii0.93002.58003.174 (8)122.00
C8—H8A···O11iii0.93002.52003.377 (7)154.00
C12—H12···O5iv0.93002.48003.223 (8)137.00
C14—H14···O8v0.93002.58003.444 (7)155.00
C20—H20A···O11ii0.96002.54003.360 (9)143.00
C20—H20B···O6vi0.96002.54003.381 (7)146.00
C20—H20C···O9vi0.96002.58003.182 (8)121.00
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x, y, z1.
 

Acknowledgements

The author is indebted to the Natural Science Fund for Colleges and Universities in Jiangsu Province for financial support (grant No. 09KJD150009).

References

First citationBi, J.-H. (2009). Acta Cryst. E65, m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationHu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092–m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410–m411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Xu, X.-N., Zheng, L.-F. & Bao, Y.-Q. (2005). Acta Cryst. E61, m1462–m1463.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds