organic compounds
N-[Bis(benzylamino)phosphoryl]-2,2,2-trichloroacetamide
aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: ovchynnikov@univ.kiev.ua
In the title compound, C16H17Cl3N3O2P, the P atom has a slightly distorted tetrahedral configuration. The conformations of the carbonyl and phosphoryl groups are anti to each other. In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules into infinite chains parallel to the b axis.
Related literature
For the use of carbacylamidophosphates as potential new ligands, see: Skopenko et al. (1996); Ovchynnikov et al. (1998); Znovjak et al. (2009); Gubina et al. (2009); Gowda et al. (2010); Amirkhanov et al. (1997a); Safin et al. (2009). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1982). For P=O bond lengths, see: Amirkhanov et al. (1997b). For the synthesis of the title compound, see: Kirsanov & Derkach (1956).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810017873/dn2554sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017873/dn2554Isup2.hkl
The solution of benzylamine (26.8 g, 0.25 mol) in 30 ml of chloroform was cooled to 10 °C and a solution of the dichloride of trichloroacetylamidophosphoric acid (14 g, 0.047 mol) in 150 ml of chloroform was added slowly with stirring. The temperature was not allowed to rise above 15 °C. Stirring was continued for about 40 min. The resulting mixture, containing HL, H2NCH2C6H5*HCl and excess dibenzylamine, was filtered from the precipitate (H2NCH2C6H5*HCl). Then the solution was evaporated and the residue was treated with aqueous HCl; the product precipitated as a yellow crystalline powder (90 % yield) (Kirsanov & Derkach, 1956). A colourless crystalline compound was obtained after recristallization from acetone. The compound is air stable, soluble in
and hot acetone, insoluble in non-polar aprotic solvents and water, M.p. = 144 °C. Anal. Calc.: C 45.68,H 4.07, N 9.99; Found: C 45.73, H 3.95, N 9.85. IR (KBr pellet, cm-1): 1709 (s, CO) and 1250 (s, PO).All hydrogen atoms were located from electron density difference maps and included in the
in the riding motion approximation with Uiso constrained to be 1.2 times Ueq of the carrier atom.Carbacylamidophosphates of the general formula RC(O)NHP(O)R2 are potential new ligands for metal ions (Skopenko et al., 1996; Ovchynnikov et al., 1998; Znovjak et al., 2009; Gubina et al., 2009; Amirkhanov et al., 1997a; Gowda et al., 2010; Safin et al., 2009). Many of these compounds also show biological activity, including anticancer activity (Amirkhanov et al., 1996; Rebrova et al., 1982). This work reports the structure of N,N'-dibenzyl-N"-trichloroacetylphosphortriamide (HDBA).
In the title compound, the phosphorus atom has a slightly distorted tetrahedral configuration (Fig.1). The average values of the angles OPN in the molecule are larger than tetrahedral, while the N – P – N angles are smaller, with the exception O1 – P1– N1 106.85 (7) ° and N(1) – P1– N(2) 112.32 (7) °, which can be rationalized by the influence of the hydrogen bonds. The environment of the nitrogen atoms is practically planar with only slight deviations from the mean planes.
The bond length P ═O (1.479 (1) Å is longer than in the compounds with alkyl amide substituents (the range of bond length d(P ═O) 1.475 - 1.478 Å) (Amirkhanov et al., 1997b). In the structure the carbonyl and phosphoryl groups are anti to each other as in most carbacylamidophosphates.
The fragment including the atoms O(2), N(1), C(1), C(2) is virtually planar, with only slight deviations from the mean plane. The phosphorus and oxygen atom of the phosphoryl group do not fit into this plane. Close enough to this plane lie the hydrogen H(1 N) and one of the chlorine atoms Cl(3). The carbonyl oxygen-phosphorus distance 3.023 (1) Å is considerably shorter than the sum of Van der Waals radii (3.3 Å).
Molecules are linked by hydrogen bonds of the phosphorylic oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules. The N—H···O intermolecular hydrogen bonds pack the molecules into infinite chains parallel to the b axis (Table 1, Fig.2).
For the use of carbacylamidophosphates as potential new ligands, see: Skopenko et al. (1996); Ovchynnikov et al. (1998); Znovjak et al. (2009); Gubina et al. (2009); Gowda et al. (2010); Amirkhanov et al. (1997a); Safin et al. (2009). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1982). For P═O bond lengths, see: Amirkhanov et al. (1997b). For the synthesis of the ligand, see: Kirsanov & Derkach (1956).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H17Cl3N3O2P | Z = 2 |
Mr = 420.65 | F(000) = 432 |
Triclinic, P1 | Dx = 1.467 Mg m−3 |
Hall symbol: -P 1 | Melting point: 417 K |
a = 9.116 Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3586 (2) Å | Cell parameters from 3594 reflections |
c = 11.7713 (2) Å | θ = 2.0–27.1° |
α = 68.320 (1)° | µ = 0.58 mm−1 |
β = 67.762 (1)° | T = 293 K |
γ = 86.469 (1)° | Block, colorless |
V = 952.13 (3) Å3 | 0.20 × 0.20 × 0.20 mm |
Oxford Diffraction Xcalibur3 diffractometer | 3286 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3069 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −8→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −10→12 |
Tmin = 0.893, Tmax = 0.893 | l = −13→13 |
4976 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0496P)2 + 0.7601P] where P = (Fo2 + 2Fc2)/3 |
3286 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
C16H17Cl3N3O2P | γ = 86.469 (1)° |
Mr = 420.65 | V = 952.13 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.116 Å | Mo Kα radiation |
b = 10.3586 (2) Å | µ = 0.58 mm−1 |
c = 11.7713 (2) Å | T = 293 K |
α = 68.320 (1)° | 0.20 × 0.20 × 0.20 mm |
β = 67.762 (1)° |
Oxford Diffraction Xcalibur3 diffractometer | 3286 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 3069 reflections with I > 2σ(I) |
Tmin = 0.893, Tmax = 0.893 | Rint = 0.016 |
4976 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.62 e Å−3 |
3286 reflections | Δρmin = −0.41 e Å−3 |
226 parameters |
Experimental. CrysAlis RED, (Oxford Diffraction Ltd., 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.82223 (7) | 0.78475 (7) | 0.14155 (6) | 0.04467 (17) | |
Cl2 | 0.49492 (8) | 0.81971 (8) | 0.16751 (6) | 0.0545 (2) | |
Cl3 | 0.70636 (11) | 1.05737 (6) | 0.09763 (7) | 0.0681 (3) | |
P1 | 0.47348 (6) | 0.66397 (5) | 0.59367 (5) | 0.02713 (15) | |
O1 | 0.4132 (2) | 0.51582 (15) | 0.64581 (15) | 0.0401 (4) | |
O2 | 0.6029 (2) | 0.94775 (15) | 0.37756 (16) | 0.0434 (4) | |
N1 | 0.5631 (2) | 0.71538 (17) | 0.42584 (16) | 0.0305 (4) | |
H1 | 0.5828 | 0.6523 | 0.3921 | 0.037* | |
N2 | 0.3308 (2) | 0.75943 (18) | 0.63801 (17) | 0.0304 (4) | |
H2 | 0.3531 | 0.8309 | 0.6511 | 0.036* | |
N3 | 0.6122 (2) | 0.7072 (2) | 0.63210 (18) | 0.0362 (4) | |
H3 | 0.7059 | 0.7349 | 0.5714 | 0.043* | |
C1 | 0.6048 (2) | 0.8506 (2) | 0.3430 (2) | 0.0292 (4) | |
C2 | 0.6555 (3) | 0.8776 (2) | 0.1924 (2) | 0.0331 (5) | |
C3 | 0.1656 (3) | 0.7297 (3) | 0.6568 (2) | 0.0411 (5) | |
H3B | 0.0955 | 0.7694 | 0.7185 | 0.049* | |
H3C | 0.1396 | 0.6294 | 0.6971 | 0.049* | |
C4 | 0.1320 (2) | 0.7852 (2) | 0.5313 (2) | 0.0351 (5) | |
C5 | 0.0480 (3) | 0.6995 (3) | 0.5043 (2) | 0.0449 (6) | |
H5A | 0.0178 | 0.6069 | 0.5614 | 0.054* | |
C6 | 0.0088 (3) | 0.7505 (3) | 0.3932 (3) | 0.0522 (7) | |
H6A | −0.0472 | 0.6921 | 0.3767 | 0.063* | |
C7 | 0.0533 (3) | 0.8878 (3) | 0.3073 (3) | 0.0513 (7) | |
H7A | 0.0264 | 0.9224 | 0.2334 | 0.062* | |
C8 | 0.1382 (3) | 0.9738 (3) | 0.3321 (3) | 0.0502 (6) | |
H8A | 0.1690 | 1.0661 | 0.2742 | 0.060* | |
C9 | 0.1776 (3) | 0.9228 (3) | 0.4432 (2) | 0.0434 (6) | |
H9A | 0.2350 | 0.9813 | 0.4585 | 0.052* | |
C10 | 0.5851 (3) | 0.7012 (2) | 0.7652 (2) | 0.0363 (5) | |
H10A | 0.4726 | 0.6775 | 0.8196 | 0.044* | |
H10B | 0.6130 | 0.7932 | 0.7587 | 0.044* | |
C11 | 0.6781 (2) | 0.5975 (2) | 0.8338 (2) | 0.0302 (4) | |
C12 | 0.7278 (3) | 0.4795 (2) | 0.8055 (2) | 0.0358 (5) | |
H12A | 0.7076 | 0.4642 | 0.7395 | 0.043* | |
C13 | 0.8075 (3) | 0.3841 (2) | 0.8745 (2) | 0.0404 (5) | |
H13A | 0.8404 | 0.3058 | 0.8542 | 0.049* | |
C14 | 0.8382 (3) | 0.4048 (2) | 0.9736 (2) | 0.0423 (5) | |
H14A | 0.8918 | 0.3409 | 1.0195 | 0.051* | |
C15 | 0.7883 (3) | 0.5215 (3) | 1.0035 (2) | 0.0433 (6) | |
H15A | 0.8075 | 0.5355 | 1.0704 | 0.052* | |
C16 | 0.7100 (3) | 0.6174 (2) | 0.9342 (2) | 0.0371 (5) | |
H16A | 0.6780 | 0.6959 | 0.9544 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0426 (3) | 0.0533 (4) | 0.0418 (3) | 0.0090 (3) | −0.0124 (3) | −0.0263 (3) |
Cl2 | 0.0497 (4) | 0.0798 (5) | 0.0460 (4) | 0.0072 (3) | −0.0276 (3) | −0.0271 (3) |
Cl3 | 0.1147 (7) | 0.0268 (3) | 0.0370 (3) | −0.0035 (3) | −0.0111 (4) | −0.0010 (3) |
P1 | 0.0396 (3) | 0.0197 (3) | 0.0240 (3) | 0.0032 (2) | −0.0134 (2) | −0.0091 (2) |
O1 | 0.0658 (11) | 0.0215 (7) | 0.0291 (8) | −0.0007 (7) | −0.0131 (7) | −0.0099 (6) |
O2 | 0.0678 (11) | 0.0236 (8) | 0.0377 (9) | −0.0044 (7) | −0.0141 (8) | −0.0151 (7) |
N1 | 0.0488 (10) | 0.0193 (8) | 0.0246 (9) | 0.0026 (7) | −0.0129 (8) | −0.0107 (7) |
N2 | 0.0368 (9) | 0.0262 (9) | 0.0341 (9) | 0.0033 (7) | −0.0160 (8) | −0.0152 (7) |
N3 | 0.0347 (10) | 0.0469 (11) | 0.0271 (9) | 0.0040 (8) | −0.0122 (8) | −0.0135 (8) |
C1 | 0.0365 (11) | 0.0224 (10) | 0.0286 (10) | 0.0015 (8) | −0.0121 (9) | −0.0098 (8) |
C2 | 0.0457 (12) | 0.0254 (10) | 0.0264 (10) | 0.0015 (9) | −0.0130 (9) | −0.0083 (8) |
C3 | 0.0354 (12) | 0.0466 (13) | 0.0325 (12) | −0.0013 (10) | −0.0095 (9) | −0.0083 (10) |
C4 | 0.0267 (10) | 0.0426 (12) | 0.0342 (11) | 0.0029 (9) | −0.0092 (9) | −0.0147 (10) |
C5 | 0.0396 (12) | 0.0473 (14) | 0.0432 (13) | −0.0063 (10) | −0.0106 (11) | −0.0157 (11) |
C6 | 0.0446 (14) | 0.0704 (18) | 0.0490 (15) | −0.0061 (12) | −0.0166 (12) | −0.0298 (14) |
C7 | 0.0426 (13) | 0.0755 (19) | 0.0417 (14) | 0.0074 (13) | −0.0215 (11) | −0.0230 (13) |
C8 | 0.0509 (15) | 0.0487 (15) | 0.0487 (15) | 0.0046 (12) | −0.0256 (12) | −0.0091 (12) |
C9 | 0.0460 (13) | 0.0406 (13) | 0.0484 (14) | 0.0012 (10) | −0.0255 (11) | −0.0138 (11) |
C10 | 0.0413 (12) | 0.0419 (12) | 0.0343 (12) | 0.0056 (10) | −0.0176 (10) | −0.0205 (10) |
C11 | 0.0308 (10) | 0.0335 (11) | 0.0243 (10) | −0.0047 (8) | −0.0079 (8) | −0.0104 (8) |
C12 | 0.0470 (12) | 0.0352 (11) | 0.0259 (10) | −0.0025 (9) | −0.0126 (9) | −0.0126 (9) |
C13 | 0.0503 (13) | 0.0304 (11) | 0.0333 (12) | 0.0023 (10) | −0.0104 (10) | −0.0096 (9) |
C14 | 0.0462 (13) | 0.0383 (13) | 0.0347 (12) | 0.0011 (10) | −0.0177 (10) | −0.0029 (10) |
C15 | 0.0568 (14) | 0.0461 (13) | 0.0322 (12) | −0.0040 (11) | −0.0239 (11) | −0.0118 (10) |
C16 | 0.0465 (13) | 0.0384 (12) | 0.0323 (11) | 0.0004 (10) | −0.0166 (10) | −0.0174 (10) |
Cl1—C2 | 1.775 (2) | C6—C7 | 1.381 (4) |
Cl2—C2 | 1.775 (2) | C6—H6A | 0.9300 |
Cl3—C2 | 1.763 (2) | C7—C8 | 1.388 (4) |
P1—O1 | 1.4787 (15) | C7—H7A | 0.9300 |
P1—N2 | 1.6282 (17) | C8—C9 | 1.392 (4) |
P1—N3 | 1.6296 (19) | C8—H8A | 0.9300 |
P1—N1 | 1.7055 (17) | C9—H9A | 0.9300 |
O2—C1 | 1.213 (2) | C10—C11 | 1.514 (3) |
N1—C1 | 1.354 (3) | C10—H10A | 0.9700 |
N1—H1 | 0.8600 | C10—H10B | 0.9700 |
N2—C3 | 1.472 (3) | C11—C12 | 1.389 (3) |
N2—H2 | 0.8600 | C11—C16 | 1.404 (3) |
N3—C10 | 1.469 (3) | C12—C13 | 1.389 (3) |
N3—H3 | 0.8600 | C12—H12A | 0.9300 |
C1—C2 | 1.570 (3) | C13—C14 | 1.387 (3) |
C3—C4 | 1.516 (3) | C13—H13A | 0.9300 |
C3—H3B | 0.9700 | C14—C15 | 1.385 (4) |
C3—H3C | 0.9700 | C14—H14A | 0.9300 |
C4—C9 | 1.391 (3) | C15—C16 | 1.384 (3) |
C4—C5 | 1.398 (3) | C15—H15A | 0.9300 |
C5—C6 | 1.391 (4) | C16—H16A | 0.9300 |
C5—H5A | 0.9300 | ||
O1—P1—N2 | 111.32 (10) | C7—C6—C5 | 120.0 (2) |
O1—P1—N3 | 119.71 (10) | C7—C6—H6A | 120.0 |
N2—P1—N3 | 104.09 (9) | C5—C6—H6A | 120.0 |
O1—P1—N1 | 106.89 (8) | C6—C7—C8 | 119.5 (2) |
N2—P1—N1 | 112.12 (9) | C6—C7—H7A | 120.2 |
N3—P1—N1 | 102.49 (9) | C8—C7—H7A | 120.2 |
C1—N1—P1 | 123.22 (14) | C7—C8—C9 | 120.5 (3) |
C1—N1—H1 | 118.4 | C7—C8—H8A | 119.8 |
P1—N1—H1 | 118.4 | C9—C8—H8A | 119.8 |
C3—N2—P1 | 123.37 (15) | C4—C9—C8 | 120.6 (2) |
C3—N2—H2 | 118.3 | C4—C9—H9A | 119.7 |
P1—N2—H2 | 118.3 | C8—C9—H9A | 119.7 |
C10—N3—P1 | 123.29 (15) | N3—C10—C11 | 114.51 (18) |
C10—N3—H3 | 118.4 | N3—C10—H10A | 108.6 |
P1—N3—H3 | 118.4 | C11—C10—H10A | 108.6 |
O2—C1—N1 | 124.99 (19) | N3—C10—H10B | 108.6 |
O2—C1—C2 | 120.05 (18) | C11—C10—H10B | 108.6 |
N1—C1—C2 | 114.96 (17) | H10A—C10—H10B | 107.6 |
C1—C2—Cl3 | 109.68 (14) | C12—C11—C16 | 118.3 (2) |
C1—C2—Cl1 | 109.66 (14) | C12—C11—C10 | 122.64 (18) |
Cl3—C2—Cl1 | 109.28 (12) | C16—C11—C10 | 119.02 (19) |
C1—C2—Cl2 | 109.45 (15) | C11—C12—C13 | 120.7 (2) |
Cl3—C2—Cl2 | 109.43 (12) | C11—C12—H12A | 119.6 |
Cl1—C2—Cl2 | 109.32 (11) | C13—C12—H12A | 119.6 |
N2—C3—C4 | 114.92 (18) | C14—C13—C12 | 120.5 (2) |
N2—C3—H3B | 108.5 | C14—C13—H13A | 119.8 |
C4—C3—H3B | 108.5 | C12—C13—H13A | 119.8 |
N2—C3—H3C | 108.5 | C15—C14—C13 | 119.4 (2) |
C4—C3—H3C | 108.5 | C15—C14—H14A | 120.3 |
H3B—C3—H3C | 107.5 | C13—C14—H14A | 120.3 |
C9—C4—C5 | 118.2 (2) | C16—C15—C14 | 120.3 (2) |
C9—C4—C3 | 121.5 (2) | C16—C15—H15A | 119.8 |
C5—C4—C3 | 120.2 (2) | C14—C15—H15A | 119.8 |
C6—C5—C4 | 121.1 (2) | C15—C16—C11 | 120.8 (2) |
C6—C5—H5A | 119.4 | C15—C16—H16A | 119.6 |
C4—C5—H5A | 119.4 | C11—C16—H16A | 119.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.95 | 2.790 (2) | 167 |
N2—H2···O2ii | 0.86 | 2.23 | 3.055 (2) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H17Cl3N3O2P |
Mr | 420.65 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.116, 10.3586 (2), 11.7713 (2) |
α, β, γ (°) | 68.320 (1), 67.762 (1), 86.469 (1) |
V (Å3) | 952.13 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.58 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.893, 0.893 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4976, 3286, 3069 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.103, 1.05 |
No. of reflections | 3286 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.41 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.95 | 2.790 (2) | 166.6 |
N2—H2···O2ii | 0.86 | 2.23 | 3.055 (2) | 160.7 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
The author thanks Professor Joachim Sieler for his help with the data collection.
References
Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997b). Z. Naturforsch. Teil B, 52, 1331–1336. CAS Google Scholar
Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Macalik, L. (1996). Acta Phys. Pol. 90, 455–460. CAS Google Scholar
Amirkhanov, V. M., Ovchynnikov, V. A., Turov, A. V. & Skopenko, V. V. (1997a). Zh. Obshch. Khim. 23, 139–142. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gubina, K. E., Maslov, O. A., Trush, E. A., Trush, V. A., Ovchynnikov, V. A., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 2661–2666. Web of Science CSD CrossRef CAS Google Scholar
Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 28, 2247–2250. Google Scholar
Ovchynnikov, V. A., Amirkhanov, V. M., Kapshuk, A. A., Sliva, T. Yu., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 836–840. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1982). Dokl. Akad. Nauk SSSR, 266, 1391–1395. CAS Google Scholar
Safin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501–504. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skopenko, V. V., Amirkhanov, V. M., Ovchinnikov, V. A. & Turov, A. V. (1996). Russ. J. Inorg. Chem. 41, 611–616. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Znovjak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbacylamidophosphates of the general formula RC(O)NHP(O)R2 are potential new ligands for metal ions (Skopenko et al., 1996; Ovchynnikov et al., 1998; Znovjak et al., 2009; Gubina et al., 2009; Amirkhanov et al., 1997a; Gowda et al., 2010; Safin et al., 2009). Many of these compounds also show biological activity, including anticancer activity (Amirkhanov et al., 1996; Rebrova et al., 1982). This work reports the structure of N,N'-dibenzyl-N"-trichloroacetylphosphortriamide (HDBA).
In the title compound, the phosphorus atom has a slightly distorted tetrahedral configuration (Fig.1). The average values of the angles OPN in the molecule are larger than tetrahedral, while the N – P – N angles are smaller, with the exception O1 – P1– N1 106.85 (7) ° and N(1) – P1– N(2) 112.32 (7) °, which can be rationalized by the influence of the hydrogen bonds. The environment of the nitrogen atoms is practically planar with only slight deviations from the mean planes.
The bond length P ═O (1.479 (1) Å is longer than in the compounds with alkyl amide substituents (the range of bond length d(P ═O) 1.475 - 1.478 Å) (Amirkhanov et al., 1997b). In the structure the carbonyl and phosphoryl groups are anti to each other as in most carbacylamidophosphates.
The fragment including the atoms O(2), N(1), C(1), C(2) is virtually planar, with only slight deviations from the mean plane. The phosphorus and oxygen atom of the phosphoryl group do not fit into this plane. Close enough to this plane lie the hydrogen H(1 N) and one of the chlorine atoms Cl(3). The carbonyl oxygen-phosphorus distance 3.023 (1) Å is considerably shorter than the sum of Van der Waals radii (3.3 Å).
Molecules are linked by hydrogen bonds of the phosphorylic oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules. The N—H···O intermolecular hydrogen bonds pack the molecules into infinite chains parallel to the b axis (Table 1, Fig.2).