metal-organic compounds
Pentacarbonyl(imidazolidine-2-thione-κS)tungsten(0)
aDépartement de Chimie, Faculté des Sciences Exactes, Université Mentouri Constantine, Route de Ain El Bey, Constantine, Algeria, bDépartement de Chimie, Faculté des Sciences Exactes, Université Larbi Ben M'Hidi, Route de Constantine, Oum El Bouaghi, Algeria, cDépartement de Chimie Industrielle, Faculté des Sciences de l'Ingénieur, Université Mentouri Constantine, Campus Chaab Erssas, Constantine, Algeria, and dEquipe Organométallique et Matériaux Moléculaires, UMR6226 CNRS-Université de Rennes 1, Avenue du Général Leclerc, 35042, Rennes, France
*Correspondence e-mail: bouzidi_henia@yahoo.fr
In the title complex, [W(C3H6N2S)(CO)5], the W atom displays an octahedral coordination with five CO molecules and an imidazolidine-2-thione molecule. The W(CO)5 unit is coordinated by the cyclic thione ligand through a W—S The W—S and C—S bond lengths are 2.599 (2) and 1.711 (9) Å, respectively. This last distance is significantly longer than that of free cyclic thioureas. The geometry of the title compound suggests sp3-hybridization of the S atom caused by the greatly polarized linkage W—S—C bond angle, which is close to tetrahedral [109.50 (3)°]. In the crystal packing, N—H⋯O and N—H⋯S hydrogen-bonding interactions stabilize the structure and build up chains parallel to [101].
Related literature
For the properties of imidazolinethiones or cyclic thioureas, see: Gok & Çetinkaya (2004); Kuhn & Kratz (1993); Reglinski et al. (1999); Crossley et al. (2006); Saito et al. (2007); Raper et al. (1983). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995); Beheshti et al. (2007). For related structures, see: Kuhn et al. (1998); Mak et al. (1985); Valdés-Martinez et al. (1988, 1996); Pasynsky et al. (2007); Darensbourg et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).
Supporting information
https://doi.org/10.1107/S1600536810016314/dn2555sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016314/dn2555Isup2.hkl
A solution of W(CO)6 (527 mg, 1.5 mmol) and Imidazolidine-2-thione (153 mg, 1.5 mmol) in 40 ml of dry THF was irradiated for 2 h with vigorous stirring. The excess of W(CO)6 was mouved by filtration and the solvent was evaporated under reduced pressure. The residue was recrystallised from THF/hexane (1:5 ratio). Bright yellow crystals were washed three times with portions of hexane, and dried under vacuum. Yield:(34%).
H atoms were positined geometrically, using a riding model with C—H = 0.96 Å (Uiso(H) = 1.5) (including
about C—C and C—N bond) for methyl groups and with C—H = 0.93 and 0.97 Å (1.2 for aromatic and methylene groups) times Ueq(C).Imidazolinethiones or cyclic thioureas are an important classe of compounds with a wide variety of applications (Gok & çetinkaya, 2004; Kuhn & Kratz, 1993). The chemical interests of these cyclic thioureas lie in their face capping character, in their structural analogy with thiolated
and in their application to enzyme models (Reglinski et al., 1999; Crossley et al., 2006; Saito et al., 2007). The diverse properties of the cyclic thioureas have been attributed to the coordination ability of the heterocyclic RN—C(S)—NR' thioamide group, as a monodentate ligand, to both metallic and non-metallic elements, leading to stable electron donor–acceptor complexes (Raper et al., 1983). Our research has been focused for some time on coordination compounds of sulfur containing ligands with carbonyl metals. The structure of the Imidazolidine-2-Thione-W(CO)5 complex (I), was carried out and results are presented here.The tungsten atom displays octahedral geometry with five CO and the Imidazolidine-2-Thione molecules (Fig. 1). The bond distances and angles in (I) are within normal range and are comparable to the corresponding values observed in similar structures (Saito et al., 2007; Mak et al., 1985; Valdés-Martinez et al., 1988; Valdés-Martinez et al., 1996; Pasynsky et al., 2007; Darensbourg et al., 1999). Such geometry of (I) suggests sp3
of the sulfur atom caused by the greatly polarized M—S—C linkage. Indeed, the W—S—C bond angles is 109.50 (3)° and is close to a tetrahedral angle. As expected, the C=S bond is elongated and the C(6)—S(1) interatomic distance is 1.711 (9) Å and it is significantly longer than that of free cyclic thiourea, 1.690 (2) Å (Mak et al., 1985; Kuhn et al., 1998). The bond length between the metal and trans-carbonyl carbon atoms is 1.970 (10) Å. This is substantially shorter than the metal cis carbonyl bonds. The average of the separations between the metal and cis carbonyls is 2.049 Å.Intermolecular N—H···O hydrogen bonds generate R22(14) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) resulting in the formation of a pseudo dimer. Further N-H···O [R22(14)] and N—H···S [R22(8)] interactions link these dimers forming chains parallel to the [1 0 1] direction (Table 1, Fig.2). The N-H···S hydrogen bond distance is in the same range of there observed in the heterocyclic thione complexes (Beheshti et al., 2007).
For the properties of imidazolinethiones or cyclic thioureas, see: Gok & Çetinkaya (2004); Kuhn & Kratz (1993); Reglinski et al. (1999); Crossley et al. (2006); Saito et al. (2007); Raper et al. (1983). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995); Beheshti et al. (2007). For related structures, see: Kuhn et al. (1998); Mak et al., 1985; Valdés-Martinez et al. (1988, 1996); Pasynsky et al. (2007); Darensbourg et al. (1999).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).[W(C3H6N2S)(CO)5] | Z = 2 |
Mr = 426.06 | F(000) = 396 |
Triclinic, P1 | Dx = 2.365 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.652 (1) Å | Cell parameters from 9229 reflections |
b = 7.8120 (12) Å | θ = 1.0–27.1° |
c = 11.6240 (15) Å | µ = 9.84 mm−1 |
α = 84.071 (5)° | T = 293 K |
β = 85.042 (6)° | Prism, yellow |
γ = 87.704 (7)° | 0.08 × 0.06 × 0.04 mm |
V = 598.27 (15) Å3 |
Bruker SMART 1K CCD area-detector diffractometer | 2623 independent reflections |
Radiation source: fine-focus sealed tube | 2324 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
Detector resolution: 8.192 pixels mm-1 | θmax = 27.2°, θmin = 3.0° |
ω scan | h = −8→8 |
Absorption correction: part of the (cubic fit to sinθ/λ, 24 parameters; Parkin et al., 1995) | model (ΔF) k = −9→10 |
Tmin = 0.526, Tmax = 0.867 | l = 0→14 |
2623 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0555P)2 + 0.8559P] where P = (Fo2 + 2Fc2)/3 |
2623 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 1.44 e Å−3 |
0 restraints | Δρmin = −1.58 e Å−3 |
[W(C3H6N2S)(CO)5] | γ = 87.704 (7)° |
Mr = 426.06 | V = 598.27 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.652 (1) Å | Mo Kα radiation |
b = 7.8120 (12) Å | µ = 9.84 mm−1 |
c = 11.6240 (15) Å | T = 293 K |
α = 84.071 (5)° | 0.08 × 0.06 × 0.04 mm |
β = 85.042 (6)° |
Bruker SMART 1K CCD area-detector diffractometer | 2623 independent reflections |
Absorption correction: part of the refinement model (ΔF) (cubic fit to sinθ/λ, 24 parameters; Parkin et al., 1995) | 2324 reflections with I > 2σ(I) |
Tmin = 0.526, Tmax = 0.867 | Rint = 0.000 |
2623 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.10 | Δρmax = 1.44 e Å−3 |
2623 reflections | Δρmin = −1.58 e Å−3 |
154 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W1 | 0.04631 (4) | 0.22504 (4) | 0.75225 (2) | 0.05469 (14) | |
S1 | 0.1747 (3) | 0.4882 (3) | 0.61423 (18) | 0.0631 (5) | |
O1 | −0.0857 (14) | −0.1215 (10) | 0.8903 (7) | 0.093 (2) | |
O2 | 0.4366 (12) | 0.1909 (13) | 0.8942 (7) | 0.097 (2) | |
O3 | −0.3638 (10) | 0.2376 (10) | 0.6320 (6) | 0.0757 (17) | |
O4 | 0.2472 (17) | 0.0053 (12) | 0.5555 (8) | 0.106 (3) | |
O5 | −0.1845 (13) | 0.4202 (12) | 0.9529 (6) | 0.088 (2) | |
N1 | 0.3318 (15) | 0.6250 (13) | 0.7912 (7) | 0.088 (3) | |
H1 | 0.2360 | 0.5882 | 0.8409 | 0.106* | |
N2 | 0.5082 (13) | 0.6600 (11) | 0.6281 (7) | 0.075 (2) | |
H2 | 0.5434 | 0.6543 | 0.5556 | 0.090* | |
C1 | −0.0386 (15) | 0.0069 (13) | 0.8400 (8) | 0.071 (2) | |
C2 | 0.3013 (13) | 0.2079 (12) | 0.8406 (7) | 0.0634 (19) | |
C3 | −0.2170 (11) | 0.2399 (10) | 0.6719 (7) | 0.0533 (15) | |
C4 | 0.1775 (14) | 0.0833 (12) | 0.6262 (8) | 0.0626 (19) | |
C5 | −0.0988 (13) | 0.3583 (12) | 0.8803 (8) | 0.0624 (19) | |
C6 | 0.3454 (12) | 0.5942 (10) | 0.6806 (7) | 0.0587 (17) | |
C7 | 0.4921 (17) | 0.7255 (14) | 0.8196 (9) | 0.077 (2) | |
H3 | 0.5645 | 0.6660 | 0.8816 | 0.093* | |
H4 | 0.4420 | 0.8365 | 0.8422 | 0.093* | |
C8 | 0.6264 (17) | 0.7454 (15) | 0.7050 (9) | 0.079 (3) | |
H5 | 0.6447 | 0.8656 | 0.6773 | 0.094* | |
H6 | 0.7574 | 0.6884 | 0.7130 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.0489 (2) | 0.0648 (2) | 0.0505 (2) | −0.00673 (13) | −0.00158 (12) | −0.00630 (13) |
S1 | 0.0636 (11) | 0.0727 (12) | 0.0541 (10) | −0.0159 (9) | −0.0067 (8) | −0.0045 (9) |
O1 | 0.103 (6) | 0.088 (5) | 0.085 (5) | −0.032 (4) | −0.016 (4) | 0.016 (4) |
O2 | 0.069 (4) | 0.141 (7) | 0.085 (5) | 0.002 (4) | −0.029 (4) | −0.010 (5) |
O3 | 0.057 (3) | 0.099 (5) | 0.074 (4) | −0.006 (3) | −0.011 (3) | −0.012 (3) |
O4 | 0.126 (7) | 0.106 (6) | 0.086 (5) | 0.018 (5) | 0.010 (5) | −0.040 (5) |
O5 | 0.089 (5) | 0.109 (5) | 0.066 (4) | 0.010 (4) | 0.010 (4) | −0.033 (4) |
N1 | 0.088 (6) | 0.119 (7) | 0.063 (4) | −0.038 (5) | 0.005 (4) | −0.024 (4) |
N2 | 0.078 (5) | 0.090 (5) | 0.059 (4) | −0.030 (4) | 0.002 (4) | −0.009 (4) |
C1 | 0.070 (5) | 0.080 (6) | 0.068 (5) | −0.013 (4) | −0.020 (4) | −0.010 (4) |
C2 | 0.057 (4) | 0.079 (5) | 0.054 (4) | −0.006 (4) | 0.001 (3) | −0.006 (4) |
C3 | 0.042 (3) | 0.064 (4) | 0.055 (4) | −0.006 (3) | −0.004 (3) | −0.007 (3) |
C4 | 0.059 (4) | 0.070 (5) | 0.060 (4) | −0.006 (4) | −0.004 (4) | −0.009 (4) |
C5 | 0.054 (4) | 0.077 (5) | 0.057 (4) | −0.012 (4) | −0.012 (3) | −0.001 (4) |
C6 | 0.061 (4) | 0.059 (4) | 0.056 (4) | −0.004 (3) | −0.002 (3) | −0.006 (3) |
C7 | 0.080 (6) | 0.079 (6) | 0.078 (6) | −0.008 (5) | −0.012 (5) | −0.022 (5) |
C8 | 0.077 (6) | 0.085 (6) | 0.077 (6) | −0.031 (5) | −0.003 (5) | −0.012 (5) |
W1—C1 | 1.970 (10) | N1—C6 | 1.327 (11) |
W1—C4 | 2.042 (9) | N1—C7 | 1.430 (13) |
W1—C3 | 2.049 (7) | N1—H1 | 0.8598 |
W1—C2 | 2.050 (9) | N2—C6 | 1.294 (11) |
W1—C5 | 2.055 (10) | N2—C8 | 1.465 (12) |
W1—S1 | 2.599 (2) | N2—H2 | 0.8601 |
S1—C6 | 1.711 (9) | C7—C8 | 1.536 (17) |
O1—C1 | 1.148 (11) | C7—H3 | 0.9700 |
O2—C2 | 1.134 (12) | C7—H4 | 0.9700 |
O3—C3 | 1.118 (10) | C8—H5 | 0.9700 |
O4—C4 | 1.130 (12) | C8—H6 | 0.9700 |
O5—C5 | 1.118 (12) | ||
C1—W1—C4 | 87.8 (4) | C8—N2—H2 | 123.5 |
C1—W1—C3 | 89.7 (3) | O1—C1—W1 | 178.9 (10) |
C4—W1—C3 | 89.5 (3) | O2—C2—W1 | 175.7 (9) |
C1—W1—C2 | 88.5 (4) | O3—C3—W1 | 175.3 (8) |
C4—W1—C2 | 92.6 (4) | O4—C4—W1 | 178.8 (9) |
C3—W1—C2 | 177.1 (3) | O5—C5—W1 | 175.0 (9) |
C1—W1—C5 | 89.7 (4) | N2—C6—N1 | 109.4 (8) |
C4—W1—C5 | 176.8 (3) | N2—C6—S1 | 124.2 (7) |
C3—W1—C5 | 88.5 (3) | N1—C6—S1 | 126.3 (7) |
C2—W1—C5 | 89.3 (3) | N1—C7—C8 | 102.3 (8) |
C1—W1—S1 | 172.4 (3) | N1—C7—H3 | 111.3 |
C4—W1—S1 | 84.6 (3) | C8—C7—H3 | 111.3 |
C3—W1—S1 | 89.4 (2) | N1—C7—H4 | 111.3 |
C2—W1—S1 | 92.8 (3) | C8—C7—H4 | 111.3 |
C5—W1—S1 | 97.8 (3) | H3—C7—H4 | 109.2 |
C6—S1—W1 | 109.5 (3) | N2—C8—C7 | 101.7 (8) |
C6—N1—C7 | 113.4 (8) | N2—C8—H5 | 111.4 |
C6—N1—H1 | 123.3 | C7—C8—H5 | 111.4 |
C7—N1—H1 | 123.3 | N2—C8—H6 | 111.4 |
C6—N2—C8 | 113.0 (8) | C7—C8—H6 | 111.4 |
C6—N2—H2 | 123.5 | H5—C8—H6 | 109.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5i | 0.86 | 2.39 | 3.039 (11) | 133 |
N2—H2···S1ii | 0.86 | 2.88 | 3.630 (9) | 147 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [W(C3H6N2S)(CO)5] |
Mr | 426.06 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.652 (1), 7.8120 (12), 11.6240 (15) |
α, β, γ (°) | 84.071 (5), 85.042 (6), 87.704 (7) |
V (Å3) | 598.27 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.84 |
Crystal size (mm) | 0.08 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD area-detector |
Absorption correction | Part of the refinement model (ΔF) (cubic fit to sinθ/λ, 24 parameters; Parkin et al., 1995) |
Tmin, Tmax | 0.526, 0.867 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2623, 2623, 2324 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.643 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.10 |
No. of reflections | 2623 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.44, −1.58 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5i | 0.86 | 2.39 | 3.039 (11) | 133.2 |
N2—H2···S1ii | 0.86 | 2.88 | 3.630 (9) | 146.6 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Beheshti, A., Clegg, W., Dale, S. H., Hyvadi, R. & Hussaini, F. (2007). Dalton Trans. pp. 2949–2956. Web of Science CSD CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Crossley, I. R., Hill, A. F., Humphrey, E. R. & Smith, M. K. (2006). Organometallics, 25, 2242–2247. Web of Science CSD CrossRef CAS Google Scholar
Darensbourg, D. J., Frost, B. J., Derecskei-Kovacs, A. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 4715–4723. Web of Science CSD CrossRef PubMed CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gok, Y. & Çetinkaya, E. (2004). Turk. J. Chem. 28, 157–162. Google Scholar
Kuhn, N., Fahl, J., Fawzi, R. & Steimann, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 434. Google Scholar
Kuhn, N. & Kratz, T. (1993). Synthesis, pp. 561–562. CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mak, T. C. W., Jasim, K. S. & Chieh, C. (1985). Inorg. Chim. Acta, 99, 31–35. CSD CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Pasynsky, A.A., Il'in, A.N., Shapovalov, S.S., Torubayev, Yu.V. (2007). Russ. J. Inorg. Chem. 52, 875–878. Google Scholar
Raper, E. S., Creighton, J. R., Oughtred, R. E. & Nowell, I. W. (1983). Acta Cryst. B39, 355–360. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Reglinski, J., Garner, M., Cassidy, I. D., Slavin, P. A., Spicer, M. D. & Armstrong, D. R. (1999). J. Chem. Soc. Dalton Trans. pp. 2119–2126. Web of Science CSD CrossRef Google Scholar
Saito, K., Kawno, Y. & Shimoi, M. (2007). Eur. J. Inorg. Chem., pp. 3195–3200. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valdés-Martinez, J., Enriquez, A., Cabrera, A. & Espinosa-Perez, G. (1996). Polyhedron, 15, 897–901. Google Scholar
Valdés-Martinez, J., Sierra-Romero, A., Alvarez-Toledano, C., Toscano, R. A. & García-Tapia, H. (1988). J. Organomet. Chem. 352, 321–326. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazolinethiones or cyclic thioureas are an important classe of compounds with a wide variety of applications (Gok & çetinkaya, 2004; Kuhn & Kratz, 1993). The chemical interests of these cyclic thioureas lie in their face capping character, in their structural analogy with thiolated nucleosides and in their application to enzyme models (Reglinski et al., 1999; Crossley et al., 2006; Saito et al., 2007). The diverse properties of the cyclic thioureas have been attributed to the coordination ability of the heterocyclic RN—C(S)—NR' thioamide group, as a monodentate ligand, to both metallic and non-metallic elements, leading to stable electron donor–acceptor complexes (Raper et al., 1983). Our research has been focused for some time on coordination compounds of sulfur containing ligands with carbonyl metals. The structure of the Imidazolidine-2-Thione-W(CO)5 complex (I), was carried out and results are presented here.
The tungsten atom displays octahedral geometry with five CO and the Imidazolidine-2-Thione molecules (Fig. 1). The bond distances and angles in (I) are within normal range and are comparable to the corresponding values observed in similar structures (Saito et al., 2007; Mak et al., 1985; Valdés-Martinez et al., 1988; Valdés-Martinez et al., 1996; Pasynsky et al., 2007; Darensbourg et al., 1999). Such geometry of (I) suggests sp3 hybridization of the sulfur atom caused by the greatly polarized M—S—C linkage. Indeed, the W—S—C bond angles is 109.50 (3)° and is close to a tetrahedral angle. As expected, the C=S bond is elongated and the C(6)—S(1) interatomic distance is 1.711 (9) Å and it is significantly longer than that of free cyclic thiourea, 1.690 (2) Å (Mak et al., 1985; Kuhn et al., 1998). The bond length between the metal and trans-carbonyl carbon atoms is 1.970 (10) Å. This is substantially shorter than the metal cis carbonyl bonds. The average of the separations between the metal and cis carbonyls is 2.049 Å.
Intermolecular N—H···O hydrogen bonds generate R22(14) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) resulting in the formation of a pseudo dimer. Further N-H···O [R22(14)] and N—H···S [R22(8)] interactions link these dimers forming chains parallel to the [1 0 1] direction (Table 1, Fig.2). The N-H···S hydrogen bond distance is in the same range of there observed in the heterocyclic thione complexes (Beheshti et al., 2007).