organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­benzene­carbo­thio­amide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drsa54@yahoo.com

(Received 14 April 2010; accepted 29 April 2010; online 8 May 2010)

In the title mol­ecule, C8H9NS, the mean plane of the carbothio­amide group is twisted slightly with respect to the mean plane of the benzene ring, making a dihedral angle of 17.03 (10)°. The crystal structure is stabilized by inter­molecular N—H⋯S hydrogen bonds, resulting in the formation of eight-membered rings lying about inversion centers and representing R22(8) and R42(8) motifs. Futhermore, these hydrogen bonds build up chains parallel to the b axis.

Related literature

For the use of thio­amides as inter­mediates in the synthesis of various heterocyclic compounds, see: Zahid et al. (2009[Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85-93.]). For the uses of thio­amides, see: Lebana et al. (2008[Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008-1016.]). For the biological activity of thio­amides, see: Jagodzinski (2003[Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.]); Klimesova et al. (1999[Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem. 34, 433-440.]). For related structures, see: Khan et al. (2009a[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128.],b[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333.],c[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446.]); Jian et al. (2006[Jian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63-67.]); Ali et al. (2010[Ali, S., Hameed, S., Luqman, A., Akhtar, T. & Parvez, M. (2010). Acta Cryst. E66, o1272.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NS

  • Mr = 151.22

  • Monoclinic, P 21 /c

  • a = 9.7341 (5) Å

  • b = 5.8391 (2) Å

  • c = 13.9055 (6) Å

  • β = 104.946 (3)°

  • V = 763.63 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 123 K

  • 0.10 × 0.06 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.967, Tmax = 0.980

  • 2741 measured reflections

  • 1482 independent reflections

  • 1399 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.06

  • 1482 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.88 2.56 3.4178 (14) 166
N1—H1A⋯S1ii 0.88 2.75 3.3179 (15) 124
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thioamides are not only used as intermediates in the synthesis of various heterocyclic compounds (Zahid et al., 2009), they are important biologically active agents (Jagodzinski, 2003; Klimesova et al., 1999). In addition, they are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c; Ali et al., 2010), we have synthesized 4-methylbenzenecarbothioamide, (I). In this article we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the bond distances and angles agree with the corresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006; Ali et al., 2010). In the title compound, the mean-plane of the carbothioamide group (S1/N1/C7) is slightly twisted with respect to the mean-plane of the phenyl ring (C1–C6), making a dihedral angle of 17.03 (10)°.

The structure is stabilized by intermolecular N—H···S hydrogen bonds resulting in the formation of eight membered rings lying about inversion centers (Tab. 1 and Fig. 2). In the graph set notation (Etter et al., 1990; Bernstein et al., 1994) the hydrogen bonded rings may be best described as representing R22(8) and R42(8) motifs.Futhermore, these hydrogen bonds build up chains parallel to the b axis.

Related literature top

For the synthesis and background to the use of thioamides as intermediates in the synthesis of various heterocyclic compounds, see: Zahid et al. (2009). For the uses of thioamide, see: Lebana et al. (2008). For the biological activity of thioamides, see: Jagodzinski (2003); Klimesova et al. (1999). For related structures, see: Khan et al. (2009a,b,c); Jian et al. (2006); Ali et al. (2010). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1994).

Experimental top

4-Methylbenzonitrile (13.2 mmol) was added to a slurry of magnesium cholride hexahydrate (13.2 mmol) and sodium hydrogen sulphide hydrate (70%, 26.4 mmol) in dimethylformamide (35 ml) and the reaction mixture was stirred at room temperature for 4 h. The reaction mixture was poured into water (100 ml) and the resulting precipitates were collected by filtration. The product obtained was resuspended in 1 N HCl (50 ml), stirred for another 25 min, the precipitated solid filtered and washed with water. Recrystallization of the product from chloroform afforded the crystals of the title compound suitable for X-ray analysis.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2/1.5Ueq(N/C). The final difference map was essentially featurless.

Structure description top

Thioamides are not only used as intermediates in the synthesis of various heterocyclic compounds (Zahid et al., 2009), they are important biologically active agents (Jagodzinski, 2003; Klimesova et al., 1999). In addition, they are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c; Ali et al., 2010), we have synthesized 4-methylbenzenecarbothioamide, (I). In this article we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the bond distances and angles agree with the corresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006; Ali et al., 2010). In the title compound, the mean-plane of the carbothioamide group (S1/N1/C7) is slightly twisted with respect to the mean-plane of the phenyl ring (C1–C6), making a dihedral angle of 17.03 (10)°.

The structure is stabilized by intermolecular N—H···S hydrogen bonds resulting in the formation of eight membered rings lying about inversion centers (Tab. 1 and Fig. 2). In the graph set notation (Etter et al., 1990; Bernstein et al., 1994) the hydrogen bonded rings may be best described as representing R22(8) and R42(8) motifs.Futhermore, these hydrogen bonds build up chains parallel to the b axis.

For the synthesis and background to the use of thioamides as intermediates in the synthesis of various heterocyclic compounds, see: Zahid et al. (2009). For the uses of thioamide, see: Lebana et al. (2008). For the biological activity of thioamides, see: Jagodzinski (2003); Klimesova et al. (1999). For related structures, see: Khan et al. (2009a,b,c); Jian et al. (2006); Ali et al. (2010). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1994).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitrary radii.
[Figure 2] Fig. 2. A part of the unit cell showing the N-H···S hydrogen bonds as dashed lines. H-atoms not involved in H-bonds have been excluded for clarity.
4-Methylbenzenecarbothioamide top
Crystal data top
C8H9NSF(000) = 320
Mr = 151.22Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1473 reflections
a = 9.7341 (5) Åθ = 1.0–26.0°
b = 5.8391 (2) ŵ = 0.34 mm1
c = 13.9055 (6) ÅT = 123 K
β = 104.946 (3)°Block, yellow
V = 763.63 (6) Å30.10 × 0.06 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1482 independent reflections
Radiation source: fine-focus sealed tube1399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1111
Tmin = 0.967, Tmax = 0.980k = 77
2741 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.089H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.5912P]
where P = (Fo2 + 2Fc2)/3
1482 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H9NSV = 763.63 (6) Å3
Mr = 151.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7341 (5) ŵ = 0.34 mm1
b = 5.8391 (2) ÅT = 123 K
c = 13.9055 (6) Å0.10 × 0.06 × 0.06 mm
β = 104.946 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1482 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1399 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.980Rint = 0.025
2741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
1482 reflectionsΔρmin = 0.24 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15464 (4)0.79266 (7)0.03136 (3)0.02316 (16)
N10.19369 (15)0.3538 (2)0.06514 (10)0.0219 (3)
H1A0.24630.23130.08440.026*
H1B0.10070.34100.04400.026*
C10.41221 (16)0.5673 (3)0.10461 (11)0.0168 (3)
C20.48580 (17)0.7599 (3)0.08529 (11)0.0189 (3)
H20.43440.88490.04960.023*
C30.63277 (18)0.7714 (3)0.11743 (12)0.0207 (4)
H30.68050.90450.10370.025*
C40.71154 (17)0.5908 (3)0.16965 (11)0.0203 (4)
C50.63795 (18)0.3995 (3)0.19021 (11)0.0211 (4)
H50.68970.27530.22640.025*
C60.49105 (17)0.3872 (3)0.15894 (11)0.0196 (3)
H60.44330.25570.17440.023*
C70.25443 (17)0.5571 (3)0.06803 (11)0.0177 (3)
C80.87114 (18)0.6011 (3)0.20278 (13)0.0280 (4)
H8A0.90330.75320.18830.042*
H8B0.91140.48480.16710.042*
H8C0.90280.57190.27450.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0174 (2)0.0146 (2)0.0353 (3)0.00051 (14)0.00272 (18)0.00029 (16)
N10.0160 (7)0.0155 (7)0.0332 (8)0.0010 (6)0.0045 (6)0.0019 (6)
C10.0192 (8)0.0154 (8)0.0163 (7)0.0005 (6)0.0055 (6)0.0017 (6)
C20.0205 (8)0.0156 (7)0.0204 (7)0.0009 (6)0.0050 (6)0.0019 (6)
C30.0215 (8)0.0192 (8)0.0221 (8)0.0032 (6)0.0066 (6)0.0004 (6)
C40.0193 (8)0.0229 (8)0.0182 (7)0.0001 (6)0.0041 (6)0.0033 (6)
C50.0240 (8)0.0203 (8)0.0180 (7)0.0042 (6)0.0037 (6)0.0024 (6)
C60.0234 (8)0.0158 (8)0.0202 (7)0.0018 (6)0.0068 (6)0.0009 (6)
C70.0204 (8)0.0161 (8)0.0170 (7)0.0007 (6)0.0057 (6)0.0007 (6)
C80.0194 (9)0.0328 (10)0.0299 (9)0.0000 (7)0.0026 (7)0.0007 (8)
Geometric parameters (Å, º) top
S1—C71.6852 (16)C3—H30.9500
N1—C71.322 (2)C4—C51.396 (2)
N1—H1A0.8800C4—C81.503 (2)
N1—H1B0.8800C5—C61.385 (2)
C1—C21.396 (2)C5—H50.9500
C1—C61.403 (2)C6—H60.9500
C1—C71.489 (2)C8—H8A0.9800
C2—C31.386 (2)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.393 (2)
C7—N1—H1A120.0C6—C5—C4121.35 (15)
C7—N1—H1B120.0C6—C5—H5119.3
H1A—N1—H1B120.0C4—C5—H5119.3
C2—C1—C6118.11 (15)C5—C6—C1120.48 (15)
C2—C1—C7120.12 (14)C5—C6—H6119.8
C6—C1—C7121.77 (14)C1—C6—H6119.8
C3—C2—C1121.02 (15)N1—C7—C1117.39 (14)
C3—C2—H2119.5N1—C7—S1120.35 (12)
C1—C2—H2119.5C1—C7—S1122.26 (12)
C2—C3—C4120.99 (15)C4—C8—H8A109.5
C2—C3—H3119.5C4—C8—H8B109.5
C4—C3—H3119.5H8A—C8—H8B109.5
C3—C4—C5118.04 (15)C4—C8—H8C109.5
C3—C4—C8121.05 (15)H8A—C8—H8C109.5
C5—C4—C8120.91 (15)H8B—C8—H8C109.5
C6—C1—C2—C31.0 (2)C4—C5—C6—C10.6 (2)
C7—C1—C2—C3179.07 (14)C2—C1—C6—C51.4 (2)
C1—C2—C3—C40.3 (2)C7—C1—C6—C5178.65 (14)
C2—C3—C4—C51.1 (2)C2—C1—C7—N1162.91 (15)
C2—C3—C4—C8178.76 (15)C6—C1—C7—N117.2 (2)
C3—C4—C5—C60.7 (2)C2—C1—C7—S117.1 (2)
C8—C4—C5—C6179.18 (15)C6—C1—C7—S1162.78 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.882.563.4178 (14)166
N1—H1A···S1ii0.882.753.3179 (15)124
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H9NS
Mr151.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.7341 (5), 5.8391 (2), 13.9055 (6)
β (°) 104.946 (3)
V3)763.63 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.10 × 0.06 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.967, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
2741, 1482, 1399
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.06
No. of reflections1482
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.882.563.4178 (14)166
N1—H1A···S1ii0.882.753.3179 (15)124
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

References

First citationAli, S., Hameed, S., Luqman, A., Akhtar, T. & Parvez, M. (2010). Acta Cryst. E66, o1272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJagodzinski, T. S. (2003). Chem. Rev. 103, 197–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem. 34, 433–440.  CrossRef CAS Google Scholar
First citationLebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85–93.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds