metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(di­phenyl­phosphino­­oxy)phen­yl]bis­­(tri­methyl­phosphine)cobalt(I)

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 18 April 2010; accepted 4 May 2010; online 12 May 2010)

The title compound, [Co(C30H23O2P2)(C3H9P)2], was synthesized by the addition of a Co(PMe3)4 solution to (PPh2O)2C6H4. The CoI atom displays a trigonal-bipyramidal geometry with the two P atoms of the `PCP' pincer ligand and the P atom of one of the trimethyl phosphine ligands forming the basal plane, whereas the metalated C atom and the P atom of the second phospine ligand occupy the apical sites. The Co—C distance is 1.961 (2) Å and the C—Co—P angle is 171.96 (6)°.

Related literature

For uses of `PCP' pincer complexes, see: Boom & Milstein (2003[Boom, M. & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.]); Bedford et al. (2006[Bedford, R. B., Betham, M., Blake, M. E., Coles, S. J., Draper, S. M., Husthouse, M. B. & Scully, P. N. (2006). Inorg. Chim. Acta, 359, 1870-1878.]); Gomez-Benitez et al. (2006[Gomez-Benitez, V., Baldovino-Pantaleon, O., Herrera-Alvarez, C., Toscano, R. A. & Morales-Morales, D. (2006). Tetrahedron Lett. 47, 5059-5062.]); Aydin et al. (2007[Aydin, J., Kumar, K. S., Erilsson, L. & Szabo, K. J. (2007). Adv. Synth. Catal. 349, 2585-2594.]); Kimura & Uozumi (2006[Kimura, T. & Uozumi, Y. (2006). Organometallics, 25, 4883-4887.]); Xu et al. (2009[Xu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090-6095.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C30H23O2P2)(C3H9P)2]

  • Mr = 688.50

  • Monoclinic, C 2/c

  • a = 31.437 (6) Å

  • b = 13.344 (3) Å

  • c = 19.187 (4) Å

  • β = 123.85 (3)°

  • V = 6685 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.930

  • 25414 measured reflections

  • 7056 independent reflections

  • 6078 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.03

  • 7056 reflections

  • 394 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

'PCP' pincer complex have attarcted much attention owing to their catalytic activities (Boom & Milstein, 2003; Bedford et al., 2006; Gomez-Benitez et al., 2006; Aydin et al., 2007; Kimura & Uozumi, 2006). We previouly reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Co(PMe3)4 to afford metallated 'PCP' pincer compounds at room temperature (Xu et al. 2009). Carrying on our investigations we explored the reaction of (PPh2O)2C6H4 with Co(PMe3)4, which afforded the title compound via C-H oxidative addition. Although the yield was only 30%, it was the only product which could be isolated and characterized. We proposed that a Co-H intermediate might be generated first, then the Co-H could be cleaved with the loss of hydrogen atom, affording the title compound with 18 e structure. However, the products resulting from the cleavage of the Co-H has not been isolated.

In the title compound, the cobalt atom displays a trigonal bipyramidal geometry with the two phosphorus of the PCP ligand and the phosphorus of one of the trimethyl phosphine ligand forming the basal plane whereas the metalated C atom and the phosphorus of the second phospine occupying the apex (Fig. 1). The Co1-C2 distance is 1.961 (2) Å and the C2-Co1-P3 angle is 171.96 (6)°.

Related literature top

For uses of `PCP' pincer complexes, see: Boom & Milstein (2003); Bedford et al. (2006); Gomez-Benitez et al. (2006); Aydin et al. (2007); Kimura & Uozumi (2006); Xu et al. (2009).

Experimental top

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. The title compound was synthesized by combining a solution of 1,3-Bis(diphenylphosphinooxy)benzene (920 mg, 2.00 mmol) in 40 ml of diethyl ether with a sample of Co(C3H9P) (720 mg, 2.00 mmol) in 30 ml of diethyl ether at 273 K. After kept stirring for 48 h at room temperature, the color changed from red to brown. Volatiles were concentrated and filtrated. Red crystals, which were suitable for X-ray diffraction, could be obtained from diethyl ether at 255 K.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Structure description top

'PCP' pincer complex have attarcted much attention owing to their catalytic activities (Boom & Milstein, 2003; Bedford et al., 2006; Gomez-Benitez et al., 2006; Aydin et al., 2007; Kimura & Uozumi, 2006). We previouly reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Co(PMe3)4 to afford metallated 'PCP' pincer compounds at room temperature (Xu et al. 2009). Carrying on our investigations we explored the reaction of (PPh2O)2C6H4 with Co(PMe3)4, which afforded the title compound via C-H oxidative addition. Although the yield was only 30%, it was the only product which could be isolated and characterized. We proposed that a Co-H intermediate might be generated first, then the Co-H could be cleaved with the loss of hydrogen atom, affording the title compound with 18 e structure. However, the products resulting from the cleavage of the Co-H has not been isolated.

In the title compound, the cobalt atom displays a trigonal bipyramidal geometry with the two phosphorus of the PCP ligand and the phosphorus of one of the trimethyl phosphine ligand forming the basal plane whereas the metalated C atom and the phosphorus of the second phospine occupying the apex (Fig. 1). The Co1-C2 distance is 1.961 (2) Å and the C2-Co1-P3 angle is 171.96 (6)°.

For uses of `PCP' pincer complexes, see: Boom & Milstein (2003); Bedford et al. (2006); Gomez-Benitez et al. (2006); Aydin et al. (2007); Kimura & Uozumi (2006); Xu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity
[2,6-Bis(diphenylphosphinooxy)phenyl]bis(trimethylphosphine)cobalt(I) top
Crystal data top
[Co(C30H23O2P2)(C3H9P)2]F(000) = 2880
Mr = 688.50Dx = 1.368 Mg m3
Monoclinic, C2/cMelting point: 385 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 31.437 (6) ÅCell parameters from 25414 reflections
b = 13.344 (3) Åθ = 1.6–26.8°
c = 19.187 (4) ŵ = 0.74 mm1
β = 123.85 (3)°T = 293 K
V = 6685 (3) Å3Block, brown
Z = 80.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7056 independent reflections
Radiation source: fine-focus sealed tube6078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 26.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3939
Tmin = 0.867, Tmax = 0.930k = 1616
25414 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.8607P]
where P = (Fo2 + 2Fc2)/3
7056 reflections(Δ/σ)max = 0.002
394 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Co(C30H23O2P2)(C3H9P)2]V = 6685 (3) Å3
Mr = 688.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.437 (6) ŵ = 0.74 mm1
b = 13.344 (3) ÅT = 293 K
c = 19.187 (4) Å0.20 × 0.15 × 0.10 mm
β = 123.85 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
6078 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.930Rint = 0.073
25414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
7056 reflectionsΔρmin = 0.63 e Å3
394 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.141627 (10)0.22511 (2)0.188845 (16)0.02454 (9)
P10.077347 (19)0.18917 (4)0.19360 (3)0.02587 (12)
P20.15209 (2)0.33637 (4)0.11980 (3)0.02792 (12)
P30.14305 (2)0.08689 (4)0.12942 (3)0.02800 (12)
P40.21421 (2)0.20712 (4)0.31383 (3)0.02911 (13)
O10.08196 (6)0.25832 (11)0.27072 (9)0.0306 (3)
O20.16718 (6)0.44366 (11)0.17485 (10)0.0344 (3)
C10.14760 (8)0.44092 (17)0.22435 (13)0.0327 (4)
C20.12987 (8)0.34853 (16)0.23120 (13)0.0294 (4)
C30.10554 (8)0.34857 (16)0.27383 (12)0.0298 (4)
C40.10342 (9)0.43159 (18)0.31533 (13)0.0354 (5)
H200.08820.42810.34520.043*
C50.12496 (9)0.52060 (18)0.31050 (14)0.0388 (5)
H210.12510.57690.33920.047*
C60.14621 (9)0.52681 (17)0.26361 (14)0.0379 (5)
H220.15920.58710.25870.046*
C70.01157 (8)0.21993 (15)0.10672 (13)0.0288 (4)
C80.00137 (8)0.24372 (17)0.02814 (13)0.0321 (4)
H230.02800.24490.02030.038*
C90.04811 (9)0.26574 (19)0.03860 (15)0.0391 (5)
H240.05460.28070.09100.047*
C100.08780 (9)0.26546 (19)0.02715 (15)0.0396 (5)
H250.12100.27980.07190.047*
C110.07809 (9)0.24373 (19)0.05141 (15)0.0397 (5)
H260.10470.24470.05940.048*
C120.02885 (9)0.22066 (18)0.11754 (15)0.0363 (5)
H270.02260.20550.16980.044*
C130.06603 (8)0.06823 (16)0.22481 (13)0.0291 (4)
C140.09125 (8)0.04158 (18)0.30946 (14)0.0347 (5)
H280.10940.08970.35100.042*
C150.08926 (9)0.0563 (2)0.33157 (15)0.0436 (6)
H290.10580.07330.38790.052*
C160.06302 (9)0.1289 (2)0.27081 (17)0.0456 (6)
H300.06370.19520.28630.055*
C170.03576 (9)0.10278 (19)0.18683 (16)0.0425 (5)
H310.01680.15080.14570.051*
C180.03690 (8)0.00462 (17)0.16425 (14)0.0350 (5)
H320.01790.01300.10780.042*
C190.09695 (8)0.38005 (16)0.01862 (13)0.0302 (4)
C200.07886 (9)0.32187 (17)0.05290 (14)0.0342 (4)
H330.09620.26360.04940.041*
C210.03544 (9)0.34968 (19)0.12919 (14)0.0399 (5)
H340.02390.31020.17640.048*
C220.00919 (10)0.4362 (2)0.13533 (15)0.0439 (5)
H350.01990.45500.18660.053*
C230.02665 (11)0.4943 (2)0.06468 (16)0.0471 (6)
H360.00920.55240.06850.056*
C240.06998 (10)0.46637 (18)0.01180 (15)0.0404 (5)
H370.08120.50570.05900.049*
C250.20242 (8)0.34292 (16)0.09881 (13)0.0321 (4)
C260.19699 (9)0.39827 (19)0.03261 (15)0.0390 (5)
H380.16680.43310.00350.047*
C270.23669 (10)0.4015 (2)0.02033 (16)0.0468 (6)
H390.23260.43780.02440.056*
C280.28171 (10)0.3517 (2)0.07380 (16)0.0477 (6)
H400.30780.35360.06470.057*
C290.28847 (10)0.2984 (2)0.14149 (17)0.0451 (6)
H410.31930.26620.17880.054*
C300.24838 (9)0.29392 (18)0.15257 (15)0.0374 (5)
H190.25250.25710.19710.045*
C310.15587 (9)0.03061 (17)0.18758 (15)0.0372 (5)
H31A0.13390.03510.20750.056*
H31B0.19100.03190.23440.056*
H31C0.14940.08630.15120.056*
C320.08378 (9)0.05274 (18)0.02973 (14)0.0365 (5)
H32A0.08860.00960.01010.055*
H32B0.07520.10420.01110.055*
H32C0.05650.04580.03800.055*
C330.18824 (9)0.07295 (18)0.09792 (16)0.0384 (5)
H33A0.22270.07410.14690.058*
H33B0.18360.12710.06140.058*
H33C0.18210.01040.06900.058*
C340.20915 (9)0.1656 (2)0.40012 (14)0.0405 (5)
H34A0.19730.09750.39060.061*
H34B0.18540.20780.40280.061*
H34C0.24220.16970.45210.061*
C350.26675 (9)0.1240 (2)0.33529 (15)0.0441 (5)
H35A0.29450.12990.39320.066*
H35B0.27840.14260.30030.066*
H35C0.25480.05600.32360.066*
C360.25124 (9)0.32175 (19)0.36162 (15)0.0429 (5)
H36A0.28190.30610.41500.064*
H36B0.23110.36880.36930.064*
H36C0.26020.35050.32560.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03026 (15)0.02427 (16)0.02686 (14)0.00035 (10)0.02072 (12)0.00117 (9)
P10.0295 (2)0.0280 (3)0.0274 (2)0.00020 (19)0.0204 (2)0.00030 (19)
P20.0387 (3)0.0245 (3)0.0315 (3)0.0020 (2)0.0264 (2)0.00196 (19)
P30.0341 (3)0.0254 (3)0.0323 (3)0.00060 (19)0.0233 (2)0.00147 (19)
P40.0304 (3)0.0329 (3)0.0284 (3)0.0015 (2)0.0190 (2)0.00092 (19)
O10.0374 (8)0.0340 (8)0.0319 (7)0.0016 (6)0.0263 (6)0.0028 (6)
O20.0508 (9)0.0278 (8)0.0407 (8)0.0078 (6)0.0355 (7)0.0064 (6)
C10.0422 (11)0.0335 (12)0.0331 (10)0.0025 (9)0.0275 (9)0.0035 (8)
C20.0358 (10)0.0281 (11)0.0310 (9)0.0004 (8)0.0227 (8)0.0024 (8)
C30.0354 (10)0.0306 (11)0.0303 (10)0.0006 (8)0.0226 (9)0.0020 (8)
C40.0420 (11)0.0398 (13)0.0335 (10)0.0029 (9)0.0266 (10)0.0038 (9)
C50.0518 (13)0.0338 (12)0.0393 (11)0.0004 (10)0.0306 (11)0.0105 (9)
C60.0539 (13)0.0287 (12)0.0403 (11)0.0049 (9)0.0319 (11)0.0076 (9)
C70.0337 (10)0.0267 (11)0.0317 (10)0.0012 (8)0.0217 (9)0.0006 (7)
C80.0360 (10)0.0338 (11)0.0335 (10)0.0044 (8)0.0238 (9)0.0021 (8)
C90.0433 (12)0.0431 (14)0.0345 (11)0.0082 (10)0.0239 (10)0.0046 (9)
C100.0341 (11)0.0425 (14)0.0395 (12)0.0080 (9)0.0189 (10)0.0024 (9)
C110.0364 (11)0.0449 (14)0.0475 (13)0.0049 (9)0.0293 (10)0.0025 (10)
C120.0383 (11)0.0420 (13)0.0383 (11)0.0025 (9)0.0273 (10)0.0038 (9)
C130.0306 (9)0.0317 (11)0.0346 (10)0.0003 (8)0.0241 (8)0.0019 (8)
C140.0338 (10)0.0434 (13)0.0346 (10)0.0011 (9)0.0239 (9)0.0037 (9)
C150.0394 (12)0.0556 (16)0.0431 (12)0.0025 (10)0.0275 (11)0.0180 (11)
C160.0450 (12)0.0402 (14)0.0620 (15)0.0015 (10)0.0362 (12)0.0134 (11)
C170.0436 (12)0.0371 (13)0.0551 (14)0.0089 (10)0.0326 (11)0.0004 (10)
C180.0366 (11)0.0360 (12)0.0373 (11)0.0039 (9)0.0235 (9)0.0009 (9)
C190.0429 (11)0.0233 (10)0.0358 (10)0.0012 (8)0.0291 (9)0.0022 (8)
C200.0460 (12)0.0284 (11)0.0360 (11)0.0049 (9)0.0277 (10)0.0017 (8)
C210.0505 (13)0.0389 (13)0.0351 (11)0.0029 (10)0.0268 (10)0.0032 (9)
C220.0474 (13)0.0466 (15)0.0408 (12)0.0109 (10)0.0266 (11)0.0135 (10)
C230.0612 (15)0.0386 (14)0.0505 (14)0.0178 (11)0.0367 (13)0.0105 (11)
C240.0567 (14)0.0320 (12)0.0437 (12)0.0057 (10)0.0348 (11)0.0023 (9)
C250.0434 (11)0.0290 (11)0.0368 (11)0.0070 (8)0.0303 (10)0.0065 (8)
C260.0483 (12)0.0414 (13)0.0403 (11)0.0050 (10)0.0327 (11)0.0009 (9)
C270.0586 (15)0.0553 (16)0.0457 (13)0.0136 (12)0.0410 (12)0.0046 (11)
C280.0502 (14)0.0625 (17)0.0498 (14)0.0168 (12)0.0399 (12)0.0125 (12)
C290.0441 (13)0.0511 (15)0.0517 (14)0.0058 (11)0.0338 (12)0.0065 (11)
C300.0424 (12)0.0391 (13)0.0415 (12)0.0049 (9)0.0300 (10)0.0015 (9)
C310.0412 (11)0.0297 (12)0.0461 (12)0.0029 (9)0.0276 (10)0.0026 (9)
C320.0434 (12)0.0345 (12)0.0364 (11)0.0015 (9)0.0252 (10)0.0054 (9)
C330.0479 (12)0.0327 (12)0.0510 (13)0.0006 (9)0.0377 (11)0.0035 (10)
C340.0399 (11)0.0514 (15)0.0330 (11)0.0042 (10)0.0220 (10)0.0025 (10)
C350.0371 (11)0.0549 (16)0.0392 (12)0.0095 (10)0.0206 (10)0.0031 (11)
C360.0427 (12)0.0445 (14)0.0373 (12)0.0095 (10)0.0195 (10)0.0021 (10)
Geometric parameters (Å, º) top
Co1—C21.961 (2)C16—C171.384 (4)
Co1—P12.1278 (7)C16—H300.9300
Co1—P22.1337 (6)C17—C181.386 (3)
Co1—P32.1819 (7)C17—H310.9300
Co1—P42.2180 (13)C18—H320.9300
P1—O11.6801 (15)C19—C201.393 (3)
P1—C131.824 (2)C19—C241.392 (3)
P1—C71.839 (2)C20—C211.385 (3)
P2—O21.6829 (15)C20—H330.9300
P2—C191.834 (2)C21—C221.385 (3)
P2—C251.839 (2)C21—H340.9300
P3—C311.834 (2)C22—C231.382 (4)
P3—C321.835 (2)C22—H350.9300
P3—C331.837 (2)C23—C241.386 (4)
P4—C361.829 (2)C23—H360.9300
P4—C341.835 (2)C24—H370.9300
P4—C351.836 (2)C25—C301.385 (3)
O1—C31.398 (3)C25—C261.395 (3)
O2—C11.390 (2)C26—C271.394 (3)
C1—C61.386 (3)C26—H380.9300
C1—C21.389 (3)C27—C281.371 (4)
C2—C31.397 (3)C27—H390.9300
C3—C41.387 (3)C28—C291.389 (4)
C4—C51.396 (3)C28—H400.9300
C4—H200.9300C29—C301.391 (3)
C5—C61.390 (3)C29—H410.9300
C5—H210.9300C30—H190.9300
C6—H220.9300C31—H31A0.9600
C7—C81.392 (3)C31—H31B0.9600
C7—C121.397 (3)C31—H31C0.9600
C8—C91.388 (3)C32—H32A0.9600
C8—H230.9300C32—H32B0.9600
C9—C101.382 (3)C32—H32C0.9600
C9—H240.9300C33—H33A0.9600
C10—C111.392 (3)C33—H33B0.9600
C10—H250.9300C33—H33C0.9600
C11—C121.383 (3)C34—H34A0.9600
C11—H260.9300C34—H34B0.9600
C12—H270.9300C34—H34C0.9600
C13—C181.396 (3)C35—H35A0.9600
C13—C141.400 (3)C35—H35B0.9600
C14—C151.386 (3)C35—H35C0.9600
C14—H280.9300C36—H36A0.9600
C15—C161.381 (4)C36—H36B0.9600
C15—H290.9300C36—H36C0.9600
C2—Co1—P176.63 (6)C15—C16—C17119.8 (2)
C2—Co1—P278.62 (6)C15—C16—H30120.1
P1—Co1—P2131.45 (3)C17—C16—H30120.1
C2—Co1—P3171.95 (6)C16—C17—C18119.7 (2)
P1—Co1—P397.37 (3)C16—C17—H31120.2
P2—Co1—P3102.04 (3)C18—C17—H31120.2
C2—Co1—P487.75 (6)C17—C18—C13121.1 (2)
P1—Co1—P4111.03 (3)C17—C18—H32119.4
P2—Co1—P4108.97 (3)C13—C18—H32119.4
P3—Co1—P499.52 (3)C20—C19—C24118.4 (2)
O1—P1—C1397.69 (8)C20—C19—P2119.48 (16)
O1—P1—C7100.23 (9)C24—C19—P2121.96 (17)
C13—P1—C799.71 (9)C21—C20—C19120.9 (2)
O1—P1—Co1107.20 (6)C21—C20—H33119.6
C13—P1—Co1125.25 (7)C19—C20—H33119.6
C7—P1—Co1121.73 (7)C22—C21—C20120.2 (2)
O2—P2—C1999.43 (9)C22—C21—H34119.9
O2—P2—C2596.95 (9)C20—C21—H34119.9
C19—P2—C25100.04 (10)C23—C22—C21119.4 (2)
O2—P2—Co1106.81 (6)C23—C22—H35120.3
C19—P2—Co1119.78 (7)C21—C22—H35120.3
C25—P2—Co1128.16 (8)C22—C23—C24120.5 (2)
C31—P3—C3299.98 (11)C22—C23—H36119.8
C31—P3—C3399.52 (11)C24—C23—H36119.8
C32—P3—C3398.87 (11)C23—C24—C19120.6 (2)
C31—P3—Co1117.78 (8)C23—C24—H37119.7
C32—P3—Co1116.75 (8)C19—C24—H37119.7
C33—P3—Co1120.15 (8)C30—C25—C26118.4 (2)
C36—P4—C3498.70 (11)C30—C25—P2118.83 (16)
C36—P4—C3598.68 (13)C26—C25—P2122.72 (18)
C34—P4—C3597.73 (12)C27—C26—C25120.2 (2)
C36—P4—Co1115.83 (9)C27—C26—H38119.9
C34—P4—Co1117.01 (8)C25—C26—H38119.9
C35—P4—Co1124.27 (8)C28—C27—C26120.4 (2)
C3—O1—P1107.12 (12)C28—C27—H39119.8
C1—O2—P2109.21 (13)C26—C27—H39119.8
C6—C1—O2120.65 (19)C27—C28—C29120.3 (2)
C6—C1—C2123.14 (19)C27—C28—H40119.9
O2—C1—C2116.21 (18)C29—C28—H40119.9
C1—C2—C3115.76 (18)C28—C29—C30119.0 (3)
C1—C2—Co1121.87 (15)C28—C29—H41120.5
C3—C2—Co1122.29 (16)C30—C29—H41120.5
C4—C3—C2123.6 (2)C25—C30—C29121.6 (2)
C4—C3—O1121.24 (18)C25—C30—H19119.2
C2—C3—O1115.15 (17)C29—C30—H19119.2
C3—C4—C5117.47 (19)P3—C31—H31A109.5
C3—C4—H20121.3P3—C31—H31B109.5
C5—C4—H20121.3H31A—C31—H31B109.5
C6—C5—C4121.3 (2)P3—C31—H31C109.5
C6—C5—H21119.3H31A—C31—H31C109.5
C4—C5—H21119.3H31B—C31—H31C109.5
C1—C6—C5118.3 (2)P3—C32—H32A109.5
C1—C6—H22120.8P3—C32—H32B109.5
C5—C6—H22120.8H32A—C32—H32B109.5
C8—C7—C12118.6 (2)P3—C32—H32C109.5
C8—C7—P1119.80 (16)H32A—C32—H32C109.5
C12—C7—P1121.56 (16)H32B—C32—H32C109.5
C9—C8—C7120.7 (2)P3—C33—H33A109.5
C9—C8—H23119.6P3—C33—H33B109.5
C7—C8—H23119.6H33A—C33—H33B109.5
C10—C9—C8120.0 (2)P3—C33—H33C109.5
C10—C9—H24120.0H33A—C33—H33C109.5
C8—C9—H24120.0H33B—C33—H33C109.5
C9—C10—C11120.0 (2)P4—C34—H34A109.5
C9—C10—H25120.0P4—C34—H34B109.5
C11—C10—H25120.0H34A—C34—H34B109.5
C12—C11—C10119.9 (2)P4—C34—H34C109.5
C12—C11—H26120.1H34A—C34—H34C109.5
C10—C11—H26120.1H34B—C34—H34C109.5
C11—C12—C7120.7 (2)P4—C35—H35A109.5
C11—C12—H27119.6P4—C35—H35B109.5
C7—C12—H27119.6H35A—C35—H35B109.5
C18—C13—C14118.3 (2)P4—C35—H35C109.5
C18—C13—P1120.03 (16)H35A—C35—H35C109.5
C14—C13—P1121.19 (17)H35B—C35—H35C109.5
C15—C14—C13120.1 (2)P4—C36—H36A109.5
C15—C14—H28119.9P4—C36—H36B109.5
C13—C14—H28119.9H36A—C36—H36B109.5
C16—C15—C14120.7 (2)P4—C36—H36C109.5
C16—C15—H29119.6H36A—C36—H36C109.5
C14—C15—H29119.6H36B—C36—H36C109.5

Experimental details

Crystal data
Chemical formula[Co(C30H23O2P2)(C3H9P)2]
Mr688.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)31.437 (6), 13.344 (3), 19.187 (4)
β (°) 123.85 (3)
V3)6685 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.867, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
25414, 7056, 6078
Rint0.073
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.03
No. of reflections7056
No. of parameters394
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.63

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge support by the NSF China (No. 20872080/20772072).

References

First citationAydin, J., Kumar, K. S., Erilsson, L. & Szabo, K. J. (2007). Adv. Synth. Catal. 349, 2585–2594.  Web of Science CSD CrossRef CAS Google Scholar
First citationBedford, R. B., Betham, M., Blake, M. E., Coles, S. J., Draper, S. M., Husthouse, M. B. & Scully, P. N. (2006). Inorg. Chim. Acta, 359, 1870–1878.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoom, M. & Milstein, D. (2003). Chem. Rev. 103, 1759–1792.  Web of Science PubMed Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGomez-Benitez, V., Baldovino-Pantaleon, O., Herrera-Alvarez, C., Toscano, R. A. & Morales-Morales, D. (2006). Tetrahedron Lett. 47, 5059–5062.  Web of Science CSD CrossRef CAS Google Scholar
First citationKimura, T. & Uozumi, Y. (2006). Organometallics, 25, 4883–4887.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090–6095.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds