organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexa­none 2-nitro­phenyl­hydrazone

aDepartment of Physics, Zhengzhou Normal University, Zhengzhou 450044, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: ybaohe@126.com

(Received 30 April 2010; accepted 3 May 2010; online 8 May 2010)

In the title Schiff base compound, C12H15N3O2, obtained from a condensation reaction of cyclo­hexa­none and 2-nitro­phenyl­hydrazine, the phenyl­hydrazone group is planar, the largest deviation from the mean plane being 0.0252 (12) Å, and the nitro fragment is twisted slightly with respect to the mean plane, making a dihedral angle of 6.96 (17)°. The cyclo­heaxanone ring displays a chair conformation. An intra­molecular N—H⋯O hydrogen bond helps to stabilize the mol­ecular structure.

Related literature

For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Shan et al. (2003[Shan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173-o1174.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3O2

  • Mr = 233.27

  • Monoclinic, P 21 /c

  • a = 8.519 (5) Å

  • b = 19.609 (7) Å

  • c = 7.822 (4) Å

  • β = 112.110 (7)°

  • V = 1210.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.977

  • 4958 measured reflections

  • 2472 independent reflections

  • 739 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.066

  • S = 0.64

  • 2472 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.98 2.599 (2) 128

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure.

In the title compound, the phenylhydrazone group is planar with the largest deviation from the mean plane being 0.0252 (12)Å, the nitro fragment is sligthly twisted with respect to this mean plane making a dihedral angle of 6.96 (17)° (Fig. 1). The cycloheaxanone displays a chair conformation as confirmed by the ring puckering parameters, θ= 5.6 (3)° and φ=195 (3)° (Cremer & Pople, 1975). The C-N and N-N distances within the hydrazone moity agree with related compound (Shan et al., 2003).

Intramolecular N—H···O hydrogen bond stabilizes the crystal structure.

Related literature top

For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001). For puckering parameters, see Cremer & Pople (1975). For a related structure, see: Shan et al. (2003).

Experimental top

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351k, cyclohexanone (1 mmol, 0.098 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), red single crystals of (I) was obtained after 3 d.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms with C—H=0.93Å (aromatic), 0.97Å(methylene) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(C,N).

Structure description top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure.

In the title compound, the phenylhydrazone group is planar with the largest deviation from the mean plane being 0.0252 (12)Å, the nitro fragment is sligthly twisted with respect to this mean plane making a dihedral angle of 6.96 (17)° (Fig. 1). The cycloheaxanone displays a chair conformation as confirmed by the ring puckering parameters, θ= 5.6 (3)° and φ=195 (3)° (Cremer & Pople, 1975). The C-N and N-N distances within the hydrazone moity agree with related compound (Shan et al., 2003).

Intramolecular N—H···O hydrogen bond stabilizes the crystal structure.

For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001). For puckering parameters, see Cremer & Pople (1975). For a related structure, see: Shan et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Intramolecular hydrogen bond is shown as dashed lines.
Cyclohexanone 2-nitrophenylhydrazone top
Crystal data top
C12H15N3O2F(000) = 496
Mr = 233.27Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 666 reflections
a = 8.519 (5) Åθ = 3.0–26.3°
b = 19.609 (7) ŵ = 0.09 mm1
c = 7.822 (4) ÅT = 293 K
β = 112.110 (7)°Block, red
V = 1210.6 (10) Å30.23 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2472 independent reflections
Radiation source: fine-focus sealed tube739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 108
Tmin = 0.973, Tmax = 0.977k = 2423
4958 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.64 w = 1/[σ2(Fo2) + (0.0244P)2]
where P = (Fo2 + 2Fc2)/3
2472 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C12H15N3O2V = 1210.6 (10) Å3
Mr = 233.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.519 (5) ŵ = 0.09 mm1
b = 19.609 (7) ÅT = 293 K
c = 7.822 (4) Å0.23 × 0.20 × 0.19 mm
β = 112.110 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
739 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.977Rint = 0.035
4958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.64Δρmax = 0.09 e Å3
2472 reflectionsΔρmin = 0.11 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0513 (2)0.70011 (9)0.6282 (2)0.1024 (6)
O20.0322 (2)0.60900 (8)0.7886 (2)0.0979 (6)
N10.0275 (3)0.64621 (11)0.6599 (3)0.0736 (6)
N20.19470 (18)0.51469 (9)0.6890 (2)0.0621 (5)
H20.14840.52390.76690.075*
N30.2696 (2)0.45142 (10)0.6925 (2)0.0614 (5)
C10.1174 (3)0.62570 (13)0.5443 (3)0.0567 (6)
C20.1241 (3)0.67296 (11)0.4156 (3)0.0716 (6)
H2B0.07290.71530.40790.086*
C30.2056 (3)0.65756 (14)0.2998 (3)0.0802 (7)
H3B0.21010.68900.21280.096*
C40.2813 (3)0.59436 (15)0.3146 (3)0.0795 (7)
H4A0.33730.58360.23650.095*
C50.2757 (2)0.54760 (11)0.4404 (3)0.0664 (6)
H5A0.32680.50530.44540.080*
C60.1950 (2)0.56162 (12)0.5625 (3)0.0540 (5)
C70.2737 (2)0.41110 (11)0.8199 (3)0.0577 (6)
C80.2140 (3)0.42256 (10)0.9746 (3)0.0716 (6)
H8A0.11450.39490.95540.086*
H8B0.18260.47000.97620.086*
C90.3519 (3)0.40421 (11)1.1584 (3)0.0783 (7)
H9A0.44360.43701.18660.094*
H9B0.30640.40711.25470.094*
C100.4207 (3)0.33364 (11)1.1574 (3)0.0890 (7)
H10A0.33170.30041.14020.107*
H10B0.51110.32471.27550.107*
C110.4880 (3)0.32612 (11)1.0044 (3)0.0859 (7)
H11A0.52760.27981.00320.103*
H11B0.58320.35671.02700.103*
C120.3504 (3)0.34250 (10)0.8190 (3)0.0722 (6)
H12A0.39810.34150.72430.087*
H12B0.26260.30800.78910.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1178 (15)0.0768 (11)0.1168 (14)0.0302 (11)0.0489 (12)0.0068 (10)
O20.1121 (15)0.1044 (14)0.1003 (13)0.0261 (10)0.0662 (12)0.0126 (11)
N10.0680 (15)0.0692 (16)0.0808 (15)0.0008 (12)0.0246 (14)0.0132 (13)
N20.0626 (14)0.0648 (12)0.0657 (12)0.0003 (10)0.0319 (11)0.0026 (10)
N30.0617 (12)0.0553 (12)0.0665 (12)0.0020 (10)0.0234 (10)0.0003 (10)
C10.0491 (16)0.0625 (16)0.0589 (14)0.0032 (13)0.0207 (13)0.0044 (14)
C20.0627 (17)0.0662 (16)0.0706 (16)0.0056 (13)0.0077 (14)0.0003 (15)
C30.0862 (19)0.081 (2)0.0700 (17)0.0111 (16)0.0258 (15)0.0096 (15)
C40.0774 (19)0.096 (2)0.0720 (17)0.0038 (16)0.0365 (15)0.0006 (16)
C50.0650 (17)0.0712 (17)0.0686 (15)0.0002 (12)0.0314 (14)0.0004 (14)
C60.0413 (14)0.0648 (17)0.0554 (14)0.0098 (13)0.0175 (12)0.0061 (13)
C70.0491 (14)0.0576 (15)0.0613 (14)0.0049 (12)0.0150 (12)0.0030 (13)
C80.0701 (17)0.0780 (16)0.0674 (15)0.0056 (12)0.0266 (15)0.0073 (13)
C90.0760 (18)0.0897 (17)0.0644 (16)0.0126 (14)0.0210 (15)0.0007 (14)
C100.0890 (19)0.0827 (18)0.0785 (17)0.0061 (15)0.0123 (15)0.0160 (15)
C110.0792 (19)0.0711 (16)0.0945 (19)0.0097 (14)0.0181 (18)0.0029 (15)
C120.0732 (17)0.0607 (15)0.0778 (16)0.0054 (13)0.0226 (15)0.0030 (13)
Geometric parameters (Å, º) top
O1—N11.2262 (19)C7—C81.496 (2)
O2—N11.2319 (19)C7—C121.497 (2)
N1—C11.445 (2)C8—C91.518 (3)
N2—C61.352 (2)C8—H8A0.9700
N2—N31.3906 (18)C8—H8B0.9700
N2—H20.8600C9—C101.504 (2)
N3—C71.262 (2)C9—H9A0.9700
C1—C21.385 (2)C9—H9B0.9700
C1—C61.402 (2)C10—C111.516 (3)
C2—C31.366 (3)C10—H10A0.9700
C2—H2B0.9300C10—H10B0.9700
C3—C41.381 (3)C11—C121.517 (3)
C3—H3B0.9300C11—H11A0.9700
C4—C51.359 (2)C11—H11B0.9700
C4—H4A0.9300C12—H12A0.9700
C5—C61.398 (2)C12—H12B0.9700
C5—H5A0.9300
O1—N1—O2121.5 (2)C7—C8—H8A109.5
O1—N1—C1119.5 (2)C9—C8—H8A109.5
O2—N1—C1119.0 (2)C7—C8—H8B109.5
C6—N2—N3119.62 (17)C9—C8—H8B109.5
C6—N2—H2120.2H8A—C8—H8B108.1
N3—N2—H2120.2C10—C9—C8112.17 (17)
C7—N3—N2116.77 (17)C10—C9—H9A109.2
C2—C1—C6121.8 (2)C8—C9—H9A109.2
C2—C1—N1116.4 (2)C10—C9—H9B109.2
C6—C1—N1121.8 (2)C8—C9—H9B109.2
C3—C2—C1120.2 (2)H9A—C9—H9B107.9
C3—C2—H2B119.9C9—C10—C11110.93 (18)
C1—C2—H2B119.9C9—C10—H10A109.5
C2—C3—C4118.7 (2)C11—C10—H10A109.5
C2—C3—H3B120.6C9—C10—H10B109.5
C4—C3—H3B120.6C11—C10—H10B109.5
C5—C4—C3121.6 (2)H10A—C10—H10B108.0
C5—C4—H4A119.2C10—C11—C12110.38 (18)
C3—C4—H4A119.2C10—C11—H11A109.6
C4—C5—C6121.5 (2)C12—C11—H11A109.6
C4—C5—H5A119.3C10—C11—H11B109.6
C6—C5—H5A119.3C12—C11—H11B109.6
N2—C6—C5120.2 (2)H11A—C11—H11B108.1
N2—C6—C1123.6 (2)C7—C12—C11111.55 (17)
C5—C6—C1116.2 (2)C7—C12—H12A109.3
N3—C7—C8128.90 (19)C11—C12—H12A109.3
N3—C7—C12116.2 (2)C7—C12—H12B109.3
C8—C7—C12114.9 (2)C11—C12—H12B109.3
C7—C8—C9110.68 (17)H12A—C12—H12B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.982.599 (2)128

Experimental details

Crystal data
Chemical formulaC12H15N3O2
Mr233.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.519 (5), 19.609 (7), 7.822 (4)
β (°) 112.110 (7)
V3)1210.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.973, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
4958, 2472, 739
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.066, 0.64
No. of reflections2472
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.11

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.982.599 (2)128.0
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationShan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173–o1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds