organic compounds
Cyclohexanone 2-nitrophenylhydrazone
aDepartment of Physics, Zhengzhou Normal University, Zhengzhou 450044, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: ybaohe@126.com
In the title Schiff base compound, C12H15N3O2, obtained from a condensation reaction of cyclohexanone and 2-nitrophenylhydrazine, the phenylhydrazone group is planar, the largest deviation from the mean plane being 0.0252 (12) Å, and the nitro fragment is twisted slightly with respect to the mean plane, making a dihedral angle of 6.96 (17)°. The cycloheaxanone ring displays a chair conformation. An intramolecular N—H⋯O hydrogen bond helps to stabilize the molecular structure.
Related literature
For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001). For puckering parameters, see Cremer & Pople (1975). For a related structure, see: Shan et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810016156/dn2561sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016156/dn2561Isup2.hkl
2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351k, cyclohexanone (1 mmol, 0.098 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), red single crystals of (I) was obtained after 3 d.
All H atoms were positioned geometrically and treated as riding on their parent atoms with C—H=0.93Å (aromatic), 0.97Å(methylene) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(C,N).
The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure.
In the title compound, the phenylhydrazone group is planar with the largest deviation from the mean plane being 0.0252 (12)Å, the nitro fragment is sligthly twisted with respect to this mean plane making a dihedral angle of 6.96 (17)° (Fig. 1). The cycloheaxanone displays a chair conformation as confirmed by the ring puckering parameters, θ= 5.6 (3)° and φ=195 (3)° (Cremer & Pople, 1975). The C-N and N-N distances within the hydrazone moity agree with related compound (Shan et al., 2003).
Intramolecular N—H···O hydrogen bond stabilizes the crystal structure.
For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001). For puckering parameters, see Cremer & Pople (1975). For a related structure, see: Shan et al. (2003).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H15N3O2 | F(000) = 496 |
Mr = 233.27 | Dx = 1.280 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 666 reflections |
a = 8.519 (5) Å | θ = 3.0–26.3° |
b = 19.609 (7) Å | µ = 0.09 mm−1 |
c = 7.822 (4) Å | T = 293 K |
β = 112.110 (7)° | Block, red |
V = 1210.6 (10) Å3 | 0.23 × 0.20 × 0.19 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2472 independent reflections |
Radiation source: fine-focus sealed tube | 739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 26.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→8 |
Tmin = 0.973, Tmax = 0.977 | k = −24→23 |
4958 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 0.64 | w = 1/[σ2(Fo2) + (0.0244P)2] where P = (Fo2 + 2Fc2)/3 |
2472 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 0.09 e Å−3 |
0 restraints | Δρmin = −0.11 e Å−3 |
C12H15N3O2 | V = 1210.6 (10) Å3 |
Mr = 233.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.519 (5) Å | µ = 0.09 mm−1 |
b = 19.609 (7) Å | T = 293 K |
c = 7.822 (4) Å | 0.23 × 0.20 × 0.19 mm |
β = 112.110 (7)° |
Bruker SMART CCD area-detector diffractometer | 2472 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 739 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.977 | Rint = 0.035 |
4958 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 0.64 | Δρmax = 0.09 e Å−3 |
2472 reflections | Δρmin = −0.11 e Å−3 |
155 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0513 (2) | 0.70011 (9) | 0.6282 (2) | 0.1024 (6) | |
O2 | 0.0322 (2) | 0.60900 (8) | 0.7886 (2) | 0.0979 (6) | |
N1 | 0.0275 (3) | 0.64621 (11) | 0.6599 (3) | 0.0736 (6) | |
N2 | 0.19470 (18) | 0.51469 (9) | 0.6890 (2) | 0.0621 (5) | |
H2 | 0.1484 | 0.5239 | 0.7669 | 0.075* | |
N3 | 0.2696 (2) | 0.45142 (10) | 0.6925 (2) | 0.0614 (5) | |
C1 | 0.1174 (3) | 0.62570 (13) | 0.5443 (3) | 0.0567 (6) | |
C2 | 0.1241 (3) | 0.67296 (11) | 0.4156 (3) | 0.0716 (6) | |
H2B | 0.0729 | 0.7153 | 0.4079 | 0.086* | |
C3 | 0.2056 (3) | 0.65756 (14) | 0.2998 (3) | 0.0802 (7) | |
H3B | 0.2101 | 0.6890 | 0.2128 | 0.096* | |
C4 | 0.2813 (3) | 0.59436 (15) | 0.3146 (3) | 0.0795 (7) | |
H4A | 0.3373 | 0.5836 | 0.2365 | 0.095* | |
C5 | 0.2757 (2) | 0.54760 (11) | 0.4404 (3) | 0.0664 (6) | |
H5A | 0.3268 | 0.5053 | 0.4454 | 0.080* | |
C6 | 0.1950 (2) | 0.56162 (12) | 0.5625 (3) | 0.0540 (5) | |
C7 | 0.2737 (2) | 0.41110 (11) | 0.8199 (3) | 0.0577 (6) | |
C8 | 0.2140 (3) | 0.42256 (10) | 0.9746 (3) | 0.0716 (6) | |
H8A | 0.1145 | 0.3949 | 0.9554 | 0.086* | |
H8B | 0.1826 | 0.4700 | 0.9762 | 0.086* | |
C9 | 0.3519 (3) | 0.40421 (11) | 1.1584 (3) | 0.0783 (7) | |
H9A | 0.4436 | 0.4370 | 1.1866 | 0.094* | |
H9B | 0.3064 | 0.4071 | 1.2547 | 0.094* | |
C10 | 0.4207 (3) | 0.33364 (11) | 1.1574 (3) | 0.0890 (7) | |
H10A | 0.3317 | 0.3004 | 1.1402 | 0.107* | |
H10B | 0.5111 | 0.3247 | 1.2755 | 0.107* | |
C11 | 0.4880 (3) | 0.32612 (11) | 1.0044 (3) | 0.0859 (7) | |
H11A | 0.5276 | 0.2798 | 1.0032 | 0.103* | |
H11B | 0.5832 | 0.3567 | 1.0270 | 0.103* | |
C12 | 0.3504 (3) | 0.34250 (10) | 0.8190 (3) | 0.0722 (6) | |
H12A | 0.3981 | 0.3415 | 0.7243 | 0.087* | |
H12B | 0.2626 | 0.3080 | 0.7891 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1178 (15) | 0.0768 (11) | 0.1168 (14) | 0.0302 (11) | 0.0489 (12) | −0.0068 (10) |
O2 | 0.1121 (15) | 0.1044 (14) | 0.1003 (13) | 0.0261 (10) | 0.0662 (12) | 0.0126 (11) |
N1 | 0.0680 (15) | 0.0692 (16) | 0.0808 (15) | 0.0008 (12) | 0.0246 (14) | −0.0132 (13) |
N2 | 0.0626 (14) | 0.0648 (12) | 0.0657 (12) | 0.0003 (10) | 0.0319 (11) | 0.0026 (10) |
N3 | 0.0617 (12) | 0.0553 (12) | 0.0665 (12) | 0.0020 (10) | 0.0234 (10) | −0.0003 (10) |
C1 | 0.0491 (16) | 0.0625 (16) | 0.0589 (14) | −0.0032 (13) | 0.0207 (13) | −0.0044 (14) |
C2 | 0.0627 (17) | 0.0662 (16) | 0.0706 (16) | −0.0056 (13) | 0.0077 (14) | −0.0003 (15) |
C3 | 0.0862 (19) | 0.081 (2) | 0.0700 (17) | −0.0111 (16) | 0.0258 (15) | 0.0096 (15) |
C4 | 0.0774 (19) | 0.096 (2) | 0.0720 (17) | −0.0038 (16) | 0.0365 (15) | 0.0006 (16) |
C5 | 0.0650 (17) | 0.0712 (17) | 0.0686 (15) | 0.0002 (12) | 0.0314 (14) | −0.0004 (14) |
C6 | 0.0413 (14) | 0.0648 (17) | 0.0554 (14) | −0.0098 (13) | 0.0175 (12) | −0.0061 (13) |
C7 | 0.0491 (14) | 0.0576 (15) | 0.0613 (14) | −0.0049 (12) | 0.0150 (12) | −0.0030 (13) |
C8 | 0.0701 (17) | 0.0780 (16) | 0.0674 (15) | −0.0056 (12) | 0.0266 (15) | 0.0073 (13) |
C9 | 0.0760 (18) | 0.0897 (17) | 0.0644 (16) | −0.0126 (14) | 0.0210 (15) | 0.0007 (14) |
C10 | 0.0890 (19) | 0.0827 (18) | 0.0785 (17) | −0.0061 (15) | 0.0123 (15) | 0.0160 (15) |
C11 | 0.0792 (19) | 0.0711 (16) | 0.0945 (19) | 0.0097 (14) | 0.0181 (18) | 0.0029 (15) |
C12 | 0.0732 (17) | 0.0607 (15) | 0.0778 (16) | −0.0054 (13) | 0.0226 (15) | −0.0030 (13) |
O1—N1 | 1.2262 (19) | C7—C8 | 1.496 (2) |
O2—N1 | 1.2319 (19) | C7—C12 | 1.497 (2) |
N1—C1 | 1.445 (2) | C8—C9 | 1.518 (3) |
N2—C6 | 1.352 (2) | C8—H8A | 0.9700 |
N2—N3 | 1.3906 (18) | C8—H8B | 0.9700 |
N2—H2 | 0.8600 | C9—C10 | 1.504 (2) |
N3—C7 | 1.262 (2) | C9—H9A | 0.9700 |
C1—C2 | 1.385 (2) | C9—H9B | 0.9700 |
C1—C6 | 1.402 (2) | C10—C11 | 1.516 (3) |
C2—C3 | 1.366 (3) | C10—H10A | 0.9700 |
C2—H2B | 0.9300 | C10—H10B | 0.9700 |
C3—C4 | 1.381 (3) | C11—C12 | 1.517 (3) |
C3—H3B | 0.9300 | C11—H11A | 0.9700 |
C4—C5 | 1.359 (2) | C11—H11B | 0.9700 |
C4—H4A | 0.9300 | C12—H12A | 0.9700 |
C5—C6 | 1.398 (2) | C12—H12B | 0.9700 |
C5—H5A | 0.9300 | ||
O1—N1—O2 | 121.5 (2) | C7—C8—H8A | 109.5 |
O1—N1—C1 | 119.5 (2) | C9—C8—H8A | 109.5 |
O2—N1—C1 | 119.0 (2) | C7—C8—H8B | 109.5 |
C6—N2—N3 | 119.62 (17) | C9—C8—H8B | 109.5 |
C6—N2—H2 | 120.2 | H8A—C8—H8B | 108.1 |
N3—N2—H2 | 120.2 | C10—C9—C8 | 112.17 (17) |
C7—N3—N2 | 116.77 (17) | C10—C9—H9A | 109.2 |
C2—C1—C6 | 121.8 (2) | C8—C9—H9A | 109.2 |
C2—C1—N1 | 116.4 (2) | C10—C9—H9B | 109.2 |
C6—C1—N1 | 121.8 (2) | C8—C9—H9B | 109.2 |
C3—C2—C1 | 120.2 (2) | H9A—C9—H9B | 107.9 |
C3—C2—H2B | 119.9 | C9—C10—C11 | 110.93 (18) |
C1—C2—H2B | 119.9 | C9—C10—H10A | 109.5 |
C2—C3—C4 | 118.7 (2) | C11—C10—H10A | 109.5 |
C2—C3—H3B | 120.6 | C9—C10—H10B | 109.5 |
C4—C3—H3B | 120.6 | C11—C10—H10B | 109.5 |
C5—C4—C3 | 121.6 (2) | H10A—C10—H10B | 108.0 |
C5—C4—H4A | 119.2 | C10—C11—C12 | 110.38 (18) |
C3—C4—H4A | 119.2 | C10—C11—H11A | 109.6 |
C4—C5—C6 | 121.5 (2) | C12—C11—H11A | 109.6 |
C4—C5—H5A | 119.3 | C10—C11—H11B | 109.6 |
C6—C5—H5A | 119.3 | C12—C11—H11B | 109.6 |
N2—C6—C5 | 120.2 (2) | H11A—C11—H11B | 108.1 |
N2—C6—C1 | 123.6 (2) | C7—C12—C11 | 111.55 (17) |
C5—C6—C1 | 116.2 (2) | C7—C12—H12A | 109.3 |
N3—C7—C8 | 128.90 (19) | C11—C12—H12A | 109.3 |
N3—C7—C12 | 116.2 (2) | C7—C12—H12B | 109.3 |
C8—C7—C12 | 114.9 (2) | C11—C12—H12B | 109.3 |
C7—C8—C9 | 110.68 (17) | H12A—C12—H12B | 108.0 |
Experimental details
Crystal data | |
Chemical formula | C12H15N3O2 |
Mr | 233.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.519 (5), 19.609 (7), 7.822 (4) |
β (°) | 112.110 (7) |
V (Å3) | 1210.6 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.23 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.973, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4958, 2472, 739 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.066, 0.64 |
No. of reflections | 2472 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.09, −0.11 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).
References
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185. CrossRef CAS Web of Science Google Scholar
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844. Web of Science CrossRef Google Scholar
Shan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173–o1174. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure.
In the title compound, the phenylhydrazone group is planar with the largest deviation from the mean plane being 0.0252 (12)Å, the nitro fragment is sligthly twisted with respect to this mean plane making a dihedral angle of 6.96 (17)° (Fig. 1). The cycloheaxanone displays a chair conformation as confirmed by the ring puckering parameters, θ= 5.6 (3)° and φ=195 (3)° (Cremer & Pople, 1975). The C-N and N-N distances within the hydrazone moity agree with related compound (Shan et al., 2003).
Intramolecular N—H···O hydrogen bond stabilizes the crystal structure.