organic compounds
2-(2-Nitroanilino)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile
aLaboratório de Síntese e Planejamento de Fármacos, Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-910 Recife, PE, Brazil, bLaboratório de Síntese e Vetorização de Moléculas Bioativas, Universidade Estadual da Paraíba, 58020-540 João Pessoa, PB, Brazil, and cDepartamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo - USP, 13560-970 - São Carlos, SP, Brazil
*Correspondence e-mail: casimone@ifsc.usp.br
The title compound, C16H15N3O2S, was synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile and o-fluoronitrobenzene. The thiophene and nitrophenyl rings and amino and carbonitrile groups are coplanar with a maximum deviation of 0.046 (2) Å and a dihedral angle of 0.92 (6)° between the rings. The cyclohepta ring adopts a chair conformation. Intramolecular N—H⋯O and C—H⋯S interactions occur. In the crystal, the molecules form layers that are linked by π–π stacking interactions between the thiophene and benzene rings [centroid–centroid distances = 3.7089 (12) and 3.6170 (12) Å].
Related literature
For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For the biological activity of 2-amino thiophene derivatives, see: Chakrabarti et al. (1982); Calligaro et al. (1997); Nikolakopoulos et al. (2006). For the synthesis of 2-amino thiophenes, see: Gewald (1965); Gewald et al. (1966); Sridhar et al. (2007). For related structures, see: Stephenson et al. (1995); Yu (2002); Chen et al. (2005). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1997); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810017149/dn2562sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017149/dn2562Isup2.hkl
To a stirred suspension mixture of dry THF (20 ml) and NaH (0,105 mol) at 0 °C under nitrogen was added dropwise a solution of 2-amino-5,6,7,8- tetrahydro-4H-ciclohepta[b]thiophene-3-carbonitrile (0,07 mol), o-fluoro-nitrobenzene (0,07 mol) in 80 ml of dry THF. The reaction mixture was stirred under room temperature for 22 h. The resulting mixture was adjusted to pH = 5 with hydroclorid acid 2 N and them extracted with CHCl3. The extracted was washed with aqueous Na2CO3, water, dried (CaCl2) and evaporated under reduced pression. The dark red solid obtained was purified by recrystallization from absolute ethanol, affording the title compound as red crystals (21.4 g, (98%), m.p. 100-102 °C)(Gewald, 1965; Gewald et al., 1966; Sridhar et al., 2007). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation at room temperature of a solution of the pure title compound in ethanol/dichloromethane (1:1).
NMR 1H (200 MHz, CDCl3) δ : 1.60-1.70 (m, 4H), 1.80-1.90 (m, 2H), 2,70-2,80 (m, 4H), 6.90 (dt, 1H, J = 8.6, 1.6 Hz), 7.20 (dd, 1H, J = 8.6, 0.8 Hz), 7.5 (dt, 1H, J = 8.6, 8.2 Hz), 8.2 (dd, 1H, J = 8.4, 1.6 Hz), 9.6 (s, 1H).
NMR 13C (200 MHz, CDCl3) δ : 27.2-31.9 (5 CH2), 107.7, 113.9, 116.1, 119.5, 126.6, 133.9, 135.7, 136.1, 139.0, 141.4, 145.3.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N).The maximum and minimum residual electron density peaks were located 1.10 and 0.78 Å, from the H4A and S1 atoms respectively.
The various uses of 2-substituted thiophenes have been well documented (Campaigne, 1984; Kleemann et al., 2006). Amongst these appplications, are neuroleptics activities, as found for a series of thienobenzodiazepines (Chakrabarti et al., 1982; Calligaro et al., 1997; Nikolakopoulos et al., 2006). In this work, we report the structure of the title compound prepared by the reaction of 2-amino-5,6,7, 8-tetrahydro-4H-ciclohepta[b]thiophene-3- carbonitrile and o-fluoro- nitrobenzene.
As indicated in the literature, compounds that presents o-nitrophenyl group linked to 2-amino-thiophene ring have great potential to produce crystalline structures, as found in 5-methyl-2-[(2-nitrophenyl)-amino]- thiophene-3-carbonitrile (ROY), that presents seven polymorphs coexisting at room temperature (Stephenson et al., 1995; Yu, 2002; Chen et al., 2005).
In the title compound,the least squares plane passing through all atoms of thiophene and nitrophenyl rings, and amino and carbonitrile groups, show planarity with maximum deviation of [0.046 (2) Å] for atom N3 (Fig.1). Bond lengths and angles are in good agreement with the expected values reported in the literature (Allen et al., 1987). The cyclohepta ring adopts a chair conformation and the calculated puckering parameters are: q2 = 0.175 (9) Å, q3 = 0.619 (9) Å, QT = 0.643 (9) Å, θ = 15.8 (9)° , φ2 = 56.1 (8)° and φ3 = 78.4 (8)° (Cremer & Pople, 1975).
In the molecule there are, intramolecular N–H··· O, C—H··· O and C—H··· S interactions that are responsible for the roughly planar arrangement (Table 1). In the packing molecules form layers that extends along a direction parallel to the (100) plane, and are linked by π-π stacking interactions between thiophene [Cg1] and benzene [Cg2] rings(Table 2, Fig. 2).
For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For the biological activity of 2-amino thiophene derivatives, see: Chakrabarti et al. (1982); Calligaro et al. (1997); Nikolakopoulos et al. (2006). For the synthesis of 2-amino thiophenes, see: Gewald (1965); Gewald et al. (1966); Sridhar et al. (2007). For related structures, see: Stephenson et al. (1995); Yu (2002); Chen et al. (2005). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).
Data collection: COLLECT (Nonius, 1997); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H15N3O2S | F(000) = 656 |
Mr = 313.37 | Dx = 1.388 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6392 reflections |
a = 7.0273 (3) Å | θ = 2.9–26.7° |
b = 14.4569 (6) Å | µ = 0.23 mm−1 |
c = 14.8867 (7) Å | T = 295 K |
β = 97.571 (2)° | Prism, colorless |
V = 1499.18 (11) Å3 | 0.35 × 0.32 × 0.27 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2452 reflections with I > 2σ(I) |
Radiation source: Enraf Nonius FR590 | Rint = 0.046 |
Horizonally mounted graphite crystal monochromator | θmax = 26.6°, θmin = 3.1° |
Detector resolution: 9 pixels mm-1 | h = −8→8 |
CCD rotation images,thick slices scans | k = −15→18 |
9360 measured reflections | l = −18→18 |
3147 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1026P)2 + 0.1476P] where P = (Fo2 + 2Fc2)/3 |
3147 reflections | (Δ/σ)max = 0.001 |
200 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C16H15N3O2S | V = 1499.18 (11) Å3 |
Mr = 313.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.0273 (3) Å | µ = 0.23 mm−1 |
b = 14.4569 (6) Å | T = 295 K |
c = 14.8867 (7) Å | 0.35 × 0.32 × 0.27 mm |
β = 97.571 (2)° |
Nonius KappaCCD diffractometer | 2452 reflections with I > 2σ(I) |
9360 measured reflections | Rint = 0.046 |
3147 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.29 e Å−3 |
3147 reflections | Δρmin = −0.31 e Å−3 |
200 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.29875 (7) | 0.33887 (3) | 0.05524 (3) | 0.0529 (2) | |
O1 | 0.1864 (3) | 0.64817 (11) | −0.14472 (10) | 0.0763 (5) | |
O2 | 0.1729 (3) | 0.78484 (12) | −0.09126 (12) | 0.0887 (6) | |
N1 | 0.2433 (2) | 0.50661 (11) | −0.03762 (10) | 0.0531 (4) | |
H1 | 0.2277 | 0.5305 | −0.0910 | 0.064* | |
N2 | 0.1906 (2) | 0.70191 (13) | −0.07994 (12) | 0.0594 (4) | |
N3 | 0.2128 (4) | 0.44432 (17) | −0.26828 (13) | 0.0871 (7) | |
C1 | 0.2620 (2) | 0.41167 (13) | −0.03697 (12) | 0.0474 (4) | |
C2 | 0.2544 (3) | 0.36042 (14) | −0.11578 (12) | 0.0501 (4) | |
C3 | 0.2772 (3) | 0.26261 (14) | −0.10156 (13) | 0.0527 (5) | |
C4 | 0.2731 (4) | 0.19525 (16) | −0.17935 (14) | 0.0673 (6) | |
H4A | 0.4041 | 0.1775 | −0.1850 | 0.081* | |
H4B | 0.2221 | 0.2269 | −0.2348 | 0.081* | |
C5 | 0.1554 (3) | 0.10721 (16) | −0.17147 (15) | 0.0688 (6) | |
H5A | 0.0271 | 0.1251 | −0.1609 | 0.083* | |
H5B | 0.1438 | 0.0750 | −0.2291 | 0.083* | |
C6 | 0.2345 (4) | 0.04019 (15) | −0.09784 (16) | 0.0707 (6) | |
H6A | 0.3688 | 0.0293 | −0.1031 | 0.085* | |
H6B | 0.1677 | −0.0183 | −0.1086 | 0.085* | |
C7 | 0.2190 (4) | 0.07060 (16) | −0.00136 (16) | 0.0710 (6) | |
H7A | 0.0872 | 0.0888 | 0.0021 | 0.085* | |
H7B | 0.2471 | 0.0179 | 0.0385 | 0.085* | |
C8 | 0.3487 (4) | 0.14916 (15) | 0.03367 (16) | 0.0669 (6) | |
H8A | 0.4798 | 0.1324 | 0.0270 | 0.080* | |
H8B | 0.3418 | 0.1564 | 0.0979 | 0.080* | |
C9 | 0.3044 (3) | 0.24118 (14) | −0.01205 (13) | 0.0551 (5) | |
C10 | 0.2447 (2) | 0.57016 (13) | 0.03089 (12) | 0.0473 (4) | |
C11 | 0.2192 (3) | 0.66561 (13) | 0.01206 (13) | 0.0491 (4) | |
C12 | 0.2185 (3) | 0.73041 (15) | 0.08074 (14) | 0.0587 (5) | |
H12 | 0.2012 | 0.7927 | 0.0663 | 0.070* | |
C13 | 0.2430 (3) | 0.70360 (16) | 0.16918 (15) | 0.0635 (5) | |
H13 | 0.2427 | 0.7472 | 0.2151 | 0.076* | |
C14 | 0.2683 (3) | 0.61106 (16) | 0.18993 (14) | 0.0636 (5) | |
H14 | 0.2845 | 0.5924 | 0.2503 | 0.076* | |
C15 | 0.2700 (3) | 0.54584 (15) | 0.12264 (13) | 0.0594 (5) | |
H15 | 0.2884 | 0.4840 | 0.1386 | 0.071* | |
C16 | 0.2285 (3) | 0.40474 (15) | −0.20159 (13) | 0.0594 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0672 (3) | 0.0504 (3) | 0.0413 (3) | −0.00605 (19) | 0.0074 (2) | 0.00132 (18) |
O1 | 0.1190 (14) | 0.0599 (10) | 0.0478 (8) | −0.0002 (8) | 0.0034 (8) | 0.0025 (7) |
O2 | 0.1394 (16) | 0.0503 (10) | 0.0753 (11) | 0.0042 (9) | 0.0103 (10) | 0.0123 (8) |
N1 | 0.0707 (10) | 0.0480 (9) | 0.0407 (8) | −0.0010 (7) | 0.0077 (7) | 0.0000 (7) |
N2 | 0.0684 (10) | 0.0538 (10) | 0.0558 (10) | −0.0019 (7) | 0.0072 (8) | 0.0042 (8) |
N3 | 0.1274 (18) | 0.0861 (15) | 0.0481 (11) | 0.0209 (13) | 0.0123 (10) | 0.0112 (10) |
C1 | 0.0508 (9) | 0.0485 (10) | 0.0427 (9) | −0.0040 (7) | 0.0061 (7) | 0.0005 (7) |
C2 | 0.0563 (10) | 0.0523 (10) | 0.0422 (9) | −0.0028 (8) | 0.0078 (7) | 0.0000 (8) |
C3 | 0.0604 (10) | 0.0505 (10) | 0.0475 (10) | −0.0033 (8) | 0.0084 (8) | −0.0032 (8) |
C4 | 0.0929 (15) | 0.0587 (12) | 0.0513 (11) | −0.0070 (11) | 0.0131 (10) | −0.0077 (10) |
C5 | 0.0836 (14) | 0.0569 (12) | 0.0647 (13) | 0.0012 (10) | 0.0048 (11) | −0.0140 (10) |
C6 | 0.0909 (16) | 0.0494 (12) | 0.0705 (14) | −0.0006 (11) | 0.0057 (11) | −0.0047 (10) |
C7 | 0.0915 (15) | 0.0502 (12) | 0.0715 (14) | −0.0034 (10) | 0.0116 (11) | 0.0040 (11) |
C8 | 0.0859 (14) | 0.0559 (13) | 0.0566 (12) | −0.0038 (10) | 0.0010 (10) | 0.0049 (9) |
C9 | 0.0650 (11) | 0.0505 (11) | 0.0497 (10) | −0.0063 (8) | 0.0069 (8) | −0.0009 (8) |
C10 | 0.0481 (9) | 0.0511 (10) | 0.0432 (9) | −0.0042 (7) | 0.0081 (7) | −0.0011 (8) |
C11 | 0.0493 (9) | 0.0508 (11) | 0.0474 (10) | −0.0045 (7) | 0.0071 (7) | 0.0001 (7) |
C12 | 0.0653 (11) | 0.0520 (11) | 0.0597 (12) | 0.0000 (9) | 0.0120 (9) | −0.0070 (9) |
C13 | 0.0725 (13) | 0.0632 (13) | 0.0569 (11) | −0.0048 (10) | 0.0169 (9) | −0.0144 (10) |
C14 | 0.0811 (13) | 0.0665 (13) | 0.0448 (11) | −0.0042 (10) | 0.0147 (9) | −0.0043 (9) |
C15 | 0.0786 (13) | 0.0532 (11) | 0.0478 (11) | −0.0023 (10) | 0.0134 (9) | 0.0008 (9) |
C16 | 0.0750 (12) | 0.0587 (12) | 0.0442 (10) | 0.0058 (9) | 0.0066 (8) | −0.0043 (9) |
S1—C1 | 1.7220 (18) | C6—C7 | 1.520 (3) |
S1—C9 | 1.735 (2) | C6—H6A | 0.9700 |
O1—N2 | 1.236 (2) | C6—H6B | 0.9700 |
O2—N2 | 1.215 (2) | C7—C8 | 1.506 (3) |
N1—C10 | 1.372 (2) | C7—H7A | 0.9700 |
N1—C1 | 1.379 (2) | C7—H7B | 0.9700 |
N1—H1 | 0.8600 | C8—C9 | 1.508 (3) |
N2—C11 | 1.456 (2) | C8—H8A | 0.9700 |
N3—C16 | 1.139 (3) | C8—H8B | 0.9700 |
C1—C2 | 1.383 (2) | C10—C15 | 1.399 (3) |
C2—C16 | 1.419 (3) | C10—C11 | 1.415 (3) |
C2—C3 | 1.436 (3) | C11—C12 | 1.387 (3) |
C3—C9 | 1.357 (3) | C12—C13 | 1.361 (3) |
C3—C4 | 1.510 (3) | C12—H12 | 0.9300 |
C4—C5 | 1.531 (3) | C13—C14 | 1.379 (3) |
C4—H4A | 0.9700 | C13—H13 | 0.9300 |
C4—H4B | 0.9700 | C14—C15 | 1.377 (3) |
C5—C6 | 1.513 (3) | C14—H14 | 0.9300 |
C5—H5A | 0.9700 | C15—H15 | 0.9300 |
C5—H5B | 0.9700 | ||
C1—S1—C9 | 92.84 (9) | C8—C7—C6 | 115.5 (2) |
C10—N1—C1 | 132.09 (16) | C8—C7—H7A | 108.4 |
C10—N1—H1 | 114.0 | C6—C7—H7A | 108.4 |
C1—N1—H1 | 114.0 | C8—C7—H7B | 108.4 |
O2—N2—O1 | 121.38 (19) | C6—C7—H7B | 108.4 |
O2—N2—C11 | 119.03 (18) | H7A—C7—H7B | 107.5 |
O1—N2—C11 | 119.59 (17) | C7—C8—C9 | 115.43 (19) |
N1—C1—C2 | 122.32 (17) | C7—C8—H8A | 108.4 |
N1—C1—S1 | 128.18 (14) | C9—C8—H8A | 108.4 |
C2—C1—S1 | 109.50 (14) | C7—C8—H8B | 108.4 |
C1—C2—C16 | 120.52 (18) | C9—C8—H8B | 108.4 |
C1—C2—C3 | 114.31 (17) | H8A—C8—H8B | 107.5 |
C16—C2—C3 | 125.17 (18) | C3—C9—C8 | 129.69 (19) |
C9—C3—C2 | 111.61 (17) | C3—C9—S1 | 111.73 (15) |
C9—C3—C4 | 126.28 (19) | C8—C9—S1 | 118.46 (15) |
C2—C3—C4 | 122.11 (18) | N1—C10—C15 | 123.03 (18) |
C3—C4—C5 | 115.66 (17) | N1—C10—C11 | 121.17 (16) |
C3—C4—H4A | 108.4 | C15—C10—C11 | 115.79 (17) |
C5—C4—H4A | 108.4 | C12—C11—C10 | 121.68 (18) |
C3—C4—H4B | 108.4 | C12—C11—N2 | 115.89 (18) |
C5—C4—H4B | 108.4 | C10—C11—N2 | 122.43 (16) |
H4A—C4—H4B | 107.4 | C13—C12—C11 | 120.6 (2) |
C6—C5—C4 | 115.93 (19) | C13—C12—H12 | 119.7 |
C6—C5—H5A | 108.3 | C11—C12—H12 | 119.7 |
C4—C5—H5A | 108.3 | C12—C13—C14 | 119.26 (19) |
C6—C5—H5B | 108.3 | C12—C13—H13 | 120.4 |
C4—C5—H5B | 108.3 | C14—C13—H13 | 120.4 |
H5A—C5—H5B | 107.4 | C15—C14—C13 | 120.97 (19) |
C5—C6—C7 | 115.73 (19) | C15—C14—H14 | 119.5 |
C5—C6—H6A | 108.3 | C13—C14—H14 | 119.5 |
C7—C6—H6A | 108.3 | C14—C15—C10 | 121.7 (2) |
C5—C6—H6B | 108.3 | C14—C15—H15 | 119.1 |
C7—C6—H6B | 108.3 | C10—C15—H15 | 119.1 |
H6A—C6—H6B | 107.4 | N3—C16—C2 | 176.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.89 | 2.593 (2) | 138 |
C12—H12···O2 | 0.93 | 2.33 | 2.657 (3) | 100 |
C15—H15···S1 | 0.93 | 2.44 | 3.171 (2) | 135 |
Experimental details
Crystal data | |
Chemical formula | C16H15N3O2S |
Mr | 313.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.0273 (3), 14.4569 (6), 14.8867 (7) |
β (°) | 97.571 (2) |
V (Å3) | 1499.18 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.35 × 0.32 × 0.27 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9360, 3147, 2452 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.162, 1.07 |
No. of reflections | 3147 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.31 |
Computer programs: COLLECT (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.89 | 2.593 (2) | 138 |
C12—H12···O2 | 0.93 | 2.33 | 2.657 (3) | 100 |
C15—H15···S1 | 0.93 | 2.44 | 3.171 (2) | 135 |
Cg1···Cg2 | Cg1 to plane 2 | Cg2 to plane 1 | Offset | |
Cg1···Cg2i | 3.7089 (12) | -3.5039 (9) | -3.5021 (9) | 19.4 |
Cg1···Cg2ii | 3.6170 (12) | 3.4761 (9) | 3.4878 (9) | 16.0 |
Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z. |
Acknowledgements
This work has received partial support from CNPq, CAPES, FACEPE and FINEP.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19 CrossRef Google Scholar
Calligaro, D. O., Fairhurst, J., Hotten, T. M., Moore, N. A. & Tupper, D. E. (1997). Bioorg. Med. Chem. Lett. 7, 25–30. CrossRef CAS Web of Science Google Scholar
Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon. Google Scholar
Chakrabarti, J. K., Hotten, T. M., Morgan, S. E., Pullar, I. A., Rackham, D. M., Risius, F. C., Wedley, S., Chaney, M. & Jones, N. D. (1982). J. Med. Chem. 25, 1133–1140. CrossRef CAS PubMed Web of Science Google Scholar
Chen, S., Guzei, I. A. & Yu, L. (2005). J. Am. Chem. Soc. 127, 9881–9885. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gewald, K. (1965). Chem. Ber. 98, 3571–3577. CrossRef CAS Web of Science Google Scholar
Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 99–100. Google Scholar
Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag. Google Scholar
Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. J. (2006). Bioorg. Med. Chem. 14, 2358–2365. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, M., Rao, R. M., Baba, N. H. K. & Kumbhare, R. M. (2007). Tetrahedron Lett. 48, 3171–3172. Web of Science CrossRef CAS Google Scholar
Stephenson, G. A., Borchardt, T. B., Byrn, S. R., Bowyer, J., Bunnell, C. A., Snorek, S. V. & Yu, L. (1995). J. Pharm. Sci. 84, 1385–1386. CrossRef CAS PubMed Web of Science Google Scholar
Yu, L. (2002). J. Phys. Chem. A, 106, 544–550. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The various uses of 2-substituted thiophenes have been well documented (Campaigne, 1984; Kleemann et al., 2006). Amongst these appplications, are neuroleptics activities, as found for a series of thienobenzodiazepines (Chakrabarti et al., 1982; Calligaro et al., 1997; Nikolakopoulos et al., 2006). In this work, we report the structure of the title compound prepared by the reaction of 2-amino-5,6,7, 8-tetrahydro-4H-ciclohepta[b]thiophene-3- carbonitrile and o-fluoro- nitrobenzene.
As indicated in the literature, compounds that presents o-nitrophenyl group linked to 2-amino-thiophene ring have great potential to produce crystalline structures, as found in 5-methyl-2-[(2-nitrophenyl)-amino]- thiophene-3-carbonitrile (ROY), that presents seven polymorphs coexisting at room temperature (Stephenson et al., 1995; Yu, 2002; Chen et al., 2005).
In the title compound,the least squares plane passing through all atoms of thiophene and nitrophenyl rings, and amino and carbonitrile groups, show planarity with maximum deviation of [0.046 (2) Å] for atom N3 (Fig.1). Bond lengths and angles are in good agreement with the expected values reported in the literature (Allen et al., 1987). The cyclohepta ring adopts a chair conformation and the calculated puckering parameters are: q2 = 0.175 (9) Å, q3 = 0.619 (9) Å, QT = 0.643 (9) Å, θ = 15.8 (9)° , φ2 = 56.1 (8)° and φ3 = 78.4 (8)° (Cremer & Pople, 1975).
In the molecule there are, intramolecular N–H··· O, C—H··· O and C—H··· S interactions that are responsible for the roughly planar arrangement (Table 1). In the packing molecules form layers that extends along a direction parallel to the (100) plane, and are linked by π-π stacking interactions between thiophene [Cg1] and benzene [Cg2] rings(Table 2, Fig. 2).