organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Sulfamoylanilinium chloride

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar, 2092 Tunis, Tunisia
*Correspondence e-mail: donia_zgolli@hotmail.com

(Received 14 May 2010; accepted 24 May 2010; online 29 May 2010)

In the crystal structure of the title compound, C6H9N2O2S+·Cl, the chloride anions are sandwiched between layers of 4-sulfonamido­anilinium anions. The components interact by way of N—H⋯Cl and N—H⋯O hydrogen bonds, building up a three-dimensional network.

Related literature

For the biological activity of diamines, see: Pasini & Zunino (1987[Pasini, A. & Zunino, F. (1987). Angew. Chem. Int. Ed. Engl. 26, 615-624.]); Otsuka et al. (1990[Otsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Sugiura, Y. & Maedda, K. (1990). J. Am. Chem. Soc. 112, 838-845.]); Michalson & Smuszkovicz (1989[Michalson, E. T. & Smuszkovicz, J. (1989). Prog. Drug. Res. 33, 135-149.]); Reedijk et al. (1996[Reedijk, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 801-806.]). For their use in asymmetric catalysis, see: Blaser (1992[Blaser, H. U. (1992). Chem. Rev. 92, 935-952.]). For related structures, see: Chatterjee et al. (1981[Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835-1838.]); Gelbrich et al. (2008[Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205-o207.]); Gelmboldt et al. (2004[Gelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem. 125, 1951-1957]); Smith et al. (2001[Smith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036-o1038.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2O2S+·Cl

  • Mr = 208.66

  • Orthorhombic, P b n b

  • a = 7.4608 (2) Å

  • b = 7.7278 (2) Å

  • c = 31.694 (2) Å

  • V = 1827.35 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.982, Tmax = 0.994

  • 2906 measured reflections

  • 1989 independent reflections

  • 1442 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.182

  • S = 1.07

  • 1989 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 2.30 3.122 (3) 153
N1—H1B⋯Cl1i 0.89 2.32 3.097 (3) 146
N1—H1C⋯Cl1ii 0.89 2.33 3.189 (3) 162
N2—H21⋯O1iii 0.84 2.22 2.963 (5) 147
N2—H22⋯O2iv 0.85 2.17 3.019 (5) 178
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The diamine compounds are important in biologically active natural products (Pasini & Zunino, 1987; Otsuka et al., 1990), in medicinal chemistry (Michalson & Smuszkovicz, 1989; Reedijk, 1996). They are also used as chiral auxiliaries and chiral ligands in asymmetric catalysis (Blaser, 1992). Here, a new member of this family, (C6H9N2O2S)+.Cl-, is presented.

It was obtained during our investigations in organic chloride hybrids field. The crystal structure of the title compound contains a discrete cation with a protonated amino group (C6H9N2O2S)+.Cl- and a halide anion (Fig 1).

The molecular structure including both terminal N atoms has an all-trans conformation. The nitrogen N1 position is protonated in this structure and participates in hydrogen bonding with the chlorine anions. The layered crystal packing of 4-sulfonamidoanilinium chloride is shown in Fig 2. The cations form alterning layers of hydrophobic and hydrophilic zones along the c axis.

The chloride ions are located in the interlayer space. Two types of classical hydrogen bonds are observed: N—H···Cl and N—H···O . These interaction bonds link the cations and the anions together, forming a three-dimensional network and reinforcing the ionic structure cohesion ((Fig 3, Table 1). The organic cations interacts with the Cl- anion via hydrogen bonds, with N1—H···Cl distances ranging between 3.098 (3) Å and 3.191 (3) Å.

The packing is further consolidated through π-π stacking between symetry related benzene (3/2-x,-1/2+y,z) rings with centroid-to-centroid distance of 3.890 (2) Å and centroid-to-plane of 3.65 Å resulting in a slippage of 21°.

Selected geometrical parameters in (C6H9N2O2S)+ cation agree with those found in similar compounds, such as 4-aminobenzenesulfonamide (C6H8N2O2S) (Gelbrich et al., 2008), 4-homosulfanilamide hydrochloride (Chatterjee et al., 1981), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate ( Gelmboldt et al.,2004) and 4-sulfonamidoanilinium 3,5-dinitrosalicylate (C6H9N2O2S+.C7H3N2O7) (Smith et al., 2001).

Related literature top

For the biological activity of diamines, see: Pasini & Zunino (1987); Otsuka et al. (1990); Michalson & Smuszkovicz (1989); Reedijk et al. (1996). For their use in asymmetric catalysis, see: Blaser (1992). For related structures, see: Chatterjee et al. (1981); Gelbrich et al. (2008); Gelmboldt et al. (2004); Smith et al. (2001).

Experimental top

Colourless crystals of 4-sulfonamidoanilinium chloride suitable for single crystal X-ray analysis were obtained by slow evaporation at room temperature of an ethanol solution of sulphanilamide (Fluka, Purity >97%) and hydrochloric acid.

Refinement top

All H atoms attached to N were located in a difference map and allowed to refine freely.

H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93Å with Uiso(H) = 1.2Ueq(C).

Structure description top

The diamine compounds are important in biologically active natural products (Pasini & Zunino, 1987; Otsuka et al., 1990), in medicinal chemistry (Michalson & Smuszkovicz, 1989; Reedijk, 1996). They are also used as chiral auxiliaries and chiral ligands in asymmetric catalysis (Blaser, 1992). Here, a new member of this family, (C6H9N2O2S)+.Cl-, is presented.

It was obtained during our investigations in organic chloride hybrids field. The crystal structure of the title compound contains a discrete cation with a protonated amino group (C6H9N2O2S)+.Cl- and a halide anion (Fig 1).

The molecular structure including both terminal N atoms has an all-trans conformation. The nitrogen N1 position is protonated in this structure and participates in hydrogen bonding with the chlorine anions. The layered crystal packing of 4-sulfonamidoanilinium chloride is shown in Fig 2. The cations form alterning layers of hydrophobic and hydrophilic zones along the c axis.

The chloride ions are located in the interlayer space. Two types of classical hydrogen bonds are observed: N—H···Cl and N—H···O . These interaction bonds link the cations and the anions together, forming a three-dimensional network and reinforcing the ionic structure cohesion ((Fig 3, Table 1). The organic cations interacts with the Cl- anion via hydrogen bonds, with N1—H···Cl distances ranging between 3.098 (3) Å and 3.191 (3) Å.

The packing is further consolidated through π-π stacking between symetry related benzene (3/2-x,-1/2+y,z) rings with centroid-to-centroid distance of 3.890 (2) Å and centroid-to-plane of 3.65 Å resulting in a slippage of 21°.

Selected geometrical parameters in (C6H9N2O2S)+ cation agree with those found in similar compounds, such as 4-aminobenzenesulfonamide (C6H8N2O2S) (Gelbrich et al., 2008), 4-homosulfanilamide hydrochloride (Chatterjee et al., 1981), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate ( Gelmboldt et al.,2004) and 4-sulfonamidoanilinium 3,5-dinitrosalicylate (C6H9N2O2S+.C7H3N2O7) (Smith et al., 2001).

For the biological activity of diamines, see: Pasini & Zunino (1987); Otsuka et al. (1990); Michalson & Smuszkovicz (1989); Reedijk et al. (1996). For their use in asymmetric catalysis, see: Blaser (1992). For related structures, see: Chatterjee et al. (1981); Gelbrich et al. (2008); Gelmboldt et al. (2004); Smith et al. (2001).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Chemical diagram of the title compound.
[Figure 2] Fig. 2. Part of the crystal structure illustrating the alternating layers of hydrophobic and hydrophilic zones, viewed along the b axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the a axis showing the N—H···Cl/O interactions (dotted line). H atoms not involved in hydrogen bonding (dashe dlines) have been omitted for clarity. Displacement ellipsoids are drawn at 50%probability level.
4-Sulfamoylanilinium chloride top
Crystal data top
C6H9N2O2S+·ClF(000) = 864
Mr = 208.66Dx = 1.517 Mg m3
Orthorhombic, PbnbMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2bc 2abCell parameters from 25 reflections
a = 7.4608 (2) Åθ = 10–15°
b = 7.7278 (2) ŵ = 0.61 mm1
c = 31.694 (2) ÅT = 298 K
V = 1827.35 (13) Å3Prism, colourless
Z = 80.3 × 0.2 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1442 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.0°, θmin = 2.6°
Non–profiled ω/2θ scansh = 92
Absorption correction: ψ scan
(North et al., 1968)
k = 19
Tmin = 0.982, Tmax = 0.994l = 140
2906 measured reflections2 standard reflections every 120 min
1989 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1231P)2 + 0.2341P]
where P = (Fo2 + 2Fc2)/3
1989 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C6H9N2O2S+·ClV = 1827.35 (13) Å3
Mr = 208.66Z = 8
Orthorhombic, PbnbMo Kα radiation
a = 7.4608 (2) ŵ = 0.61 mm1
b = 7.7278 (2) ÅT = 298 K
c = 31.694 (2) Å0.3 × 0.2 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1442 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.982, Tmax = 0.9942 standard reflections every 120 min
2906 measured reflections intensity decay: none
1989 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
1989 reflectionsΔρmin = 0.44 e Å3
110 parameters
Special details top

Experimental. Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al., 1968).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01848 (14)0.91801 (12)0.80899 (3)0.0494 (3)
O10.0885 (5)1.0213 (4)0.78197 (10)0.0826 (11)
O20.1835 (5)0.9862 (4)0.82564 (9)0.0718 (10)
N10.4306 (4)0.7241 (3)0.95815 (9)0.0394 (6)
H1A0.48630.81850.96750.059*
H1B0.51140.64430.95120.059*
H1C0.35960.68280.97830.059*
N20.0703 (5)0.7452 (5)0.78407 (10)0.0623 (9)
H210.01270.70230.76940.075*
H220.13810.67330.79630.075*
C10.3224 (4)0.7679 (3)0.92096 (9)0.0317 (6)
C20.1373 (4)0.7587 (4)0.92407 (10)0.0402 (7)
H20.08330.72100.94890.048*
C30.0345 (4)0.8064 (5)0.88976 (10)0.0433 (7)
H30.08980.80260.89150.052*
C40.1162 (4)0.8597 (4)0.85296 (9)0.0368 (7)
C50.3026 (5)0.8677 (4)0.84957 (11)0.0438 (8)
H50.35630.90390.82460.053*
C60.4060 (4)0.8208 (4)0.88399 (11)0.0444 (7)
H60.53040.82460.88240.053*
Cl10.72981 (10)1.00078 (9)0.97197 (3)0.0408 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (6)0.0496 (5)0.0396 (5)0.0060 (4)0.0092 (4)0.0052 (4)
O10.097 (3)0.084 (2)0.066 (2)0.0156 (19)0.015 (2)0.0379 (16)
O20.0707 (18)0.084 (2)0.0607 (19)0.0399 (17)0.0180 (16)0.0076 (15)
N10.0340 (12)0.0321 (13)0.0521 (16)0.0016 (10)0.0096 (11)0.0030 (11)
N20.067 (2)0.075 (2)0.0450 (17)0.0057 (18)0.0046 (16)0.0158 (15)
C10.0284 (12)0.0237 (12)0.0432 (16)0.0010 (11)0.0005 (12)0.0017 (11)
C20.0327 (15)0.0508 (17)0.0373 (15)0.0017 (14)0.0024 (12)0.0058 (13)
C30.0273 (13)0.0593 (19)0.0431 (18)0.0005 (14)0.0008 (13)0.0031 (15)
C40.0395 (16)0.0311 (14)0.0397 (17)0.0025 (12)0.0044 (13)0.0011 (12)
C50.0416 (17)0.0449 (18)0.0450 (19)0.0025 (14)0.0098 (13)0.0050 (14)
C60.0306 (14)0.0488 (18)0.0536 (19)0.0019 (14)0.0052 (14)0.0001 (15)
Cl10.0310 (4)0.0328 (5)0.0586 (6)0.0038 (3)0.0016 (3)0.0013 (3)
Geometric parameters (Å, º) top
S1—O11.417 (3)C1—C21.386 (4)
S1—O21.439 (4)C1—C61.389 (4)
S1—N21.599 (3)C2—C31.381 (4)
S1—C41.776 (3)C2—H20.9300
N1—C11.468 (4)C3—C41.379 (4)
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C4—C51.396 (5)
N1—H1C0.8900C5—C61.384 (5)
N2—H210.8433C5—H50.9300
N2—H220.8457C6—H60.9300
O1—S1—O2119.8 (2)C6—C1—N1119.9 (3)
O1—S1—N2107.9 (2)C3—C2—C1118.9 (3)
O2—S1—N2106.3 (2)C3—C2—H2120.5
O1—S1—C4107.35 (18)C1—C2—H2120.5
O2—S1—C4106.81 (16)C4—C3—C2120.0 (3)
N2—S1—C4108.23 (17)C4—C3—H3120.0
C1—N1—H1A109.5C2—C3—H3120.0
C1—N1—H1B109.5C3—C4—C5121.2 (3)
H1A—N1—H1B109.5C3—C4—S1119.3 (2)
C1—N1—H1C109.5C5—C4—S1119.5 (2)
H1A—N1—H1C109.5C6—C5—C4118.9 (3)
H1B—N1—H1C109.5C6—C5—H5120.5
S1—N2—H21115.1C4—C5—H5120.5
S1—N2—H22117.9C5—C6—C1119.4 (3)
H21—N2—H22115.7C5—C6—H6120.3
C2—C1—C6121.5 (3)C1—C6—H6120.3
C2—C1—N1118.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.303.122 (3)153
N1—H1B···Cl1i0.892.323.097 (3)146
N1—H1C···Cl1ii0.892.333.189 (3)162
N2—H21···O1iii0.842.222.963 (5)147
N2—H22···O2iv0.852.173.019 (5)178
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+3/2, z+2; (iii) x, y1/2, z+3/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC6H9N2O2S+·Cl
Mr208.66
Crystal system, space groupOrthorhombic, Pbnb
Temperature (K)298
a, b, c (Å)7.4608 (2), 7.7278 (2), 31.694 (2)
V3)1827.35 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.982, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
2906, 1989, 1442
Rint0.033
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.182, 1.07
No. of reflections1989
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.303.122 (3)152.9
N1—H1B···Cl1i0.892.323.097 (3)145.5
N1—H1C···Cl1ii0.892.333.189 (3)162.1
N2—H21···O1iii0.842.222.963 (5)147.2
N2—H22···O2iv0.852.173.019 (5)178.0
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+3/2, z+2; (iii) x, y1/2, z+3/2; (iv) x1/2, y1/2, z.
 

References

First citationBlaser, H. U. (1992). Chem. Rev. 92, 935–952.  CrossRef CAS Web of Science Google Scholar
First citationChatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem. 125, 1951–1957  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne.  Google Scholar
First citationMichalson, E. T. & Smuszkovicz, J. (1989). Prog. Drug. Res. 33, 135–149.  CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOtsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Sugiura, Y. & Maedda, K. (1990). J. Am. Chem. Soc. 112, 838–845.  CrossRef CAS Web of Science Google Scholar
First citationPasini, A. & Zunino, F. (1987). Angew. Chem. Int. Ed. Engl. 26, 615–624.  CrossRef Web of Science Google Scholar
First citationReedijk, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 801–806.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036–o1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds