metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ6-2-methyl-3,5-di­nitro­benzoato)potassium]

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, and bInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: drdanish62@gmail.com

(Received 31 March 2010; accepted 26 April 2010; online 8 May 2010)

In the structure of the title coordination polymer, [K(C8H5N2O6)]n, each ligand bridges six K+ cations. The carboxyl­ate group coordinates both bidentately to one K+ ion and monodentately to two K+ ions, while one nitro group coordinates bidentately to a fourth K+ ion. The last two K+ ions are coordinated by the remaining nitro group, one in a bidentate fashion, the other monodentately through one O atom. This bridging mode results in a three-dimensional network. The coordination geometry of the K+ ion is represented by an irregular KO9 polyhedron. Very weak C—H⋯O inter­actions are observed in the crystal structure.

Related literature

Tin complexes with organic ligands have attracted considerable inter­est due to their biological activity, see, for example: Shahzadi et al. (2007[Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem. 33, 403-411.]). For the structure of a sodium(I) complex with the 2-methyl-3,5-dinitro-benzoate ligand, see: Danish et al. (2010[Danish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C8H5N2O6)]

  • Mr = 264.24

  • Monoclinic, P 21 /c

  • a = 8.1632 (16) Å

  • b = 16.998 (3) Å

  • c = 7.0684 (14) Å

  • β = 90.49 (3)°

  • V = 980.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.43 × 0.32 × 0.22 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England]) Tmin = 0.889, Tmax = 0.920

  • 3035 measured reflections

  • 2855 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections every 200 reflections intensity decay: 0.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.06

  • 2855 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.93 2.59 3.518 (2) 174
C8—H81⋯O4ii 0.96 2.84 3.576 (3) 134
C8—H82⋯O2iii 0.96 2.78 3.610 (2) 146
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Methyl-benzoic acids have been studied as precursors in the synthesis of biologically active tin(IV) complexes (Shahzadi et al., 2007). The structure of compound (1) is a three-dimensional polymeric network in which K+ ions are bridged by carboxylate and nitro-group O atoms of the ligand (Fig. 1). The ligand's carboxylate group coordinates bidentately to K1. Its oxygen atoms also coordinate to K1(i) and K1(ii) [symmetry codes: (i) x,-y-3/2,z-1/2; (ii) x,-y+3/2,z+1/2]. The planes formed by atoms K1/O1/K1(i)/O2(i) and K1/O2/K1(ii)/O1(ii), each with s.u.s of 0.1326 (2) Å, make angles of 8.7 (1)° with the C7/O1/O2 plane forming a zig-zag molecular ribbon. A three-dimensional network (Fig. 2) composed of the ribbons inter-connected by nitro-groups represents the stucture of the title compound. The N1/O3/O4 nitro-group coordinates bidentately to K1(vii); N2/O5/O6 is chelated to the K1(vi), however, the O6 atom is also linked to K1(iv). The carboxylic group C7/O1/O2 makes an angle of 38.0 (1)° to the methylbenzene ring, while the nitro-groups N1/O3/O4 and N2/O5/O6 are oriented at angles of 6.7 (1)° and 35.5 (1)°, respectively. K1 is nine-coordinate with a complicated geometry, while the coordination environment of a Na(I) ion in the complex with the same ligand consists of seven O atoms (Danish et al., 2010). Very weak interactions of the C—H···O type are also operating.

Related literature top

Tin complexes with organic ligandshave attracted considerable interest due to their biological activity, see, for example: Shahzadi et al. (2007). For the structure of a sodium(I) complex with the 2-methyl-3,5-dinitro-benzoate ligand, see: Danish et al. (2010).

Experimental top

50 ml of aqueous solution containing 0.008 mol of 2-methyl-3,5-dinitro benzoic acid was added dropwise to 50 ml of an aqueous solution of potassium hydroxide (0.008 mol) with constant stirring at room temperature. The mixture was refluxed for 3 hours, then brought to room temperature and concentrated under reduced pressure. A brown solid was purified by repeated crystallization from ethanol-ethyl acetate (1:1) mixture to obtain brown single crystals.

Refinement top

H atoms attached to methyl and benzene-ring C atoms were positioned geometrically (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

#==============================================================================

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry codes: (i) x,-y-3/2,z-1/2; (ii) x,-y+3/2,z+1/2; (iii) -x,y-1/2,-z+3/2; (iv) -x+1,-y+2,-z+1; (v) -x+1,y-1/2,-z+1/2; (vi) -x+1,y+1/2;-z+1/2; (vii) -x,y+1/2,-z+3/2.
[Figure 2] Fig. 2. Packing diagram of the structure.
Poly[(µ6-2-methyl-3,5-dinitrobenzoato)potassium] top
Crystal data top
[K(C8H5N2O6)]F(000) = 536
Mr = 264.24Dx = 1.790 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.1632 (16) Åθ = 6–15°
b = 16.998 (3) ŵ = 0.56 mm1
c = 7.0684 (14) ÅT = 293 K
β = 90.49 (3)°Block, brown
V = 980.7 (3) Å30.43 × 0.32 × 0.22 mm
Z = 4
Data collection top
Kuma KM-4 four-circle
diffractometer
2200 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 30.1°, θmin = 2.4°
profile data from ω/2θ scansh = 110
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 023
Tmin = 0.889, Tmax = 0.920l = 99
3035 measured reflections3 standard reflections every 200 reflections
2855 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1144P)2 + 0.0549P]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[K(C8H5N2O6)]V = 980.7 (3) Å3
Mr = 264.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1632 (16) ŵ = 0.56 mm1
b = 16.998 (3) ÅT = 293 K
c = 7.0684 (14) Å0.43 × 0.32 × 0.22 mm
β = 90.49 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
2200 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.033
Tmin = 0.889, Tmax = 0.9203 standard reflections every 200 reflections
3035 measured reflections intensity decay: 0.7%
2855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.06Δρmax = 0.72 e Å3
2855 reflectionsΔρmin = 0.72 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.30646 (5)0.70455 (2)0.53719 (5)0.03281 (15)
C10.24609 (16)0.97819 (8)0.52276 (19)0.0220 (3)
C70.26751 (18)0.88921 (9)0.5373 (2)0.0246 (3)
C20.30932 (17)1.02265 (9)0.3727 (2)0.0233 (3)
C60.16004 (17)1.01430 (9)0.6686 (2)0.0255 (3)
H60.11790.98440.76700.031*
C30.28318 (19)1.10416 (9)0.3816 (2)0.0266 (3)
O10.25937 (19)0.85008 (8)0.38860 (17)0.0395 (3)
O60.39480 (19)1.22199 (8)0.2829 (2)0.0471 (4)
O20.28968 (18)0.86252 (8)0.69897 (17)0.0373 (3)
N10.04619 (18)1.13215 (9)0.8188 (2)0.0346 (3)
N20.34771 (18)1.15683 (9)0.2343 (2)0.0334 (3)
C50.13803 (18)1.09462 (9)0.6657 (2)0.0270 (3)
O50.3523 (2)1.13326 (10)0.0711 (2)0.0526 (4)
C80.4096 (2)0.98522 (10)0.2191 (2)0.0319 (3)
H810.34050.97390.11200.048*
H830.45730.93730.26560.048*
H820.49511.02070.18190.048*
C40.20004 (19)1.14170 (10)0.5248 (2)0.0295 (3)
H40.18661.19600.52610.035*
O30.0391 (2)1.20350 (9)0.8230 (3)0.0503 (4)
O40.0210 (2)1.08967 (10)0.9335 (2)0.0533 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0473 (3)0.0273 (2)0.0239 (2)0.00228 (13)0.00711 (15)0.00005 (11)
C10.0202 (6)0.0239 (6)0.0219 (6)0.0009 (5)0.0005 (5)0.0003 (5)
C70.0229 (6)0.0250 (7)0.0259 (7)0.0011 (5)0.0041 (5)0.0009 (5)
C20.0202 (6)0.0269 (7)0.0228 (6)0.0014 (5)0.0016 (5)0.0004 (5)
C60.0217 (6)0.0314 (8)0.0234 (6)0.0004 (5)0.0042 (5)0.0004 (5)
C30.0250 (7)0.0270 (7)0.0280 (7)0.0014 (5)0.0026 (5)0.0045 (5)
O10.0608 (9)0.0291 (6)0.0285 (6)0.0017 (6)0.0010 (5)0.0041 (5)
O60.0453 (8)0.0310 (7)0.0650 (10)0.0058 (5)0.0100 (7)0.0082 (6)
O20.0520 (8)0.0329 (6)0.0270 (6)0.0053 (5)0.0035 (5)0.0063 (5)
N10.0266 (7)0.0394 (8)0.0381 (7)0.0041 (5)0.0069 (5)0.0106 (6)
N20.0282 (6)0.0336 (7)0.0385 (7)0.0012 (5)0.0023 (6)0.0121 (6)
C50.0212 (6)0.0312 (7)0.0288 (7)0.0029 (5)0.0038 (5)0.0050 (6)
O50.0650 (10)0.0608 (10)0.0321 (7)0.0112 (8)0.0014 (7)0.0126 (6)
C80.0306 (7)0.0386 (9)0.0268 (7)0.0033 (6)0.0107 (6)0.0039 (6)
C40.0261 (7)0.0262 (7)0.0361 (8)0.0022 (5)0.0028 (6)0.0002 (6)
O30.0412 (8)0.0410 (8)0.0688 (10)0.0005 (5)0.0146 (7)0.0228 (7)
O40.0585 (10)0.0587 (9)0.0432 (8)0.0134 (7)0.0271 (7)0.0030 (7)
Geometric parameters (Å, º) top
K1—O2i2.6511 (13)C3—C41.380 (2)
K1—O1ii2.6826 (13)C3—N21.473 (2)
K1—O12.7133 (14)O1—K1i2.6826 (13)
K1—O22.9221 (14)O6—N21.221 (2)
K1—O3iii2.9974 (18)O6—K1iv3.0116 (18)
K1—O6iv3.0115 (18)O6—K1vi3.3541 (19)
K1—O4iii3.0485 (18)O2—K1ii2.6511 (13)
K1—O5v3.1388 (19)N1—O31.214 (2)
K1—C73.1548 (17)N1—O41.220 (2)
K1—N1iii3.2998 (16)N1—C51.468 (2)
K1—O6v3.3541 (19)N1—K1vii3.2997 (16)
K1—K1i3.8572 (7)N2—O51.222 (2)
C1—C61.395 (2)C5—C41.377 (2)
C1—C21.4042 (19)O5—K1vi3.1388 (19)
C1—C71.526 (2)C8—H810.9600
C7—O21.2414 (19)C8—H830.9600
C7—O11.2450 (19)C8—H820.9600
C2—C31.403 (2)C4—H40.9300
C2—C81.506 (2)O3—K1vii2.9973 (18)
C6—C51.377 (2)O4—K1vii3.0485 (17)
C6—H60.9300
O2i—K1—O1ii132.80 (4)O3iii—K1—K1i108.17 (4)
O2i—K1—O192.12 (4)O6iv—K1—K1i102.38 (4)
O1ii—K1—O1130.77 (4)O4iii—K1—K1i108.96 (4)
O2i—K1—O2138.23 (4)O5v—K1—K1i85.65 (4)
O1ii—K1—O287.03 (4)C7—K1—K1i66.58 (3)
O1—K1—O246.12 (4)N1iii—K1—K1i116.03 (4)
O2i—K1—O3iii104.67 (6)O6v—K1—K1i48.76 (3)
O1ii—K1—O3iii63.25 (5)C6—C1—C2120.82 (14)
O1—K1—O3iii90.14 (4)C6—C1—C7116.39 (13)
O2—K1—O3iii80.16 (5)C2—C1—C7122.79 (12)
O2i—K1—O6iv126.47 (5)O2—C7—O1126.02 (16)
O1ii—K1—O6iv82.79 (5)O2—C7—C1116.09 (13)
O1—K1—O6iv84.09 (5)O1—C7—C1117.88 (14)
O2—K1—O6iv59.62 (4)O2—C7—K167.84 (9)
O3iii—K1—O6iv128.64 (5)O1—C7—K158.19 (9)
O2i—K1—O4iii75.65 (5)C1—C7—K1176.06 (10)
O1ii—K1—O4iii66.40 (5)C3—C2—C1116.14 (13)
O1—K1—O4iii120.29 (5)C3—C2—C8122.20 (13)
O2—K1—O4iii121.57 (5)C1—C2—C8121.51 (14)
O3iii—K1—O4iii41.55 (5)C5—C6—C1119.43 (14)
O6iv—K1—O4iii148.60 (5)C5—C6—H6120.3
O2i—K1—O5v69.70 (5)C1—C6—H6120.3
O1ii—K1—O5v103.11 (5)C4—C3—C2124.41 (14)
O1—K1—O5v112.37 (5)C4—C3—N2114.73 (15)
O2—K1—O5v119.66 (5)C2—C3—N2120.86 (14)
O3iii—K1—O5v156.64 (5)C7—O1—K1i163.63 (12)
O6iv—K1—O5v62.99 (5)C7—O1—K198.86 (10)
O4iii—K1—O5v116.73 (5)K1i—O1—K191.26 (4)
O2i—K1—C7115.06 (4)N2—O6—K1iv138.32 (12)
O1ii—K1—C7109.20 (4)N2—O6—K1vi87.65 (10)
O1—K1—C722.95 (4)K1iv—O6—K1vi74.37 (4)
O2—K1—C723.17 (4)C7—O2—K1ii173.37 (12)
O3iii—K1—C784.88 (4)C7—O2—K189.00 (10)
O6iv—K1—C770.65 (4)K1ii—O2—K187.45 (4)
O4iii—K1—C7124.07 (5)O3—N1—O4123.59 (16)
O5v—K1—C7118.28 (5)O3—N1—C5118.47 (16)
O2i—K1—N1iii94.55 (5)O4—N1—C5117.93 (16)
O1ii—K1—N1iii56.83 (5)O3—N1—K1vii65.06 (9)
O1—K1—N1iii109.77 (5)O4—N1—K1vii67.48 (10)
O2—K1—N1iii100.25 (4)C5—N1—K1vii147.35 (11)
O3iii—K1—N1iii21.56 (4)O6—N2—O5123.42 (15)
O6iv—K1—N1iii136.87 (4)O6—N2—C3117.79 (15)
O4iii—K1—N1iii21.69 (4)O5—N2—C3118.79 (15)
O5v—K1—N1iii135.22 (5)C6—C5—C4122.57 (14)
C7—K1—N1iii106.43 (4)C6—C5—N1119.15 (14)
O2i—K1—O6v57.45 (4)C4—C5—N1118.28 (15)
O1ii—K1—O6v140.00 (5)N2—O5—K1vi97.94 (12)
O1—K1—O6v76.10 (4)C2—C8—H81109.5
O2—K1—O6v102.69 (4)C2—C8—H83109.5
O3iii—K1—O6v156.18 (5)H81—C8—H83109.5
O6iv—K1—O6v69.96 (4)C2—C8—H82109.5
O4iii—K1—O6v131.53 (4)H81—C8—H82109.5
O5v—K1—O6v38.52 (4)H83—C8—H82109.5
C7—K1—O6v89.20 (4)C5—C4—C3116.61 (15)
N1iii—K1—O6v151.93 (4)C5—C4—H4121.7
O2i—K1—K1i49.19 (3)C3—C4—H4121.7
O1ii—K1—K1i171.19 (3)N1—O3—K1vii93.38 (10)
O1—K1—K1i44.05 (3)N1—O4—K1vii90.82 (11)
O2—K1—K1i89.48 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+3/2; (iv) x+1, y+2, z+1; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4viii0.932.593.518 (2)174
C8—H81···O4ix0.962.843.576 (3)134
C8—H82···O2iv0.962.783.610 (2)146
Symmetry codes: (iv) x+1, y+2, z+1; (viii) x, y+2, z+2; (ix) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[K(C8H5N2O6)]
Mr264.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1632 (16), 16.998 (3), 7.0684 (14)
β (°) 90.49 (3)
V3)980.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.43 × 0.32 × 0.22
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.889, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
3035, 2855, 2200
Rint0.033
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.06
No. of reflections2855
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.72

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.593.518 (2)173.6
C8—H81···O4ii0.962.843.576 (3)134.4
C8—H82···O2iii0.962.783.610 (2)145.6
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

MD is grateful to the Australian Government for the award of Endeavour Post Doctoral Fellowships for the years 2009–2010.

References

First citationDanish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationShahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem. 33, 403–411.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds