organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Di­methyl­amino)methyl­­idene]-2-(4-nitro­phen­yl)-1,3-oxazol-5(4H)-one

aUniversidade Federal Fluminense, Departamento de Química Orgãnica, Instituto de Química, Outeiro de São João Baptista, 24020-141 Niterói, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 April 2010; accepted 19 May 2010; online 26 May 2010)

The title mol­ecule, C12H11N3O4, is essentially planar, the r.m.s. deviation for all non-H atoms being 0.068 Å. An intra­molecular C—H⋯N hydrogen bond occurs. The crystal packing is dominated by ππ inter­actions [shortest centroid–centroid distance = 3.6312 (16) Å], which lead to supra­molecular chains that are linked into a three-dimensional network via C—H⋯O contacts. The crystal was found to be a non-merohedral twin (twin law −1 0 0/0 −1 0/ 0.784 0 1), the fractional contribution of the minor component being approx­imately 22%.

Related literature

For the synthesis, synthetic uses and properties of 4-(N,N-di­methyl­amino­methyl­ene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994[Singh, K. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 232-235.], 2008[Singh, V. K. & Singh, D. (2008). Asian J. Chem. 20, 3349-3352.]); Takahashi & Izawa (2005[Takahashi, D. & Izawa, K. (2005). Eur. Patent 2004-256811 20041104.]); Singh et al. (1994[Singh, K. K., Singh, M. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 1119-1122.]); Kmetic & Stanovnik (1995[Kmetic, M. & Stanovnik, B. (1995). J. Heterocycl. Chem. 32, 1563-1565.]). For the Vilsmeier–Haack reaction, see: Meth-Cohn & Stanforth (1991[Meth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth. 2, 777-794.]). For related structures, see Vasuki et al. (2002[Vasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, o740-o741.]); Vijayalakshmi et al. (1998[Vijayalakshmi, L., Parthasarathi, V., Perumal, P. T. & Majo, V. J. (1998). Acta Cryst. C54, 1683-1685.]). For the treatment of twinned diffraction data, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O4

  • Mr = 261.24

  • Monoclinic, P 21 /c

  • a = 9.5313 (2) Å

  • b = 9.5204 (3) Å

  • c = 13.0349 (4) Å

  • β = 106.661 (2)°

  • V = 1133.15 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.42 × 0.38 × 0.22 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 1.000

  • 14210 measured reflections

  • 2581 independent reflections

  • 2030 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.220

  • S = 1.19

  • 2581 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5c⋯N1 0.98 2.28 3.074 (5) 137
C5—H5a⋯O2i 0.98 2.53 3.504 (4) 177
C5—H5c⋯O4ii 0.98 2.57 3.259 (5) 127
C9—H9⋯O1iii 0.95 2.56 3.304 (4) 135
C11—H11⋯O2iv 0.95 2.45 3.144 (4) 130
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The preparations of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives have been reported using the Vilsmeier-Haack reactions (Meth-Cohn & Stanforth, 1991) of acylaminoacetanilides with POCl3 and DMF (Singh & Singh, 1994; Takahashi & Izawa, 2005; Singh et al., 1994; Kmetic & Stanovnik, 1995). The compounds have been used as precursors of 4-hydroxymethylene-2-aryl-2-oxazolin-5-one, which have been tested for anti-bacterial activities (Singh & Singh, 2008). The crystal structures of 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and 4-(N,N-dimethylaminomethylene)-2-(2-nitrophenyl)-2-oxazolin-5-one (Vijayalakshmi et al., 1998) have been reported. We now report the crystal structure of 4-(N,N-dimethylaminomethylene)-2-(4-nitrophenyl)-2-oxazolin-5-one, (I).

The molecule of (I), Fig. 1, is essentially planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.157 (4) Å for atom C5 and -0.158 (3) for atom O4; the r.m.s. = 0.068 Å. The sequence of C1–N1, N1–C2, C2–C4, and C4–N2 bond distances of 1.289 (4), 1.398 (4), 1.382 (5), and 1.317 (4) Å, respectively, indicate substantial delocalisation of π-electron density over these atoms. The geometric parameters in (I) match closely those found in the parent compound, namely 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and in the 2-nitro derivative (Vijayalakshmi et al., 1998).

The crystal packing is dominated by C–H···O and ππ interactions; the N1 atom of the oxazolin-5-one is involved in an intramolecular C–H···N contact that shields this atom from forming intermolecular interactions, Table 1. Columns of molecules orientated along the b axis are stabilised by ππ contacts with the shortest of these occurring between centrosymmetrically related benzene rings [ring centroid(C7–C12)···ring centroid(C7–C12)i = 3.6312 (16) Å for i: 1-x, 1-y, 2-z]. The benzene rings also form ππ interactions with the oxazolin-5-one rings [ring centroid(C7–C12)···ring centroid(O1,N1,C1–C3)ii = 3.7645 (17) Å for ii: 1-x, -y, 2-z] to form a supramolecular chain, Fig. 2. The chains are connected by a series of C–H···O contacts, Table 1, to form a 3-D network, Fig. 3.

Related literature top

For the synthesis, synthetic uses and properties of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994, 2008); Takahashi & Izawa (2005); Singh et al. (1994); Kmetic & Stanovnik (1995). For the Vilsmeier–Haack reaction, see: Meth-Cohn & Stanforth (1991). For related structures, see Vasuki et al. (2002); Vijayalakshmi et al. (1998). For the treatment of twinned diffraction data, see: Spek (2009).

Experimental top

The title compound was prepared as per published procedures (Singh & Singh, 1994; Singh et al., 1994). Physical properties were in agreement with published data. The crystal used in the structure determination was grown from EtOH solution.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). For the treatment of twinned diffraction data, see: Spek (2009).

Structure description top

The preparations of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives have been reported using the Vilsmeier-Haack reactions (Meth-Cohn & Stanforth, 1991) of acylaminoacetanilides with POCl3 and DMF (Singh & Singh, 1994; Takahashi & Izawa, 2005; Singh et al., 1994; Kmetic & Stanovnik, 1995). The compounds have been used as precursors of 4-hydroxymethylene-2-aryl-2-oxazolin-5-one, which have been tested for anti-bacterial activities (Singh & Singh, 2008). The crystal structures of 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and 4-(N,N-dimethylaminomethylene)-2-(2-nitrophenyl)-2-oxazolin-5-one (Vijayalakshmi et al., 1998) have been reported. We now report the crystal structure of 4-(N,N-dimethylaminomethylene)-2-(4-nitrophenyl)-2-oxazolin-5-one, (I).

The molecule of (I), Fig. 1, is essentially planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.157 (4) Å for atom C5 and -0.158 (3) for atom O4; the r.m.s. = 0.068 Å. The sequence of C1–N1, N1–C2, C2–C4, and C4–N2 bond distances of 1.289 (4), 1.398 (4), 1.382 (5), and 1.317 (4) Å, respectively, indicate substantial delocalisation of π-electron density over these atoms. The geometric parameters in (I) match closely those found in the parent compound, namely 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and in the 2-nitro derivative (Vijayalakshmi et al., 1998).

The crystal packing is dominated by C–H···O and ππ interactions; the N1 atom of the oxazolin-5-one is involved in an intramolecular C–H···N contact that shields this atom from forming intermolecular interactions, Table 1. Columns of molecules orientated along the b axis are stabilised by ππ contacts with the shortest of these occurring between centrosymmetrically related benzene rings [ring centroid(C7–C12)···ring centroid(C7–C12)i = 3.6312 (16) Å for i: 1-x, 1-y, 2-z]. The benzene rings also form ππ interactions with the oxazolin-5-one rings [ring centroid(C7–C12)···ring centroid(O1,N1,C1–C3)ii = 3.7645 (17) Å for ii: 1-x, -y, 2-z] to form a supramolecular chain, Fig. 2. The chains are connected by a series of C–H···O contacts, Table 1, to form a 3-D network, Fig. 3.

For the synthesis, synthetic uses and properties of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994, 2008); Takahashi & Izawa (2005); Singh et al. (1994); Kmetic & Stanovnik (1995). For the Vilsmeier–Haack reaction, see: Meth-Cohn & Stanforth (1991). For related structures, see Vasuki et al. (2002); Vijayalakshmi et al. (1998). For the treatment of twinned diffraction data, see: Spek (2009).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain aligned along the b axis in (I) sustained by ππ intercations (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. View of the connections between chains in (I) with the C–H···O interactions shown as orange dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.
4-[(Dimethylamino)methylidene]-2-(4-nitrophenyl)-1,3-oxazol-5(4H)-one top
Crystal data top
C12H11N3O4F(000) = 544
Mr = 261.24Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2714 reflections
a = 9.5313 (2) Åθ = 2.9–27.5°
b = 9.5204 (3) ŵ = 0.12 mm1
c = 13.0349 (4) ÅT = 120 K
β = 106.661 (2)°Block, red
V = 1133.15 (6) Å30.42 × 0.38 × 0.22 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2581 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2030 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.1°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1211
Tmin = 0.661, Tmax = 1.000l = 1616
14210 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.0936P)2 + 1.6594P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
2581 reflectionsΔρmax = 0.33 e Å3
176 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (5)
Crystal data top
C12H11N3O4V = 1133.15 (6) Å3
Mr = 261.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5313 (2) ŵ = 0.12 mm1
b = 9.5204 (3) ÅT = 120 K
c = 13.0349 (4) Å0.42 × 0.38 × 0.22 mm
β = 106.661 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2030 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 1.000Rint = 0.071
14210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.19Δρmax = 0.33 e Å3
2581 reflectionsΔρmin = 0.30 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3806 (2)0.5986 (2)0.33548 (17)0.0197 (5)
O20.2556 (3)0.4481 (2)0.20576 (17)0.0239 (6)
O30.8419 (3)1.1001 (3)0.6327 (2)0.0324 (6)
O40.7443 (3)1.0746 (3)0.76142 (19)0.0307 (6)
N10.2875 (3)0.5457 (3)0.4711 (2)0.0180 (6)
N20.0528 (3)0.3059 (3)0.4441 (2)0.0203 (6)
N30.7556 (3)1.0430 (3)0.6733 (2)0.0209 (6)
C10.3786 (3)0.6220 (3)0.4393 (2)0.0166 (6)
C20.2186 (3)0.4617 (3)0.3831 (2)0.0179 (6)
C30.2761 (3)0.4921 (3)0.2958 (2)0.0195 (7)
C40.1130 (3)0.3590 (3)0.3735 (2)0.0189 (7)
H40.07780.31990.30380.023*
C50.0939 (4)0.3462 (4)0.5569 (3)0.0237 (7)
H5A0.13780.26550.60120.036*
H5B0.00660.37680.57610.036*
H5C0.16490.42330.56910.036*
C60.0548 (4)0.1947 (4)0.4138 (3)0.0284 (8)
H6A0.07800.17780.33660.043*
H6B0.14400.22230.43170.043*
H6C0.01520.10860.45260.043*
C70.4765 (3)0.7290 (3)0.4994 (2)0.0168 (6)
C80.4797 (3)0.7571 (3)0.6051 (2)0.0184 (6)
H80.41840.70560.63750.022*
C90.5715 (3)0.8590 (3)0.6624 (2)0.0185 (6)
H90.57350.87940.73420.022*
C100.6608 (3)0.9314 (3)0.6135 (2)0.0178 (6)
C110.6608 (3)0.9058 (3)0.5089 (2)0.0173 (6)
H110.72310.95710.47720.021*
C120.5676 (3)0.8035 (3)0.4519 (2)0.0175 (6)
H120.56550.78380.38000.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (12)0.0203 (11)0.0177 (11)0.0022 (9)0.0105 (9)0.0010 (8)
O20.0307 (13)0.0242 (12)0.0187 (11)0.0017 (10)0.0100 (10)0.0029 (9)
O30.0323 (14)0.0382 (15)0.0291 (13)0.0147 (12)0.0127 (11)0.0044 (11)
O40.0397 (15)0.0328 (14)0.0219 (12)0.0061 (12)0.0125 (11)0.0075 (10)
N10.0195 (13)0.0171 (12)0.0183 (13)0.0003 (10)0.0067 (10)0.0004 (10)
N20.0209 (13)0.0163 (13)0.0248 (13)0.0015 (11)0.0082 (11)0.0025 (10)
N30.0219 (13)0.0210 (13)0.0195 (13)0.0017 (12)0.0056 (11)0.0024 (11)
C10.0193 (14)0.0179 (14)0.0143 (13)0.0046 (12)0.0073 (11)0.0029 (11)
C20.0198 (15)0.0172 (14)0.0173 (14)0.0032 (12)0.0065 (12)0.0009 (11)
C30.0218 (15)0.0165 (14)0.0207 (15)0.0022 (12)0.0068 (12)0.0030 (12)
C40.0222 (16)0.0156 (14)0.0198 (15)0.0042 (12)0.0076 (12)0.0024 (11)
C50.0270 (17)0.0235 (16)0.0246 (16)0.0024 (14)0.0136 (14)0.0033 (13)
C60.0247 (17)0.0210 (16)0.039 (2)0.0050 (14)0.0077 (15)0.0059 (14)
C70.0182 (15)0.0145 (14)0.0185 (14)0.0035 (12)0.0062 (12)0.0022 (11)
C80.0201 (15)0.0188 (15)0.0184 (14)0.0018 (12)0.0089 (12)0.0040 (12)
C90.0215 (15)0.0193 (15)0.0158 (13)0.0052 (13)0.0070 (12)0.0030 (12)
C100.0174 (14)0.0152 (14)0.0198 (15)0.0025 (12)0.0036 (12)0.0005 (11)
C110.0180 (14)0.0175 (14)0.0178 (14)0.0023 (12)0.0073 (11)0.0035 (11)
C120.0193 (14)0.0184 (14)0.0169 (14)0.0029 (12)0.0086 (12)0.0014 (11)
Geometric parameters (Å, º) top
O1—C11.377 (3)C5—H5B0.9800
O1—C31.411 (4)C5—H5C0.9800
O2—C31.209 (4)C6—H6A0.9800
O3—N31.226 (4)C6—H6B0.9800
O4—N31.222 (4)C6—H6C0.9800
N1—C11.289 (4)C7—C81.394 (4)
N1—C21.398 (4)C7—C121.396 (4)
N2—C41.317 (4)C8—C91.375 (4)
N2—C61.448 (4)C8—H80.9500
N2—C51.460 (4)C9—C101.385 (4)
N3—C101.466 (4)C9—H90.9500
C1—C71.450 (4)C10—C111.385 (4)
C2—C41.382 (5)C11—C121.383 (4)
C2—C31.428 (4)C11—H110.9500
C4—H40.9500C12—H120.9500
C5—H5A0.9800
C1—O1—C3105.6 (2)H5B—C5—H5C109.5
C1—N1—C2105.0 (2)N2—C6—H6A109.5
C4—N2—C6120.5 (3)N2—C6—H6B109.5
C4—N2—C5123.9 (3)H6A—C6—H6B109.5
C6—N2—C5115.5 (3)N2—C6—H6C109.5
O4—N3—O3123.2 (3)H6A—C6—H6C109.5
O4—N3—C10118.1 (3)H6B—C6—H6C109.5
O3—N3—C10118.7 (3)C8—C7—C12120.0 (3)
N1—C1—O1115.2 (3)C8—C7—C1119.8 (3)
N1—C1—C7127.6 (3)C12—C7—C1120.2 (3)
O1—C1—C7117.2 (3)C9—C8—C7120.2 (3)
C4—C2—N1129.6 (3)C9—C8—H8119.9
C4—C2—C3120.5 (3)C7—C8—H8119.9
N1—C2—C3109.9 (3)C8—C9—C10118.7 (3)
O2—C3—O1120.4 (3)C8—C9—H9120.7
O2—C3—C2135.4 (3)C10—C9—H9120.7
O1—C3—C2104.3 (2)C11—C10—C9122.7 (3)
N2—C4—C2131.3 (3)C11—C10—N3118.5 (3)
N2—C4—H4114.4C9—C10—N3118.8 (3)
C2—C4—H4114.4C12—C11—C10118.1 (3)
N2—C5—H5A109.5C12—C11—H11120.9
N2—C5—H5B109.5C10—C11—H11120.9
H5A—C5—H5B109.5C11—C12—C7120.4 (3)
N2—C5—H5C109.5C11—C12—H12119.8
H5A—C5—H5C109.5C7—C12—H12119.8
C2—N1—C1—O10.3 (3)O1—C1—C7—C8179.8 (3)
C2—N1—C1—C7179.1 (3)N1—C1—C7—C12179.3 (3)
C3—O1—C1—N10.1 (3)O1—C1—C7—C120.1 (4)
C3—O1—C1—C7179.5 (3)C12—C7—C8—C90.6 (5)
C1—N1—C2—C4178.8 (3)C1—C7—C8—C9179.5 (3)
C1—N1—C2—C30.5 (3)C7—C8—C9—C100.7 (5)
C1—O1—C3—O2178.9 (3)C8—C9—C10—C110.4 (5)
C1—O1—C3—C20.4 (3)C8—C9—C10—N3178.2 (3)
C4—C2—C3—O20.1 (6)O4—N3—C10—C11172.7 (3)
N1—C2—C3—O2178.6 (4)O3—N3—C10—C117.1 (4)
C4—C2—C3—O1179.1 (3)O4—N3—C10—C95.1 (4)
N1—C2—C3—O10.6 (3)O3—N3—C10—C9175.0 (3)
C6—N2—C4—C2178.4 (3)C9—C10—C11—C120.1 (5)
C5—N2—C4—C22.4 (5)N3—C10—C11—C12177.9 (3)
N1—C2—C4—N23.9 (6)C10—C11—C12—C70.1 (4)
C3—C2—C4—N2174.2 (3)C8—C7—C12—C110.3 (4)
N1—C1—C7—C80.9 (5)C1—C7—C12—C11179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5c···N10.982.283.074 (5)137
C5—H5a···O2i0.982.533.504 (4)177
C5—H5c···O4ii0.982.573.259 (5)127
C9—H9···O1iii0.952.563.304 (4)135
C11—H11···O2iv0.952.453.144 (4)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11N3O4
Mr261.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.5313 (2), 9.5204 (3), 13.0349 (4)
β (°) 106.661 (2)
V3)1133.15 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.38 × 0.22
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.661, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14210, 2581, 2030
Rint0.071
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.220, 1.19
No. of reflections2581
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5c···N10.982.283.074 (5)137
C5—H5a···O2i0.982.533.504 (4)177
C5—H5c···O4ii0.982.573.259 (5)127
C9—H9···O1iii0.952.563.304 (4)135
C11—H11···O2iv0.952.453.144 (4)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKmetic, M. & Stanovnik, B. (1995). J. Heterocycl. Chem. 32, 1563–1565.  CrossRef CAS Google Scholar
First citationMeth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth. 2, 777–794.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 232–235.  Google Scholar
First citationSingh, V. K. & Singh, D. (2008). Asian J. Chem. 20, 3349–3352.  CAS Google Scholar
First citationSingh, K. K., Singh, M. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 1119–1122.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, D. & Izawa, K. (2005). Eur. Patent 2004-256811 20041104.  Google Scholar
First citationVasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, o740–o741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVijayalakshmi, L., Parthasarathi, V., Perumal, P. T. & Majo, V. J. (1998). Acta Cryst. C54, 1683–1685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds