organic compounds
4-[(Dimethylamino)methylidene]-2-(4-nitrophenyl)-1,3-oxazol-5(4H)-one
aUniversidade Federal Fluminense, Departamento de Química Orgãnica, Instituto de Química, Outeiro de São João Baptista, 24020-141 Niterói, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title molecule, C12H11N3O4, is essentially planar, the r.m.s. deviation for all non-H atoms being 0.068 Å. An intramolecular C—H⋯N hydrogen bond occurs. The crystal packing is dominated by π–π interactions [shortest centroid–centroid distance = 3.6312 (16) Å], which lead to supramolecular chains that are linked into a three-dimensional network via C—H⋯O contacts. The crystal was found to be a non-merohedral twin (twin law −1 0 0/0 −1 0/ 0.784 0 1), the fractional contribution of the minor component being approximately 22%.
Related literature
For the synthesis, synthetic uses and properties of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994, 2008); Takahashi & Izawa (2005); Singh et al. (1994); Kmetic & Stanovnik (1995). For the Vilsmeier–Haack reaction, see: Meth-Cohn & Stanforth (1991). For related structures, see Vasuki et al. (2002); Vijayalakshmi et al. (1998). For the treatment of twinned diffraction data, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810018635/ez2209sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810018635/ez2209Isup2.hkl
The title compound was prepared as per published procedures (Singh & Singh, 1994; Singh et al., 1994). Physical properties were in agreement with published data. The crystal used in the
was grown from EtOH solution.The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). For the treatment of twinned diffraction data, see: Spek (2009).
The preparations of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives have been reported using the Vilsmeier-Haack reactions (Meth-Cohn & Stanforth, 1991) of acylaminoacetanilides with POCl3 and DMF (Singh & Singh, 1994; Takahashi & Izawa, 2005; Singh et al., 1994; Kmetic & Stanovnik, 1995). The compounds have been used as precursors of 4-hydroxymethylene-2-aryl-2-oxazolin-5-one, which have been tested for anti-bacterial activities (Singh & Singh, 2008). The crystal structures of 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and 4-(N,N-dimethylaminomethylene)-2-(2-nitrophenyl)-2-oxazolin-5-one (Vijayalakshmi et al., 1998) have been reported. We now report the
of 4-(N,N-dimethylaminomethylene)-2-(4-nitrophenyl)-2-oxazolin-5-one, (I).The molecule of (I), Fig. 1, is essentially planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.157 (4) Å for atom C5 and -0.158 (3) for atom O4; the r.m.s. = 0.068 Å. The sequence of C1–N1, N1–C2, C2–C4, and C4–N2 bond distances of 1.289 (4), 1.398 (4), 1.382 (5), and 1.317 (4) Å, respectively, indicate substantial delocalisation of π-electron density over these atoms. The geometric parameters in (I) match closely those found in the parent compound, namely 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and in the 2-nitro derivative (Vijayalakshmi et al., 1998).
The crystal packing is dominated by C–H···O and π–π interactions; the N1 atom of the oxazolin-5-one is involved in an intramolecular C–H···N contact that shields this atom from forming intermolecular interactions, Table 1. Columns of molecules orientated along the b axis are stabilised by π–π contacts with the shortest of these occurring between centrosymmetrically related benzene rings [ring centroid(C7–C12)···ring centroid(C7–C12)i = 3.6312 (16) Å for i: 1-x, 1-y, 2-z]. The benzene rings also form π–π interactions with the oxazolin-5-one rings [ring centroid(C7–C12)···ring centroid(O1,N1,C1–C3)ii = 3.7645 (17) Å for ii: 1-x, -y, 2-z] to form a supramolecular chain, Fig. 2. The chains are connected by a series of C–H···O contacts, Table 1, to form a 3-D network, Fig. 3.
For the synthesis, synthetic uses and properties of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994, 2008); Takahashi & Izawa (2005); Singh et al. (1994); Kmetic & Stanovnik (1995). For the Vilsmeier–Haack reaction, see: Meth-Cohn & Stanforth (1991). For related structures, see Vasuki et al. (2002); Vijayalakshmi et al. (1998). For the treatment of twinned diffraction data, see: Spek (2009).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C12H11N3O4 | F(000) = 544 |
Mr = 261.24 | Dx = 1.531 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2714 reflections |
a = 9.5313 (2) Å | θ = 2.9–27.5° |
b = 9.5204 (3) Å | µ = 0.12 mm−1 |
c = 13.0349 (4) Å | T = 120 K |
β = 106.661 (2)° | Block, red |
V = 1133.15 (6) Å3 | 0.42 × 0.38 × 0.22 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2581 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 2030 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.071 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.4°, θmin = 3.1° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −12→11 |
Tmin = 0.661, Tmax = 1.000 | l = −16→16 |
14210 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.220 | w = 1/[σ2(Fo2) + (0.0936P)2 + 1.6594P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max = 0.001 |
2581 reflections | Δρmax = 0.33 e Å−3 |
176 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.018 (5) |
C12H11N3O4 | V = 1133.15 (6) Å3 |
Mr = 261.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5313 (2) Å | µ = 0.12 mm−1 |
b = 9.5204 (3) Å | T = 120 K |
c = 13.0349 (4) Å | 0.42 × 0.38 × 0.22 mm |
β = 106.661 (2)° |
Nonius KappaCCD area-detector diffractometer | 2581 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2030 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 1.000 | Rint = 0.071 |
14210 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.220 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.33 e Å−3 |
2581 reflections | Δρmin = −0.30 e Å−3 |
176 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3806 (2) | 0.5986 (2) | 0.33548 (17) | 0.0197 (5) | |
O2 | 0.2556 (3) | 0.4481 (2) | 0.20576 (17) | 0.0239 (6) | |
O3 | 0.8419 (3) | 1.1001 (3) | 0.6327 (2) | 0.0324 (6) | |
O4 | 0.7443 (3) | 1.0746 (3) | 0.76142 (19) | 0.0307 (6) | |
N1 | 0.2875 (3) | 0.5457 (3) | 0.4711 (2) | 0.0180 (6) | |
N2 | 0.0528 (3) | 0.3059 (3) | 0.4441 (2) | 0.0203 (6) | |
N3 | 0.7556 (3) | 1.0430 (3) | 0.6733 (2) | 0.0209 (6) | |
C1 | 0.3786 (3) | 0.6220 (3) | 0.4393 (2) | 0.0166 (6) | |
C2 | 0.2186 (3) | 0.4617 (3) | 0.3831 (2) | 0.0179 (6) | |
C3 | 0.2761 (3) | 0.4921 (3) | 0.2958 (2) | 0.0195 (7) | |
C4 | 0.1130 (3) | 0.3590 (3) | 0.3735 (2) | 0.0189 (7) | |
H4 | 0.0778 | 0.3199 | 0.3038 | 0.023* | |
C5 | 0.0939 (4) | 0.3462 (4) | 0.5569 (3) | 0.0237 (7) | |
H5A | 0.1378 | 0.2655 | 0.6012 | 0.036* | |
H5B | 0.0066 | 0.3768 | 0.5761 | 0.036* | |
H5C | 0.1649 | 0.4233 | 0.5691 | 0.036* | |
C6 | −0.0548 (4) | 0.1947 (4) | 0.4138 (3) | 0.0284 (8) | |
H6A | −0.0780 | 0.1778 | 0.3366 | 0.043* | |
H6B | −0.1440 | 0.2223 | 0.4317 | 0.043* | |
H6C | −0.0152 | 0.1086 | 0.4526 | 0.043* | |
C7 | 0.4765 (3) | 0.7290 (3) | 0.4994 (2) | 0.0168 (6) | |
C8 | 0.4797 (3) | 0.7571 (3) | 0.6051 (2) | 0.0184 (6) | |
H8 | 0.4184 | 0.7056 | 0.6375 | 0.022* | |
C9 | 0.5715 (3) | 0.8590 (3) | 0.6624 (2) | 0.0185 (6) | |
H9 | 0.5735 | 0.8794 | 0.7342 | 0.022* | |
C10 | 0.6608 (3) | 0.9314 (3) | 0.6135 (2) | 0.0178 (6) | |
C11 | 0.6608 (3) | 0.9058 (3) | 0.5089 (2) | 0.0173 (6) | |
H11 | 0.7231 | 0.9571 | 0.4772 | 0.021* | |
C12 | 0.5676 (3) | 0.8035 (3) | 0.4519 (2) | 0.0175 (6) | |
H12 | 0.5655 | 0.7838 | 0.3800 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0239 (12) | 0.0203 (11) | 0.0177 (11) | −0.0022 (9) | 0.0105 (9) | −0.0010 (8) |
O2 | 0.0307 (13) | 0.0242 (12) | 0.0187 (11) | −0.0017 (10) | 0.0100 (10) | −0.0029 (9) |
O3 | 0.0323 (14) | 0.0382 (15) | 0.0291 (13) | −0.0147 (12) | 0.0127 (11) | −0.0044 (11) |
O4 | 0.0397 (15) | 0.0328 (14) | 0.0219 (12) | −0.0061 (12) | 0.0125 (11) | −0.0075 (10) |
N1 | 0.0195 (13) | 0.0171 (12) | 0.0183 (13) | 0.0003 (10) | 0.0067 (10) | 0.0004 (10) |
N2 | 0.0209 (13) | 0.0163 (13) | 0.0248 (13) | 0.0015 (11) | 0.0082 (11) | 0.0025 (10) |
N3 | 0.0219 (13) | 0.0210 (13) | 0.0195 (13) | 0.0017 (12) | 0.0056 (11) | 0.0024 (11) |
C1 | 0.0193 (14) | 0.0179 (14) | 0.0143 (13) | 0.0046 (12) | 0.0073 (11) | 0.0029 (11) |
C2 | 0.0198 (15) | 0.0172 (14) | 0.0173 (14) | 0.0032 (12) | 0.0065 (12) | 0.0009 (11) |
C3 | 0.0218 (15) | 0.0165 (14) | 0.0207 (15) | 0.0022 (12) | 0.0068 (12) | 0.0030 (12) |
C4 | 0.0222 (16) | 0.0156 (14) | 0.0198 (15) | 0.0042 (12) | 0.0076 (12) | 0.0024 (11) |
C5 | 0.0270 (17) | 0.0235 (16) | 0.0246 (16) | 0.0024 (14) | 0.0136 (14) | 0.0033 (13) |
C6 | 0.0247 (17) | 0.0210 (16) | 0.039 (2) | −0.0050 (14) | 0.0077 (15) | 0.0059 (14) |
C7 | 0.0182 (15) | 0.0145 (14) | 0.0185 (14) | 0.0035 (12) | 0.0062 (12) | 0.0022 (11) |
C8 | 0.0201 (15) | 0.0188 (15) | 0.0184 (14) | 0.0018 (12) | 0.0089 (12) | 0.0040 (12) |
C9 | 0.0215 (15) | 0.0193 (15) | 0.0158 (13) | 0.0052 (13) | 0.0070 (12) | 0.0030 (12) |
C10 | 0.0174 (14) | 0.0152 (14) | 0.0198 (15) | 0.0025 (12) | 0.0036 (12) | −0.0005 (11) |
C11 | 0.0180 (14) | 0.0175 (14) | 0.0178 (14) | 0.0023 (12) | 0.0073 (11) | 0.0035 (11) |
C12 | 0.0193 (14) | 0.0184 (14) | 0.0169 (14) | 0.0029 (12) | 0.0086 (12) | 0.0014 (11) |
O1—C1 | 1.377 (3) | C5—H5B | 0.9800 |
O1—C3 | 1.411 (4) | C5—H5C | 0.9800 |
O2—C3 | 1.209 (4) | C6—H6A | 0.9800 |
O3—N3 | 1.226 (4) | C6—H6B | 0.9800 |
O4—N3 | 1.222 (4) | C6—H6C | 0.9800 |
N1—C1 | 1.289 (4) | C7—C8 | 1.394 (4) |
N1—C2 | 1.398 (4) | C7—C12 | 1.396 (4) |
N2—C4 | 1.317 (4) | C8—C9 | 1.375 (4) |
N2—C6 | 1.448 (4) | C8—H8 | 0.9500 |
N2—C5 | 1.460 (4) | C9—C10 | 1.385 (4) |
N3—C10 | 1.466 (4) | C9—H9 | 0.9500 |
C1—C7 | 1.450 (4) | C10—C11 | 1.385 (4) |
C2—C4 | 1.382 (5) | C11—C12 | 1.383 (4) |
C2—C3 | 1.428 (4) | C11—H11 | 0.9500 |
C4—H4 | 0.9500 | C12—H12 | 0.9500 |
C5—H5A | 0.9800 | ||
C1—O1—C3 | 105.6 (2) | H5B—C5—H5C | 109.5 |
C1—N1—C2 | 105.0 (2) | N2—C6—H6A | 109.5 |
C4—N2—C6 | 120.5 (3) | N2—C6—H6B | 109.5 |
C4—N2—C5 | 123.9 (3) | H6A—C6—H6B | 109.5 |
C6—N2—C5 | 115.5 (3) | N2—C6—H6C | 109.5 |
O4—N3—O3 | 123.2 (3) | H6A—C6—H6C | 109.5 |
O4—N3—C10 | 118.1 (3) | H6B—C6—H6C | 109.5 |
O3—N3—C10 | 118.7 (3) | C8—C7—C12 | 120.0 (3) |
N1—C1—O1 | 115.2 (3) | C8—C7—C1 | 119.8 (3) |
N1—C1—C7 | 127.6 (3) | C12—C7—C1 | 120.2 (3) |
O1—C1—C7 | 117.2 (3) | C9—C8—C7 | 120.2 (3) |
C4—C2—N1 | 129.6 (3) | C9—C8—H8 | 119.9 |
C4—C2—C3 | 120.5 (3) | C7—C8—H8 | 119.9 |
N1—C2—C3 | 109.9 (3) | C8—C9—C10 | 118.7 (3) |
O2—C3—O1 | 120.4 (3) | C8—C9—H9 | 120.7 |
O2—C3—C2 | 135.4 (3) | C10—C9—H9 | 120.7 |
O1—C3—C2 | 104.3 (2) | C11—C10—C9 | 122.7 (3) |
N2—C4—C2 | 131.3 (3) | C11—C10—N3 | 118.5 (3) |
N2—C4—H4 | 114.4 | C9—C10—N3 | 118.8 (3) |
C2—C4—H4 | 114.4 | C12—C11—C10 | 118.1 (3) |
N2—C5—H5A | 109.5 | C12—C11—H11 | 120.9 |
N2—C5—H5B | 109.5 | C10—C11—H11 | 120.9 |
H5A—C5—H5B | 109.5 | C11—C12—C7 | 120.4 (3) |
N2—C5—H5C | 109.5 | C11—C12—H12 | 119.8 |
H5A—C5—H5C | 109.5 | C7—C12—H12 | 119.8 |
C2—N1—C1—O1 | −0.3 (3) | O1—C1—C7—C8 | −179.8 (3) |
C2—N1—C1—C7 | 179.1 (3) | N1—C1—C7—C12 | −179.3 (3) |
C3—O1—C1—N1 | −0.1 (3) | O1—C1—C7—C12 | 0.1 (4) |
C3—O1—C1—C7 | −179.5 (3) | C12—C7—C8—C9 | 0.6 (5) |
C1—N1—C2—C4 | 178.8 (3) | C1—C7—C8—C9 | −179.5 (3) |
C1—N1—C2—C3 | 0.5 (3) | C7—C8—C9—C10 | −0.7 (5) |
C1—O1—C3—O2 | −178.9 (3) | C8—C9—C10—C11 | 0.4 (5) |
C1—O1—C3—C2 | 0.4 (3) | C8—C9—C10—N3 | 178.2 (3) |
C4—C2—C3—O2 | 0.1 (6) | O4—N3—C10—C11 | 172.7 (3) |
N1—C2—C3—O2 | 178.6 (4) | O3—N3—C10—C11 | −7.1 (4) |
C4—C2—C3—O1 | −179.1 (3) | O4—N3—C10—C9 | −5.1 (4) |
N1—C2—C3—O1 | −0.6 (3) | O3—N3—C10—C9 | 175.0 (3) |
C6—N2—C4—C2 | −178.4 (3) | C9—C10—C11—C12 | −0.1 (5) |
C5—N2—C4—C2 | −2.4 (5) | N3—C10—C11—C12 | −177.9 (3) |
N1—C2—C4—N2 | −3.9 (6) | C10—C11—C12—C7 | 0.1 (4) |
C3—C2—C4—N2 | 174.2 (3) | C8—C7—C12—C11 | −0.3 (4) |
N1—C1—C7—C8 | 0.9 (5) | C1—C7—C12—C11 | 179.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5c···N1 | 0.98 | 2.28 | 3.074 (5) | 137 |
C5—H5a···O2i | 0.98 | 2.53 | 3.504 (4) | 177 |
C5—H5c···O4ii | 0.98 | 2.57 | 3.259 (5) | 127 |
C9—H9···O1iii | 0.95 | 2.56 | 3.304 (4) | 135 |
C11—H11···O2iv | 0.95 | 2.45 | 3.144 (4) | 130 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H11N3O4 |
Mr | 261.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.5313 (2), 9.5204 (3), 13.0349 (4) |
β (°) | 106.661 (2) |
V (Å3) | 1133.15 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.42 × 0.38 × 0.22 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.661, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14210, 2581, 2030 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.220, 1.19 |
No. of reflections | 2581 |
No. of parameters | 176 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.30 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5c···N1 | 0.98 | 2.28 | 3.074 (5) | 137 |
C5—H5a···O2i | 0.98 | 2.53 | 3.504 (4) | 177 |
C5—H5c···O4ii | 0.98 | 2.57 | 3.259 (5) | 127 |
C9—H9···O1iii | 0.95 | 2.56 | 3.304 (4) | 135 |
C11—H11···O2iv | 0.95 | 2.45 | 3.144 (4) | 130 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kmetic, M. & Stanovnik, B. (1995). J. Heterocycl. Chem. 32, 1563–1565. CrossRef CAS Google Scholar
Meth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth. 2, 777–794. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, K. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 232–235. Google Scholar
Singh, V. K. & Singh, D. (2008). Asian J. Chem. 20, 3349–3352. CAS Google Scholar
Singh, K. K., Singh, M. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 1119–1122. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, D. & Izawa, K. (2005). Eur. Patent 2004-256811 20041104. Google Scholar
Vasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, o740–o741. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vijayalakshmi, L., Parthasarathi, V., Perumal, P. T. & Majo, V. J. (1998). Acta Cryst. C54, 1683–1685. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The preparations of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives have been reported using the Vilsmeier-Haack reactions (Meth-Cohn & Stanforth, 1991) of acylaminoacetanilides with POCl3 and DMF (Singh & Singh, 1994; Takahashi & Izawa, 2005; Singh et al., 1994; Kmetic & Stanovnik, 1995). The compounds have been used as precursors of 4-hydroxymethylene-2-aryl-2-oxazolin-5-one, which have been tested for anti-bacterial activities (Singh & Singh, 2008). The crystal structures of 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and 4-(N,N-dimethylaminomethylene)-2-(2-nitrophenyl)-2-oxazolin-5-one (Vijayalakshmi et al., 1998) have been reported. We now report the crystal structure of 4-(N,N-dimethylaminomethylene)-2-(4-nitrophenyl)-2-oxazolin-5-one, (I).
The molecule of (I), Fig. 1, is essentially planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.157 (4) Å for atom C5 and -0.158 (3) for atom O4; the r.m.s. = 0.068 Å. The sequence of C1–N1, N1–C2, C2–C4, and C4–N2 bond distances of 1.289 (4), 1.398 (4), 1.382 (5), and 1.317 (4) Å, respectively, indicate substantial delocalisation of π-electron density over these atoms. The geometric parameters in (I) match closely those found in the parent compound, namely 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and in the 2-nitro derivative (Vijayalakshmi et al., 1998).
The crystal packing is dominated by C–H···O and π–π interactions; the N1 atom of the oxazolin-5-one is involved in an intramolecular C–H···N contact that shields this atom from forming intermolecular interactions, Table 1. Columns of molecules orientated along the b axis are stabilised by π–π contacts with the shortest of these occurring between centrosymmetrically related benzene rings [ring centroid(C7–C12)···ring centroid(C7–C12)i = 3.6312 (16) Å for i: 1-x, 1-y, 2-z]. The benzene rings also form π–π interactions with the oxazolin-5-one rings [ring centroid(C7–C12)···ring centroid(O1,N1,C1–C3)ii = 3.7645 (17) Å for ii: 1-x, -y, 2-z] to form a supramolecular chain, Fig. 2. The chains are connected by a series of C–H···O contacts, Table 1, to form a 3-D network, Fig. 3.