organic compounds
(2E,4E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)-5-phenylpenta-2,4-dien-1-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C27H20ClNO, the quinoline ring forms a dihedral angle of 62.53 (5)° with the substituent benzene ring. In the crystal, intermolecular C—H⋯Cl interactions link the molecules into chains along the b axis. Intermolecular C—H⋯N and C—H⋯O hydrogen bonds further consolidate the structure into a three-dimensional network. The contains four solvent-accessible voids, each with a volume of 35 Å3, but no significant electron density was found in them.
Related literature
For the background to and the biological activity of quinolines, see: Bhat et al. (2005); Markees et al. (1970); Campbell et al. (1998). For related structures, see: Loh et al. (2010a,b); Shahani et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810016429/fj2295sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016429/fj2295Isup2.hkl
A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (0.01 M) and cinnamaldehyde (0.01 M) and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h, the resulting mixture was concentrated to remove ethanol then poured on to ice and neutralized with dilluted acetic acid. The resultant solid was filtered, dried and purified by
using 1:1 mixture of ethyl acetate and petroleum ether. M.P.: 416–417 K. Yield: 62 %. The solvent used for the crystallisation was a 1:1 mixture of ethyl acetate and petroleum ether.All H atoms were located from a difference Fourier map and refined freely [C–H = 0.965 (18) to 1.033 (19) Å].
The quinoline derivatives are very important compounds because of their wide occurrence in natural products and biologically active compounds (Markees et al., 1970; Campbell et al., 1998). A variety of natural compounds such as vinblastin, combretastatin A-4 and colchicine attack microtubules by interfering with the dynamics of tubulin polymerization and
resulting in mitotic arrest. For a structurally simple group of compounds, have displayed an impressive array of biological activities, among which anti-malarial, anti-protozoal, anti-inflammatory, immunomodulatory, nitric oxide inhibition, tyronase inhibition, cytotoxic and anticancer activities have been cited in the literature (Bhat et al., 2005). In continuation our interest in synthesis of herein we report a new chalcone (Loh et al., 2010a,b; Shahani et al., 2010).In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.009 (1) Å at atom C1. This mean plane of quinoline ring system forms a dihedral angle of 62.53 (5)° with the benzene ring (C21–C26) attached to it. Another benzene ring (C15–C20) is linked with the quinoline ring system by a linkage of pentadione (C10–C14/O1) with a dihedral angle of 80.31 (5)° and the torsion angle between the linkage and the quinoline ring system, C8–C9–C10–C11 is 111.08 (13)°. Bond lengths and angles are comparable to closely related structures (Loh et al., 2010a,b; Shahani et al., 2010).
In the crystal packing (Fig. 2), intermolecular C11—H11A···Cl1 interactions (Table 1) link the molecules into chains down the b axis. Intermolecular C3—H3A···N1, C17—H17A···O1 and C27—H27C···O1 hydrogen bonds (Table 1) further consolidate the structure into a three-dimensional network. The
contains four solvent-accessible voids each with a volume of 35 Å3. Application of the PLATON SQUEEZE procedure (Spek, 2009) showed no electron count in the void.For the background to and the biological activity of quinolines, see: Bhat et al. (2005); Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998). For related structures, see: Loh et al. (2010a,b); Shahani et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C27H20ClNO | F(000) = 856 |
Mr = 409.89 | Dx = 1.269 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7467 reflections |
a = 6.2464 (3) Å | θ = 2.7–30.1° |
b = 22.5672 (11) Å | µ = 0.20 mm−1 |
c = 15.2748 (7) Å | T = 100 K |
β = 94.620 (1)° | Block, yellow |
V = 2146.20 (18) Å3 | 0.35 × 0.26 × 0.13 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 6191 independent reflections |
Radiation source: fine-focus sealed tube | 4889 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 30.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.935, Tmax = 0.975 | k = −31→30 |
22989 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.7188P] where P = (Fo2 + 2Fc2)/3 |
6191 reflections | (Δ/σ)max < 0.001 |
351 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C27H20ClNO | V = 2146.20 (18) Å3 |
Mr = 409.89 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.2464 (3) Å | µ = 0.20 mm−1 |
b = 22.5672 (11) Å | T = 100 K |
c = 15.2748 (7) Å | 0.35 × 0.26 × 0.13 mm |
β = 94.620 (1)° |
Bruker APEXII DUO CCD area-detector diffractometer | 6191 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4889 reflections with I > 2σ(I) |
Tmin = 0.935, Tmax = 0.975 | Rint = 0.033 |
22989 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.38 e Å−3 |
6191 reflections | Δρmin = −0.33 e Å−3 |
351 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.98899 (7) | 0.715737 (13) | 0.90927 (2) | 0.02946 (10) | |
O1 | 1.25735 (15) | 0.37767 (4) | 0.78500 (6) | 0.0222 (2) | |
N1 | 0.74535 (17) | 0.46489 (5) | 0.93300 (6) | 0.0166 (2) | |
C1 | 0.8209 (2) | 0.42457 (5) | 0.88123 (7) | 0.0157 (2) | |
C2 | 0.8083 (2) | 0.52252 (5) | 0.92445 (7) | 0.0150 (2) | |
C3 | 0.7221 (2) | 0.56504 (6) | 0.98060 (8) | 0.0184 (2) | |
C4 | 0.7763 (2) | 0.62357 (6) | 0.97496 (8) | 0.0201 (2) | |
C5 | 0.9190 (2) | 0.64118 (5) | 0.91295 (8) | 0.0198 (3) | |
C6 | 1.0057 (2) | 0.60204 (5) | 0.85712 (7) | 0.0179 (2) | |
C7 | 0.9518 (2) | 0.54095 (5) | 0.86241 (7) | 0.0148 (2) | |
C8 | 1.03265 (19) | 0.49667 (5) | 0.80677 (7) | 0.0141 (2) | |
C9 | 0.9673 (2) | 0.43886 (5) | 0.81688 (7) | 0.0146 (2) | |
C10 | 1.0682 (2) | 0.39015 (5) | 0.76648 (7) | 0.0165 (2) | |
C11 | 0.9424 (2) | 0.35894 (5) | 0.69584 (8) | 0.0196 (2) | |
C12 | 0.7385 (2) | 0.37191 (5) | 0.66730 (8) | 0.0186 (2) | |
C13 | 0.6247 (2) | 0.34261 (6) | 0.59338 (8) | 0.0199 (2) | |
C14 | 0.4235 (2) | 0.35703 (5) | 0.56358 (8) | 0.0183 (2) | |
C15 | 0.2997 (2) | 0.33203 (5) | 0.48666 (7) | 0.0177 (2) | |
C16 | 0.3789 (2) | 0.28695 (6) | 0.43480 (8) | 0.0222 (3) | |
C17 | 0.2553 (3) | 0.26556 (6) | 0.36195 (9) | 0.0266 (3) | |
C18 | 0.0520 (3) | 0.28854 (6) | 0.33945 (9) | 0.0271 (3) | |
C19 | −0.0284 (2) | 0.33317 (6) | 0.38964 (9) | 0.0258 (3) | |
C20 | 0.0949 (2) | 0.35471 (6) | 0.46291 (8) | 0.0216 (3) | |
C21 | 1.1795 (2) | 0.51281 (5) | 0.73818 (7) | 0.0150 (2) | |
C22 | 1.3818 (2) | 0.53707 (6) | 0.76042 (8) | 0.0202 (2) | |
C23 | 1.5169 (2) | 0.55152 (6) | 0.69544 (9) | 0.0224 (3) | |
C24 | 1.4518 (2) | 0.54137 (6) | 0.60747 (8) | 0.0218 (3) | |
C25 | 1.2500 (2) | 0.51754 (6) | 0.58481 (8) | 0.0198 (2) | |
C26 | 1.1141 (2) | 0.50339 (5) | 0.64940 (7) | 0.0169 (2) | |
C27 | 0.7482 (2) | 0.36175 (6) | 0.89417 (8) | 0.0198 (2) | |
H3A | 0.623 (3) | 0.5505 (7) | 1.0210 (10) | 0.022 (4)* | |
H4A | 0.715 (3) | 0.6527 (8) | 1.0137 (11) | 0.028 (4)* | |
H6A | 1.105 (3) | 0.6164 (7) | 0.8149 (11) | 0.024 (4)* | |
H11A | 1.022 (3) | 0.3273 (7) | 0.6669 (11) | 0.027 (4)* | |
H12A | 0.658 (3) | 0.4025 (7) | 0.6958 (11) | 0.023 (4)* | |
H13A | 0.705 (3) | 0.3126 (8) | 0.5649 (11) | 0.029 (4)* | |
H14A | 0.352 (2) | 0.3879 (7) | 0.5961 (10) | 0.018 (4)* | |
H16A | 0.527 (3) | 0.2710 (8) | 0.4492 (12) | 0.031 (4)* | |
H17A | 0.316 (3) | 0.2329 (8) | 0.3271 (12) | 0.033 (5)* | |
H18A | −0.032 (3) | 0.2749 (8) | 0.2885 (12) | 0.036 (5)* | |
H19A | −0.179 (3) | 0.3514 (8) | 0.3763 (12) | 0.036 (5)* | |
H20A | 0.035 (3) | 0.3861 (7) | 0.4993 (10) | 0.020 (4)* | |
H22A | 1.423 (3) | 0.5431 (8) | 0.8233 (11) | 0.028 (4)* | |
H23A | 1.660 (3) | 0.5687 (8) | 0.7123 (11) | 0.027 (4)* | |
H24A | 1.547 (3) | 0.5514 (7) | 0.5628 (11) | 0.026 (4)* | |
H25A | 1.202 (3) | 0.5110 (7) | 0.5228 (11) | 0.024 (4)* | |
H26A | 0.975 (3) | 0.4861 (8) | 0.6324 (11) | 0.027 (4)* | |
H27A | 0.695 (3) | 0.3575 (8) | 0.9527 (12) | 0.031 (4)* | |
H27B | 0.860 (3) | 0.3318 (8) | 0.8870 (11) | 0.029 (4)* | |
H27C | 0.629 (3) | 0.3524 (8) | 0.8503 (12) | 0.034 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0483 (2) | 0.01405 (14) | 0.02701 (16) | −0.00199 (14) | 0.00901 (14) | −0.00136 (10) |
O1 | 0.0177 (5) | 0.0229 (4) | 0.0256 (4) | 0.0039 (4) | −0.0005 (4) | −0.0005 (3) |
N1 | 0.0146 (5) | 0.0189 (5) | 0.0162 (4) | −0.0007 (4) | 0.0013 (4) | 0.0001 (3) |
C1 | 0.0140 (6) | 0.0171 (5) | 0.0155 (5) | −0.0004 (4) | −0.0017 (4) | 0.0008 (4) |
C2 | 0.0133 (5) | 0.0175 (5) | 0.0139 (5) | 0.0000 (4) | −0.0003 (4) | −0.0004 (4) |
C3 | 0.0167 (6) | 0.0222 (6) | 0.0165 (5) | 0.0001 (5) | 0.0022 (4) | −0.0024 (4) |
C4 | 0.0214 (6) | 0.0207 (6) | 0.0183 (5) | 0.0024 (5) | 0.0026 (5) | −0.0038 (4) |
C5 | 0.0255 (7) | 0.0148 (5) | 0.0188 (5) | 0.0002 (5) | 0.0010 (5) | −0.0006 (4) |
C6 | 0.0219 (6) | 0.0165 (5) | 0.0154 (5) | −0.0003 (5) | 0.0020 (5) | 0.0011 (4) |
C7 | 0.0157 (6) | 0.0162 (5) | 0.0122 (4) | −0.0003 (4) | −0.0012 (4) | 0.0001 (4) |
C8 | 0.0136 (5) | 0.0164 (5) | 0.0122 (4) | 0.0008 (4) | −0.0004 (4) | 0.0004 (4) |
C9 | 0.0148 (6) | 0.0156 (5) | 0.0132 (4) | 0.0012 (4) | −0.0008 (4) | −0.0008 (4) |
C10 | 0.0188 (6) | 0.0148 (5) | 0.0161 (5) | 0.0003 (5) | 0.0024 (4) | 0.0007 (4) |
C11 | 0.0221 (7) | 0.0164 (5) | 0.0204 (5) | 0.0003 (5) | 0.0016 (5) | −0.0035 (4) |
C12 | 0.0221 (6) | 0.0160 (5) | 0.0178 (5) | −0.0007 (5) | 0.0023 (5) | −0.0014 (4) |
C13 | 0.0213 (7) | 0.0187 (5) | 0.0196 (5) | −0.0005 (5) | 0.0003 (5) | −0.0034 (4) |
C14 | 0.0207 (6) | 0.0165 (5) | 0.0180 (5) | −0.0016 (5) | 0.0030 (5) | −0.0017 (4) |
C15 | 0.0198 (6) | 0.0162 (5) | 0.0172 (5) | −0.0032 (5) | 0.0015 (4) | 0.0013 (4) |
C16 | 0.0242 (7) | 0.0198 (6) | 0.0225 (6) | −0.0005 (5) | 0.0015 (5) | −0.0027 (4) |
C17 | 0.0345 (8) | 0.0226 (6) | 0.0225 (6) | −0.0035 (6) | 0.0007 (6) | −0.0052 (5) |
C18 | 0.0343 (8) | 0.0253 (6) | 0.0204 (6) | −0.0063 (6) | −0.0054 (6) | −0.0009 (5) |
C19 | 0.0256 (7) | 0.0263 (6) | 0.0245 (6) | −0.0015 (6) | −0.0046 (5) | 0.0020 (5) |
C20 | 0.0234 (7) | 0.0207 (6) | 0.0205 (5) | 0.0000 (5) | 0.0006 (5) | 0.0007 (4) |
C21 | 0.0160 (6) | 0.0142 (5) | 0.0149 (5) | 0.0018 (4) | 0.0017 (4) | 0.0008 (4) |
C22 | 0.0188 (6) | 0.0231 (6) | 0.0183 (5) | 0.0002 (5) | 0.0000 (5) | 0.0014 (4) |
C23 | 0.0160 (6) | 0.0248 (6) | 0.0265 (6) | −0.0017 (5) | 0.0023 (5) | 0.0017 (5) |
C24 | 0.0224 (7) | 0.0210 (6) | 0.0230 (6) | 0.0031 (5) | 0.0082 (5) | 0.0033 (4) |
C25 | 0.0236 (7) | 0.0207 (6) | 0.0156 (5) | 0.0021 (5) | 0.0043 (5) | 0.0010 (4) |
C26 | 0.0180 (6) | 0.0172 (5) | 0.0154 (5) | −0.0001 (5) | 0.0008 (4) | −0.0008 (4) |
C27 | 0.0207 (7) | 0.0177 (5) | 0.0211 (5) | −0.0033 (5) | 0.0024 (5) | 0.0012 (4) |
Cl1—C5 | 1.7405 (13) | C14—H14A | 0.984 (16) |
O1—C10 | 1.2253 (16) | C15—C20 | 1.3981 (19) |
N1—C1 | 1.3175 (15) | C15—C16 | 1.4037 (18) |
N1—C2 | 1.3681 (15) | C16—C17 | 1.3890 (18) |
C1—C9 | 1.4322 (17) | C16—H16A | 1.001 (18) |
C1—C27 | 1.5066 (17) | C17—C18 | 1.389 (2) |
C2—C7 | 1.4180 (17) | C17—H17A | 1.000 (19) |
C2—C3 | 1.4217 (16) | C18—C19 | 1.384 (2) |
C3—C4 | 1.3680 (18) | C18—H18A | 0.955 (19) |
C3—H3A | 0.967 (17) | C19—C20 | 1.3940 (18) |
C4—C5 | 1.4093 (19) | C19—H19A | 1.033 (19) |
C4—H4A | 0.981 (17) | C20—H20A | 0.993 (16) |
C5—C6 | 1.3693 (17) | C21—C22 | 1.3938 (18) |
C6—C7 | 1.4230 (16) | C21—C26 | 1.4007 (15) |
C6—H6A | 0.986 (17) | C22—C23 | 1.3926 (18) |
C7—C8 | 1.4302 (16) | C22—H22A | 0.983 (17) |
C8—C9 | 1.3794 (16) | C23—C24 | 1.3911 (18) |
C8—C21 | 1.4921 (16) | C23—H23A | 0.987 (18) |
C9—C10 | 1.5088 (16) | C24—C25 | 1.389 (2) |
C10—C11 | 1.4635 (17) | C24—H24A | 0.965 (18) |
C11—C12 | 1.3445 (19) | C25—C26 | 1.3897 (17) |
C11—H11A | 0.994 (17) | C25—H25A | 0.981 (16) |
C12—C13 | 1.4451 (16) | C26—H26A | 0.967 (18) |
C12—H12A | 0.976 (17) | C27—H27A | 0.984 (19) |
C13—C14 | 1.3417 (19) | C27—H27B | 0.985 (18) |
C13—H13A | 0.967 (18) | C27—H27C | 0.982 (19) |
C14—C15 | 1.4666 (16) | ||
C1—N1—C2 | 118.65 (10) | C20—C15—C16 | 118.41 (11) |
N1—C1—C9 | 122.41 (11) | C20—C15—C14 | 118.64 (11) |
N1—C1—C27 | 116.40 (11) | C16—C15—C14 | 122.94 (12) |
C9—C1—C27 | 121.18 (11) | C17—C16—C15 | 120.35 (13) |
N1—C2—C7 | 123.01 (11) | C17—C16—H16A | 119.7 (10) |
N1—C2—C3 | 117.28 (11) | C15—C16—H16A | 119.9 (10) |
C7—C2—C3 | 119.71 (11) | C16—C17—C18 | 120.45 (13) |
C4—C3—C2 | 120.41 (12) | C16—C17—H17A | 118.2 (11) |
C4—C3—H3A | 122.8 (10) | C18—C17—H17A | 121.3 (10) |
C2—C3—H3A | 116.8 (10) | C19—C18—C17 | 119.97 (12) |
C3—C4—C5 | 119.18 (11) | C19—C18—H18A | 119.1 (11) |
C3—C4—H4A | 120.0 (10) | C17—C18—H18A | 120.8 (11) |
C5—C4—H4A | 120.8 (10) | C18—C19—C20 | 119.79 (14) |
C6—C5—C4 | 122.68 (12) | C18—C19—H19A | 123.1 (10) |
C6—C5—Cl1 | 119.38 (10) | C20—C19—H19A | 117.1 (10) |
C4—C5—Cl1 | 117.93 (9) | C19—C20—C15 | 121.03 (13) |
C5—C6—C7 | 118.85 (12) | C19—C20—H20A | 119.4 (9) |
C5—C6—H6A | 119.9 (10) | C15—C20—H20A | 119.6 (9) |
C7—C6—H6A | 121.3 (10) | C22—C21—C26 | 118.92 (11) |
C2—C7—C6 | 119.16 (11) | C22—C21—C8 | 121.41 (10) |
C2—C7—C8 | 117.69 (10) | C26—C21—C8 | 119.66 (11) |
C6—C7—C8 | 123.15 (11) | C23—C22—C21 | 120.53 (11) |
C9—C8—C7 | 118.19 (11) | C23—C22—H22A | 122.6 (11) |
C9—C8—C21 | 120.91 (10) | C21—C22—H22A | 116.8 (11) |
C7—C8—C21 | 120.88 (10) | C24—C23—C22 | 120.21 (13) |
C8—C9—C1 | 120.05 (10) | C24—C23—H23A | 120.3 (10) |
C8—C9—C10 | 119.50 (11) | C22—C23—H23A | 119.5 (10) |
C1—C9—C10 | 120.15 (10) | C25—C24—C23 | 119.56 (12) |
O1—C10—C11 | 120.69 (11) | C25—C24—H24A | 120.7 (10) |
O1—C10—C9 | 118.97 (10) | C23—C24—H24A | 119.7 (10) |
C11—C10—C9 | 120.34 (11) | C24—C25—C26 | 120.43 (11) |
C12—C11—C10 | 124.93 (12) | C24—C25—H25A | 119.9 (10) |
C12—C11—H11A | 120.4 (10) | C26—C25—H25A | 119.7 (10) |
C10—C11—H11A | 114.6 (10) | C25—C26—C21 | 120.35 (12) |
C11—C12—C13 | 123.17 (12) | C25—C26—H26A | 119.2 (10) |
C11—C12—H12A | 121.2 (10) | C21—C26—H26A | 120.4 (10) |
C13—C12—H12A | 115.7 (10) | C1—C27—H27A | 109.8 (10) |
C14—C13—C12 | 122.85 (12) | C1—C27—H27B | 114.0 (10) |
C14—C13—H13A | 121.6 (10) | H27A—C27—H27B | 109.3 (14) |
C12—C13—H13A | 115.5 (10) | C1—C27—H27C | 109.3 (11) |
C13—C14—C15 | 126.69 (12) | H27A—C27—H27C | 107.8 (15) |
C13—C14—H14A | 116.9 (9) | H27B—C27—H27C | 106.4 (15) |
C15—C14—H14A | 116.4 (9) | ||
C2—N1—C1—C9 | 0.42 (17) | C1—C9—C10—O1 | −105.62 (14) |
C2—N1—C1—C27 | 179.34 (10) | C8—C9—C10—C11 | −111.08 (13) |
C1—N1—C2—C7 | −0.12 (17) | C1—C9—C10—C11 | 75.19 (14) |
C1—N1—C2—C3 | 179.31 (11) | O1—C10—C11—C12 | −175.74 (12) |
N1—C2—C3—C4 | −179.28 (11) | C9—C10—C11—C12 | 3.44 (19) |
C7—C2—C3—C4 | 0.17 (18) | C10—C11—C12—C13 | 175.68 (12) |
C2—C3—C4—C5 | −0.14 (19) | C11—C12—C13—C14 | −177.89 (13) |
C3—C4—C5—C6 | 0.4 (2) | C12—C13—C14—C15 | 176.62 (12) |
C3—C4—C5—Cl1 | −178.59 (10) | C13—C14—C15—C20 | −176.86 (13) |
C4—C5—C6—C7 | −0.74 (19) | C13—C14—C15—C16 | 2.0 (2) |
Cl1—C5—C6—C7 | 178.29 (9) | C20—C15—C16—C17 | −0.23 (19) |
N1—C2—C7—C6 | 178.96 (11) | C14—C15—C16—C17 | −179.12 (12) |
C3—C2—C7—C6 | −0.46 (17) | C15—C16—C17—C18 | 0.1 (2) |
N1—C2—C7—C8 | 0.03 (17) | C16—C17—C18—C19 | 0.2 (2) |
C3—C2—C7—C8 | −179.39 (11) | C17—C18—C19—C20 | −0.3 (2) |
C5—C6—C7—C2 | 0.73 (18) | C18—C19—C20—C15 | 0.1 (2) |
C5—C6—C7—C8 | 179.60 (11) | C16—C15—C20—C19 | 0.11 (19) |
C2—C7—C8—C9 | −0.23 (16) | C14—C15—C20—C19 | 179.05 (12) |
C6—C7—C8—C9 | −179.12 (11) | C9—C8—C21—C22 | −118.31 (13) |
C2—C7—C8—C21 | 178.30 (10) | C7—C8—C21—C22 | 63.20 (16) |
C6—C7—C8—C21 | −0.59 (17) | C9—C8—C21—C26 | 61.54 (15) |
C7—C8—C9—C1 | 0.52 (16) | C7—C8—C21—C26 | −116.95 (13) |
C21—C8—C9—C1 | −178.01 (10) | C26—C21—C22—C23 | −0.23 (18) |
C7—C8—C9—C10 | −173.22 (10) | C8—C21—C22—C23 | 179.63 (12) |
C21—C8—C9—C10 | 8.26 (16) | C21—C22—C23—C24 | −0.5 (2) |
N1—C1—C9—C8 | −0.64 (17) | C22—C23—C24—C25 | 0.9 (2) |
C27—C1—C9—C8 | −179.51 (11) | C23—C24—C25—C26 | −0.54 (19) |
N1—C1—C9—C10 | 173.05 (11) | C24—C25—C26—C21 | −0.24 (19) |
C27—C1—C9—C10 | −5.82 (16) | C22—C21—C26—C25 | 0.62 (18) |
C8—C9—C10—O1 | 68.11 (15) | C8—C21—C26—C25 | −179.24 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N1i | 0.966 (17) | 2.484 (19) | 3.3681 (16) | 152.1 (14) |
C11—H11A···Cl1ii | 0.994 (17) | 2.772 (16) | 3.6491 (12) | 147.4 (14) |
C17—H17A···O1iii | 1.000 (19) | 2.596 (19) | 3.4398 (17) | 142.1 (14) |
C27—H27C···O1iv | 0.984 (18) | 2.517 (19) | 3.3892 (16) | 147.6 (14) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, y−1/2, −z+3/2; (iii) x−1, −y+1/2, z−1/2; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C27H20ClNO |
Mr | 409.89 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.2464 (3), 22.5672 (11), 15.2748 (7) |
β (°) | 94.620 (1) |
V (Å3) | 2146.20 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.35 × 0.26 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.935, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22989, 6191, 4889 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.116, 1.03 |
No. of reflections | 6191 |
No. of parameters | 351 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.38, −0.33 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N1i | 0.966 (17) | 2.484 (19) | 3.3681 (16) | 152.1 (14) |
C11—H11A···Cl1ii | 0.994 (17) | 2.772 (16) | 3.6491 (12) | 147.4 (14) |
C17—H17A···O1iii | 1.000 (19) | 2.596 (19) | 3.4398 (17) | 142.1 (14) |
C27—H27C···O1iv | 0.984 (18) | 2.517 (19) | 3.3892 (16) | 147.6 (14) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, y−1/2, −z+3/2; (iii) x−1, −y+1/2, z−1/2; (iv) x−1, y, z. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035. CrossRef Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010a). Acta Cryst. E66, o91–o92. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010b). Acta Cryst. E66, o353–o354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Shahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoline derivatives are very important compounds because of their wide occurrence in natural products and biologically active compounds (Markees et al., 1970; Campbell et al., 1998). A variety of natural compounds such as vinblastin, combretastatin A-4 and colchicine attack microtubules by interfering with the dynamics of tubulin polymerization and depolymerization, resulting in mitotic arrest. For a structurally simple group of compounds, chalcones have displayed an impressive array of biological activities, among which anti-malarial, anti-protozoal, anti-inflammatory, immunomodulatory, nitric oxide inhibition, tyronase inhibition, cytotoxic and anticancer activities have been cited in the literature (Bhat et al., 2005). In continuation our interest in synthesis of chalcones herein we report a new chalcone (Loh et al., 2010a,b; Shahani et al., 2010).
In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.009 (1) Å at atom C1. This mean plane of quinoline ring system forms a dihedral angle of 62.53 (5)° with the benzene ring (C21–C26) attached to it. Another benzene ring (C15–C20) is linked with the quinoline ring system by a linkage of pentadione (C10–C14/O1) with a dihedral angle of 80.31 (5)° and the torsion angle between the linkage and the quinoline ring system, C8–C9–C10–C11 is 111.08 (13)°. Bond lengths and angles are comparable to closely related structures (Loh et al., 2010a,b; Shahani et al., 2010).
In the crystal packing (Fig. 2), intermolecular C11—H11A···Cl1 interactions (Table 1) link the molecules into chains down the b axis. Intermolecular C3—H3A···N1, C17—H17A···O1 and C27—H27C···O1 hydrogen bonds (Table 1) further consolidate the structure into a three-dimensional network. The unit cell contains four solvent-accessible voids each with a volume of 35 Å3. Application of the PLATON SQUEEZE procedure (Spek, 2009) showed no electron count in the void.