organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,4E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)-5-phenyl­penta-2,4-dien-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 April 2010; accepted 5 May 2010; online 12 May 2010)

In the title compound, C27H20ClNO, the quinoline ring forms a dihedral angle of 62.53 (5)° with the substituent benzene ring. In the crystal, inter­molecular C—H⋯Cl inter­actions link the mol­ecules into chains along the b axis. Inter­molecular C—H⋯N and C—H⋯O hydrogen bonds further consolidate the structure into a three-dimensional network. The unit cell contains four solvent-accessible voids, each with a volume of 35 Å3, but no significant electron density was found in them.

Related literature

For the background to and the biological activity of quinolines, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1998[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031-1035.]). For related structures, see: Loh et al. (2010a[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010a). Acta Cryst. E66, o91-o92.],b[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010b). Acta Cryst. E66, o353-o354.]); Shahani et al. (2010[Shahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20ClNO

  • Mr = 409.89

  • Monoclinic, P 21 /c

  • a = 6.2464 (3) Å

  • b = 22.5672 (11) Å

  • c = 15.2748 (7) Å

  • β = 94.620 (1)°

  • V = 2146.20 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.35 × 0.26 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.975

  • 22989 measured reflections

  • 6191 independent reflections

  • 4889 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.03

  • 6191 reflections

  • 351 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N1i 0.966 (17) 2.484 (19) 3.3681 (16) 152.1 (14)
C11—H11A⋯Cl1ii 0.994 (17) 2.772 (16) 3.6491 (12) 147.4 (14)
C17—H17A⋯O1iii 1.000 (19) 2.596 (19) 3.4398 (17) 142.1 (14)
C27—H27C⋯O1iv 0.984 (18) 2.517 (19) 3.3892 (16) 147.6 (14)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinoline derivatives are very important compounds because of their wide occurrence in natural products and biologically active compounds (Markees et al., 1970; Campbell et al., 1998). A variety of natural compounds such as vinblastin, combretastatin A-4 and colchicine attack microtubules by interfering with the dynamics of tubulin polymerization and depolymerization, resulting in mitotic arrest. For a structurally simple group of compounds, chalcones have displayed an impressive array of biological activities, among which anti-malarial, anti-protozoal, anti-inflammatory, immunomodulatory, nitric oxide inhibition, tyronase inhibition, cytotoxic and anticancer activities have been cited in the literature (Bhat et al., 2005). In continuation our interest in synthesis of chalcones herein we report a new chalcone (Loh et al., 2010a,b; Shahani et al., 2010).

In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.009 (1) Å at atom C1. This mean plane of quinoline ring system forms a dihedral angle of 62.53 (5)° with the benzene ring (C21–C26) attached to it. Another benzene ring (C15–C20) is linked with the quinoline ring system by a linkage of pentadione (C10–C14/O1) with a dihedral angle of 80.31 (5)° and the torsion angle between the linkage and the quinoline ring system, C8–C9–C10–C11 is 111.08 (13)°. Bond lengths and angles are comparable to closely related structures (Loh et al., 2010a,b; Shahani et al., 2010).

In the crystal packing (Fig. 2), intermolecular C11—H11A···Cl1 interactions (Table 1) link the molecules into chains down the b axis. Intermolecular C3—H3A···N1, C17—H17A···O1 and C27—H27C···O1 hydrogen bonds (Table 1) further consolidate the structure into a three-dimensional network. The unit cell contains four solvent-accessible voids each with a volume of 35 Å3. Application of the PLATON SQUEEZE procedure (Spek, 2009) showed no electron count in the void.

Related literature top

For the background to and the biological activity of quinolines, see: Bhat et al. (2005); Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998). For related structures, see: Loh et al. (2010a,b); Shahani et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (0.01 M) and cinnamaldehyde (0.01 M) and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h, the resulting mixture was concentrated to remove ethanol then poured on to ice and neutralized with dilluted acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether. M.P.: 416–417 K. Yield: 62 %. The solvent used for the crystallisation was a 1:1 mixture of ethyl acetate and petroleum ether.

Refinement top

All H atoms were located from a difference Fourier map and refined freely [C–H = 0.965 (18) to 1.033 (19) Å].

Structure description top

The quinoline derivatives are very important compounds because of their wide occurrence in natural products and biologically active compounds (Markees et al., 1970; Campbell et al., 1998). A variety of natural compounds such as vinblastin, combretastatin A-4 and colchicine attack microtubules by interfering with the dynamics of tubulin polymerization and depolymerization, resulting in mitotic arrest. For a structurally simple group of compounds, chalcones have displayed an impressive array of biological activities, among which anti-malarial, anti-protozoal, anti-inflammatory, immunomodulatory, nitric oxide inhibition, tyronase inhibition, cytotoxic and anticancer activities have been cited in the literature (Bhat et al., 2005). In continuation our interest in synthesis of chalcones herein we report a new chalcone (Loh et al., 2010a,b; Shahani et al., 2010).

In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.009 (1) Å at atom C1. This mean plane of quinoline ring system forms a dihedral angle of 62.53 (5)° with the benzene ring (C21–C26) attached to it. Another benzene ring (C15–C20) is linked with the quinoline ring system by a linkage of pentadione (C10–C14/O1) with a dihedral angle of 80.31 (5)° and the torsion angle between the linkage and the quinoline ring system, C8–C9–C10–C11 is 111.08 (13)°. Bond lengths and angles are comparable to closely related structures (Loh et al., 2010a,b; Shahani et al., 2010).

In the crystal packing (Fig. 2), intermolecular C11—H11A···Cl1 interactions (Table 1) link the molecules into chains down the b axis. Intermolecular C3—H3A···N1, C17—H17A···O1 and C27—H27C···O1 hydrogen bonds (Table 1) further consolidate the structure into a three-dimensional network. The unit cell contains four solvent-accessible voids each with a volume of 35 Å3. Application of the PLATON SQUEEZE procedure (Spek, 2009) showed no electron count in the void.

For the background to and the biological activity of quinolines, see: Bhat et al. (2005); Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998). For related structures, see: Loh et al. (2010a,b); Shahani et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(2E,4E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)- 5-phenylpenta-2,4-dien-1-one top
Crystal data top
C27H20ClNOF(000) = 856
Mr = 409.89Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7467 reflections
a = 6.2464 (3) Åθ = 2.7–30.1°
b = 22.5672 (11) ŵ = 0.20 mm1
c = 15.2748 (7) ÅT = 100 K
β = 94.620 (1)°Block, yellow
V = 2146.20 (18) Å30.35 × 0.26 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6191 independent reflections
Radiation source: fine-focus sealed tube4889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.935, Tmax = 0.975k = 3130
22989 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.7188P]
where P = (Fo2 + 2Fc2)/3
6191 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C27H20ClNOV = 2146.20 (18) Å3
Mr = 409.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2464 (3) ŵ = 0.20 mm1
b = 22.5672 (11) ÅT = 100 K
c = 15.2748 (7) Å0.35 × 0.26 × 0.13 mm
β = 94.620 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4889 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.975Rint = 0.033
22989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
6191 reflectionsΔρmin = 0.33 e Å3
351 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98899 (7)0.715737 (13)0.90927 (2)0.02946 (10)
O11.25735 (15)0.37767 (4)0.78500 (6)0.0222 (2)
N10.74535 (17)0.46489 (5)0.93300 (6)0.0166 (2)
C10.8209 (2)0.42457 (5)0.88123 (7)0.0157 (2)
C20.8083 (2)0.52252 (5)0.92445 (7)0.0150 (2)
C30.7221 (2)0.56504 (6)0.98060 (8)0.0184 (2)
C40.7763 (2)0.62357 (6)0.97496 (8)0.0201 (2)
C50.9190 (2)0.64118 (5)0.91295 (8)0.0198 (3)
C61.0057 (2)0.60204 (5)0.85712 (7)0.0179 (2)
C70.9518 (2)0.54095 (5)0.86241 (7)0.0148 (2)
C81.03265 (19)0.49667 (5)0.80677 (7)0.0141 (2)
C90.9673 (2)0.43886 (5)0.81688 (7)0.0146 (2)
C101.0682 (2)0.39015 (5)0.76648 (7)0.0165 (2)
C110.9424 (2)0.35894 (5)0.69584 (8)0.0196 (2)
C120.7385 (2)0.37191 (5)0.66730 (8)0.0186 (2)
C130.6247 (2)0.34261 (6)0.59338 (8)0.0199 (2)
C140.4235 (2)0.35703 (5)0.56358 (8)0.0183 (2)
C150.2997 (2)0.33203 (5)0.48666 (7)0.0177 (2)
C160.3789 (2)0.28695 (6)0.43480 (8)0.0222 (3)
C170.2553 (3)0.26556 (6)0.36195 (9)0.0266 (3)
C180.0520 (3)0.28854 (6)0.33945 (9)0.0271 (3)
C190.0284 (2)0.33317 (6)0.38964 (9)0.0258 (3)
C200.0949 (2)0.35471 (6)0.46291 (8)0.0216 (3)
C211.1795 (2)0.51281 (5)0.73818 (7)0.0150 (2)
C221.3818 (2)0.53707 (6)0.76042 (8)0.0202 (2)
C231.5169 (2)0.55152 (6)0.69544 (9)0.0224 (3)
C241.4518 (2)0.54137 (6)0.60747 (8)0.0218 (3)
C251.2500 (2)0.51754 (6)0.58481 (8)0.0198 (2)
C261.1141 (2)0.50339 (5)0.64940 (7)0.0169 (2)
C270.7482 (2)0.36175 (6)0.89417 (8)0.0198 (2)
H3A0.623 (3)0.5505 (7)1.0210 (10)0.022 (4)*
H4A0.715 (3)0.6527 (8)1.0137 (11)0.028 (4)*
H6A1.105 (3)0.6164 (7)0.8149 (11)0.024 (4)*
H11A1.022 (3)0.3273 (7)0.6669 (11)0.027 (4)*
H12A0.658 (3)0.4025 (7)0.6958 (11)0.023 (4)*
H13A0.705 (3)0.3126 (8)0.5649 (11)0.029 (4)*
H14A0.352 (2)0.3879 (7)0.5961 (10)0.018 (4)*
H16A0.527 (3)0.2710 (8)0.4492 (12)0.031 (4)*
H17A0.316 (3)0.2329 (8)0.3271 (12)0.033 (5)*
H18A0.032 (3)0.2749 (8)0.2885 (12)0.036 (5)*
H19A0.179 (3)0.3514 (8)0.3763 (12)0.036 (5)*
H20A0.035 (3)0.3861 (7)0.4993 (10)0.020 (4)*
H22A1.423 (3)0.5431 (8)0.8233 (11)0.028 (4)*
H23A1.660 (3)0.5687 (8)0.7123 (11)0.027 (4)*
H24A1.547 (3)0.5514 (7)0.5628 (11)0.026 (4)*
H25A1.202 (3)0.5110 (7)0.5228 (11)0.024 (4)*
H26A0.975 (3)0.4861 (8)0.6324 (11)0.027 (4)*
H27A0.695 (3)0.3575 (8)0.9527 (12)0.031 (4)*
H27B0.860 (3)0.3318 (8)0.8870 (11)0.029 (4)*
H27C0.629 (3)0.3524 (8)0.8503 (12)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0483 (2)0.01405 (14)0.02701 (16)0.00199 (14)0.00901 (14)0.00136 (10)
O10.0177 (5)0.0229 (4)0.0256 (4)0.0039 (4)0.0005 (4)0.0005 (3)
N10.0146 (5)0.0189 (5)0.0162 (4)0.0007 (4)0.0013 (4)0.0001 (3)
C10.0140 (6)0.0171 (5)0.0155 (5)0.0004 (4)0.0017 (4)0.0008 (4)
C20.0133 (5)0.0175 (5)0.0139 (5)0.0000 (4)0.0003 (4)0.0004 (4)
C30.0167 (6)0.0222 (6)0.0165 (5)0.0001 (5)0.0022 (4)0.0024 (4)
C40.0214 (6)0.0207 (6)0.0183 (5)0.0024 (5)0.0026 (5)0.0038 (4)
C50.0255 (7)0.0148 (5)0.0188 (5)0.0002 (5)0.0010 (5)0.0006 (4)
C60.0219 (6)0.0165 (5)0.0154 (5)0.0003 (5)0.0020 (5)0.0011 (4)
C70.0157 (6)0.0162 (5)0.0122 (4)0.0003 (4)0.0012 (4)0.0001 (4)
C80.0136 (5)0.0164 (5)0.0122 (4)0.0008 (4)0.0004 (4)0.0004 (4)
C90.0148 (6)0.0156 (5)0.0132 (4)0.0012 (4)0.0008 (4)0.0008 (4)
C100.0188 (6)0.0148 (5)0.0161 (5)0.0003 (5)0.0024 (4)0.0007 (4)
C110.0221 (7)0.0164 (5)0.0204 (5)0.0003 (5)0.0016 (5)0.0035 (4)
C120.0221 (6)0.0160 (5)0.0178 (5)0.0007 (5)0.0023 (5)0.0014 (4)
C130.0213 (7)0.0187 (5)0.0196 (5)0.0005 (5)0.0003 (5)0.0034 (4)
C140.0207 (6)0.0165 (5)0.0180 (5)0.0016 (5)0.0030 (5)0.0017 (4)
C150.0198 (6)0.0162 (5)0.0172 (5)0.0032 (5)0.0015 (4)0.0013 (4)
C160.0242 (7)0.0198 (6)0.0225 (6)0.0005 (5)0.0015 (5)0.0027 (4)
C170.0345 (8)0.0226 (6)0.0225 (6)0.0035 (6)0.0007 (6)0.0052 (5)
C180.0343 (8)0.0253 (6)0.0204 (6)0.0063 (6)0.0054 (6)0.0009 (5)
C190.0256 (7)0.0263 (6)0.0245 (6)0.0015 (6)0.0046 (5)0.0020 (5)
C200.0234 (7)0.0207 (6)0.0205 (5)0.0000 (5)0.0006 (5)0.0007 (4)
C210.0160 (6)0.0142 (5)0.0149 (5)0.0018 (4)0.0017 (4)0.0008 (4)
C220.0188 (6)0.0231 (6)0.0183 (5)0.0002 (5)0.0000 (5)0.0014 (4)
C230.0160 (6)0.0248 (6)0.0265 (6)0.0017 (5)0.0023 (5)0.0017 (5)
C240.0224 (7)0.0210 (6)0.0230 (6)0.0031 (5)0.0082 (5)0.0033 (4)
C250.0236 (7)0.0207 (6)0.0156 (5)0.0021 (5)0.0043 (5)0.0010 (4)
C260.0180 (6)0.0172 (5)0.0154 (5)0.0001 (5)0.0008 (4)0.0008 (4)
C270.0207 (7)0.0177 (5)0.0211 (5)0.0033 (5)0.0024 (5)0.0012 (4)
Geometric parameters (Å, º) top
Cl1—C51.7405 (13)C14—H14A0.984 (16)
O1—C101.2253 (16)C15—C201.3981 (19)
N1—C11.3175 (15)C15—C161.4037 (18)
N1—C21.3681 (15)C16—C171.3890 (18)
C1—C91.4322 (17)C16—H16A1.001 (18)
C1—C271.5066 (17)C17—C181.389 (2)
C2—C71.4180 (17)C17—H17A1.000 (19)
C2—C31.4217 (16)C18—C191.384 (2)
C3—C41.3680 (18)C18—H18A0.955 (19)
C3—H3A0.967 (17)C19—C201.3940 (18)
C4—C51.4093 (19)C19—H19A1.033 (19)
C4—H4A0.981 (17)C20—H20A0.993 (16)
C5—C61.3693 (17)C21—C221.3938 (18)
C6—C71.4230 (16)C21—C261.4007 (15)
C6—H6A0.986 (17)C22—C231.3926 (18)
C7—C81.4302 (16)C22—H22A0.983 (17)
C8—C91.3794 (16)C23—C241.3911 (18)
C8—C211.4921 (16)C23—H23A0.987 (18)
C9—C101.5088 (16)C24—C251.389 (2)
C10—C111.4635 (17)C24—H24A0.965 (18)
C11—C121.3445 (19)C25—C261.3897 (17)
C11—H11A0.994 (17)C25—H25A0.981 (16)
C12—C131.4451 (16)C26—H26A0.967 (18)
C12—H12A0.976 (17)C27—H27A0.984 (19)
C13—C141.3417 (19)C27—H27B0.985 (18)
C13—H13A0.967 (18)C27—H27C0.982 (19)
C14—C151.4666 (16)
C1—N1—C2118.65 (10)C20—C15—C16118.41 (11)
N1—C1—C9122.41 (11)C20—C15—C14118.64 (11)
N1—C1—C27116.40 (11)C16—C15—C14122.94 (12)
C9—C1—C27121.18 (11)C17—C16—C15120.35 (13)
N1—C2—C7123.01 (11)C17—C16—H16A119.7 (10)
N1—C2—C3117.28 (11)C15—C16—H16A119.9 (10)
C7—C2—C3119.71 (11)C16—C17—C18120.45 (13)
C4—C3—C2120.41 (12)C16—C17—H17A118.2 (11)
C4—C3—H3A122.8 (10)C18—C17—H17A121.3 (10)
C2—C3—H3A116.8 (10)C19—C18—C17119.97 (12)
C3—C4—C5119.18 (11)C19—C18—H18A119.1 (11)
C3—C4—H4A120.0 (10)C17—C18—H18A120.8 (11)
C5—C4—H4A120.8 (10)C18—C19—C20119.79 (14)
C6—C5—C4122.68 (12)C18—C19—H19A123.1 (10)
C6—C5—Cl1119.38 (10)C20—C19—H19A117.1 (10)
C4—C5—Cl1117.93 (9)C19—C20—C15121.03 (13)
C5—C6—C7118.85 (12)C19—C20—H20A119.4 (9)
C5—C6—H6A119.9 (10)C15—C20—H20A119.6 (9)
C7—C6—H6A121.3 (10)C22—C21—C26118.92 (11)
C2—C7—C6119.16 (11)C22—C21—C8121.41 (10)
C2—C7—C8117.69 (10)C26—C21—C8119.66 (11)
C6—C7—C8123.15 (11)C23—C22—C21120.53 (11)
C9—C8—C7118.19 (11)C23—C22—H22A122.6 (11)
C9—C8—C21120.91 (10)C21—C22—H22A116.8 (11)
C7—C8—C21120.88 (10)C24—C23—C22120.21 (13)
C8—C9—C1120.05 (10)C24—C23—H23A120.3 (10)
C8—C9—C10119.50 (11)C22—C23—H23A119.5 (10)
C1—C9—C10120.15 (10)C25—C24—C23119.56 (12)
O1—C10—C11120.69 (11)C25—C24—H24A120.7 (10)
O1—C10—C9118.97 (10)C23—C24—H24A119.7 (10)
C11—C10—C9120.34 (11)C24—C25—C26120.43 (11)
C12—C11—C10124.93 (12)C24—C25—H25A119.9 (10)
C12—C11—H11A120.4 (10)C26—C25—H25A119.7 (10)
C10—C11—H11A114.6 (10)C25—C26—C21120.35 (12)
C11—C12—C13123.17 (12)C25—C26—H26A119.2 (10)
C11—C12—H12A121.2 (10)C21—C26—H26A120.4 (10)
C13—C12—H12A115.7 (10)C1—C27—H27A109.8 (10)
C14—C13—C12122.85 (12)C1—C27—H27B114.0 (10)
C14—C13—H13A121.6 (10)H27A—C27—H27B109.3 (14)
C12—C13—H13A115.5 (10)C1—C27—H27C109.3 (11)
C13—C14—C15126.69 (12)H27A—C27—H27C107.8 (15)
C13—C14—H14A116.9 (9)H27B—C27—H27C106.4 (15)
C15—C14—H14A116.4 (9)
C2—N1—C1—C90.42 (17)C1—C9—C10—O1105.62 (14)
C2—N1—C1—C27179.34 (10)C8—C9—C10—C11111.08 (13)
C1—N1—C2—C70.12 (17)C1—C9—C10—C1175.19 (14)
C1—N1—C2—C3179.31 (11)O1—C10—C11—C12175.74 (12)
N1—C2—C3—C4179.28 (11)C9—C10—C11—C123.44 (19)
C7—C2—C3—C40.17 (18)C10—C11—C12—C13175.68 (12)
C2—C3—C4—C50.14 (19)C11—C12—C13—C14177.89 (13)
C3—C4—C5—C60.4 (2)C12—C13—C14—C15176.62 (12)
C3—C4—C5—Cl1178.59 (10)C13—C14—C15—C20176.86 (13)
C4—C5—C6—C70.74 (19)C13—C14—C15—C162.0 (2)
Cl1—C5—C6—C7178.29 (9)C20—C15—C16—C170.23 (19)
N1—C2—C7—C6178.96 (11)C14—C15—C16—C17179.12 (12)
C3—C2—C7—C60.46 (17)C15—C16—C17—C180.1 (2)
N1—C2—C7—C80.03 (17)C16—C17—C18—C190.2 (2)
C3—C2—C7—C8179.39 (11)C17—C18—C19—C200.3 (2)
C5—C6—C7—C20.73 (18)C18—C19—C20—C150.1 (2)
C5—C6—C7—C8179.60 (11)C16—C15—C20—C190.11 (19)
C2—C7—C8—C90.23 (16)C14—C15—C20—C19179.05 (12)
C6—C7—C8—C9179.12 (11)C9—C8—C21—C22118.31 (13)
C2—C7—C8—C21178.30 (10)C7—C8—C21—C2263.20 (16)
C6—C7—C8—C210.59 (17)C9—C8—C21—C2661.54 (15)
C7—C8—C9—C10.52 (16)C7—C8—C21—C26116.95 (13)
C21—C8—C9—C1178.01 (10)C26—C21—C22—C230.23 (18)
C7—C8—C9—C10173.22 (10)C8—C21—C22—C23179.63 (12)
C21—C8—C9—C108.26 (16)C21—C22—C23—C240.5 (2)
N1—C1—C9—C80.64 (17)C22—C23—C24—C250.9 (2)
C27—C1—C9—C8179.51 (11)C23—C24—C25—C260.54 (19)
N1—C1—C9—C10173.05 (11)C24—C25—C26—C210.24 (19)
C27—C1—C9—C105.82 (16)C22—C21—C26—C250.62 (18)
C8—C9—C10—O168.11 (15)C8—C21—C26—C25179.24 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1i0.966 (17)2.484 (19)3.3681 (16)152.1 (14)
C11—H11A···Cl1ii0.994 (17)2.772 (16)3.6491 (12)147.4 (14)
C17—H17A···O1iii1.000 (19)2.596 (19)3.4398 (17)142.1 (14)
C27—H27C···O1iv0.984 (18)2.517 (19)3.3892 (16)147.6 (14)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y1/2, z+3/2; (iii) x1, y+1/2, z1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H20ClNO
Mr409.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.2464 (3), 22.5672 (11), 15.2748 (7)
β (°) 94.620 (1)
V3)2146.20 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.26 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.935, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
22989, 6191, 4889
Rint0.033
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.03
No. of reflections6191
No. of parameters351
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1i0.966 (17)2.484 (19)3.3681 (16)152.1 (14)
C11—H11A···Cl1ii0.994 (17)2.772 (16)3.6491 (12)147.4 (14)
C17—H17A···O1iii1.000 (19)2.596 (19)3.4398 (17)142.1 (14)
C27—H27C···O1iv0.984 (18)2.517 (19)3.3892 (16)147.6 (14)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y1/2, z+3/2; (iii) x1, y+1/2, z1/2; (iv) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035.  CrossRef Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010a). Acta Cryst. E66, o91–o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010b). Acta Cryst. E66, o353–o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationShahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds